
Proyecto Fin de Máster en Investigación Matemática
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Abstract: Given a principal fiber bundle P over a semi-Riemannian manifold (M, g),
Yang-Mills equations are defined over the space of principal connections on P . They
are the Euler-Lagrange equations corresponding to a certain Lagrangian defined on J1C,
the first jet bundle of C, where C is the bundle of connections on P . We write the
Hamiltonian counterpart of the variational problem defined by the Yang-Mills Lagrangian
on the polysymplectic bundle Π and recover Yang-Mills equations from Hamilton-Cartan
equations on Π.
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Resumen: Dado un fibrado principal P sobre una variedad semi-Riemanniana (M, g),
las ecuaciones de Yang-Mills se definen en el espacio de las conexiones principales en P .
Son las ecuaciones de Euler-Lagrange correspondientes a una cierta Lagrangiana definida
en J1C, el fibrado de jets de primer orden de C, donde C es el fibrado de las conexiones
en P . Escribimos la versión Hamiltoniana del problema variacional definido por la La-
grangiana de Yang-Mills en el fibrado polisimpléctico Π y recuperamos las ecuaciones de
Yang-Mills a partir de las ecuaciones de Hamilton-Cartan en Π.
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1 Introduction

The Calculus of Variations has a long and rich history since its formal beginning with
the works of Euler, Lagrange and Hamilton. The goal is to find extreme values of certain
functionals. The main difficulty that one encounters when dealing with the functionals
involved in this branch of Mathematics is the complex nature of the spaces where they
are defined. More precisely, these functionals are generally integro-differential operators
on infinite dimensional spaces as, for example, spaces of functions or spaces of sections of
bundles.

Many of the interesting problems in the Calculus of Variations come from Physics and
describe many of the fundamental equations in Mechanics, Electromagnetism, Relativity,
etc. The objects of all these equations are sections of bundles. More precisely, if M is a
model of space-time, the electromagnetic potential is a section of the bundle connections.
This is because electromagnetic potential can be identified with connections of an appro-
priate principal bundle on M . This instance can be further generalized to the so-called
Yang-Mills equations. Since their introduction in the 50’s, these equations have proved
to be the convenient framework to model interactions between quantum particles (inter-
actions including the aforementioned electromagnetism as well as weak or strong nuclear
interactions). In fact, it is interesting to note that the understanding of these forces as
described through connections was a late result form the 70’s. In any case, the Yang-Mills
equations can be obtained as variational equations on the set A of connections of certain
principal bundles. Moreover, the integro-differential operator is given as

A −→ R

A 7→
∫
M
L(j1A)v

where v is a volume form in M and L is a function depending on the first-order Taylor
expansion j1A of A. One can give a more geometrical definition to L through the language
of jets. In this case, the function L (called the Lagrangian) is thus defined as

L : J1C −→ R

where C →M is the bundle of connections and J1C stands for the jet space.

The equations for extremal values of the operators in Variational Calculus defined by
functions of the type above (that is, operators given by integration of functions depending
on the first jet) have a well known structure. They are the so-called Euler-Lagrange
equations and are ubiquitous in the literature. These equations, in particular, give a
standard way to formulate the Mechanics when the bundle is R × Q → R, the sections
of which are just curves in the configuration space Q. The equations have a similar
structure in arbitrary bundles. As we learn from Mechanics, the Hamiltonian picture
of these equations is essential in many instances. This framework deals with positions
and momenta and the evolution equations of these variables are the Hamilton equations.
Again, in fiber bundles, the analogue idea works. In this case, the “position” variables
are encoded through a bundle Y → M and the momenta are in a composite bundle
Π → Y → M . The new Hamilton equations are defined on sections of this composite
bundle. The importance of these equations is connected with notions as symplectic (or
multisymplectic) forms, quantization, etc.

The main goal of this work consists of giving a precise formulation of the Hamilton
equations for the Yang-Mills Lagrangian by giving the correct exposition of the geometric
objects involved in the construction.
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The structure of the work is as follows:

In Section 2 we introduce the basic tools about bundles and connections, including jet
bundles and bundles of connections.

In Section 3 we first introduce briefly the Lagrangian formalism for an arbitrary con-
figuration bundle and then define the polysymplectic bundle Π and Hamiltonian systems
on it. Finally we consider the case when the configuration bundle is a principal bundle
P and take the quotient of Π by the action of the structure group on TP . We introduce
a bracket on the quotient which coincides with the Poisson bracket when evaluated on
G-invariant Poisson forms and finally include the reduced Hamilton-Cartan equations on
the quotient.

In Section 4 we start introducing Yang-Mills equations on the space of connections of
a principal bundle P , consider the action of the gauge group of P on C and prolong it
to J1C, drop the Yang-Mills Lagrangian to the quotient space of J1C by this action and
recover Yang-Mills equations from the dropped variational problem. Then we go on to
specify the Hamiltonian approach defined on Section 3 taking the Yang-Mills Lagrangian,
that is, we write the linear Legendre transformation, the Yang-Mills Hamiltonian and
Hamilton-Cartan equations working with local coordinates on Π, more precisely on the
image of the linear Legendre transformation P. We check that Hamilton-Cartan equa-
tions on P coincide with Yang-Mills equations, that is, solutions of the Hamilton-Cartan
equations come from solutions of the variational problem defined by the Yang-Mills La-
grangian, taking the prolongation to the first jet bundle and composing with the Legendre
transformation. Finally we compute the expression of the Poisson (n−1)-forms and Pois-
son bracket on the constraint manifold P and give the characterization of solutions of a
Hamiltonian system on P in terms of Poisson (n−1)-forms on P analogous to the result in
Section 3. In general Section 4 is an attempt to generalize the Electromagnetism example
in [1] to the Yang-Mills case (where we change S1 for an arbitrary Lie group G). The last
point, reduction of the equations by the action of the gauge group on Π cannot be done
in an analogous way to [1] since in contrast to the Electromagnetism Hamiltonian, the
Yang-Mills Hamiltonian is not invariant under this action. This is left for future work.

2 Bundles

2.1 Introduction

Some of the main ingredients we will be dealing with are fiber bundles, particularly vector,
affine and principal bundles, and also connections on the principal fiber bundles. Here we
give a quick introduction to the concepts. For further details see [6].

Although it is not always required, we will always assume that the spaces are differ-
entiable manifolds and all functions are smooth (we might for instance reformulate the
same concepts considering topological spaces and continuous functions).

The idea of a fiber bundle is that of a manifold that can be viewed as the disjoint
union of copies of a manifold F indexed by another manifold M . These copies will be
the fibers of a smooth function. We will require that the dimensions of both manifolds
are greater than 0, for otherwise this definition would be trivial. Locally we will be able
to express this disjoint union as a product manifold of the form U × F , where U is an
open subset of M . If we do not require that the fibers are diffeomorphic, then we have
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the weaker notion of fibration. Let us give some formal definitions:

Definition 1 (Fibration). Let E and M be differentiable manifolds. A smooth map
π : E −→M is called a fibration if it is a surjective submersion. E, M , π and the triple
(E, π,M) will be called total space, base space, projection and fibred manifold respectively.

We will sometimes abbreviate (E, π,M) by E or π depending on whether we want to
distinguish between different fibred manifolds with the same total space. Usually we will
write π : E −→M or just E −→M .

Remark 1. Using the local structure of submersions we have that for each p ∈ E there
is an open subset Up ⊂ E, p ∈ Up, and a diffeomorphism φ : π(Up) × Fp −→ Up such
that π|Up ◦φ = pr1, where Fp is a differentiable manifold of dimension dim(E)− dim(M)
and pr1 denotes the projection onto the first factor of the product manifold. Note that
we do not require that π be injective, so one can see the fiber π−1(x) as a disjoint union
of manifolds of the same dimension. Imagine for instance a spiral made with a ribbon
projecting over a circle.

Note that with the above definition the fibers need not be diffeomorphic. Consider for
instance the fibred manifold (R×R\{0}, pr1,R), where the fiber π−1(0) is different from
the rest.

In order to avoid this inconvenience we will deal with a particular case of fibred man-
ifolds called fiber bundles. Dealing with fiber bundles will be easier than dealing with
fibred manifolds and they will provide a suitable model for a variety of physical situations.
One can for instance think of a metal sheet and all possible temperatures at each point
as a fiber bundle since all possible values at each point are the same. As an example in
which the fiber bundle would not be trivial (we will see what this means) one can think
of the Earth as a sphere and consider all possible velocities that the wind can have at
each point, that is, the tangent space at each point. Note that despite the fact that the
sets of velocities are different at each point, they are all diffeomorphic, which is what will
matter. Note also that in this example the fibers are more than just a smooth manifold
and more than just diffeomorphic to each other. This example is known as the tangent
bundle and we will come back to it later.

So we give the following definitions:

Definition 2 (Local trivialisation). Let (E, π,M) be a fibred manifold. Given p ∈M , an
open neighborhood Up ⊂M of p, and a differentiable manifold Fp, a diffeomorphism

ϕUp : π−1(Up)
∼=−→ Up × Fp

such that π|π−1(Up) = pr1 ◦ ϕUp is called a local trivialisation around p, or just a local
trivialisation if we do not specify any particular point and just take an open subset U ⊂M .
Note that this condition implies that π−1(y) ∼= Fp for all y ∈ Up.

Definition 3 (Fiber bundle). If it is possible to define local trivialisations around any
point p ∈M then (E, π,M) will be called a fiber budle.

Remark 2. In a fiber bundle we will necessarily have Fp ∼= Fq =: F for all p, q ∈ M in
case M is connected. Otherwise we will have the same conclusion in each of the connected
components of M . In order to justify this, take a local trivialisation π−1(Up) ∼= Up × Fp
around p ∈M . Then consider all local trivialisations with fibers diffeomorphic to Fp and
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take the union of all corresponding open subsets of M , obtaining an open subset of M
with fibers diffeomorphic to Fp. Since the union of all open subsets of M corresponding
to local trivialisations with fibers not diffeomorphic to Fp should also be an open subset,
and since we are assuming that M is connected, we get that the first union must be equal
to the whole base space M , for it is not empty.

Then we will refer to F as its typical fiber and denote a fiber bundle by (E, π,M,F ),
just by (E, π,M) if we do not need to mention the fiber or by some of the abbreviations
given for a fibred manifold.

If we have two local trivialisations ϕU and ϕV with overlapping domains, then the
change of trivialisation will be of the form

ϕV ◦ ϕ−1
U : U ∩ V × F −→ U ∩ V × F

(x, y) 7−→ (x, ϕ̃(x, y)),

where for each x ∈ U ∩ V , ϕ̃(x, ·) : F −→ F is a diffeomorphism. We will call ϕ̃(x, ·) a
transition function and denote it by gUV .

An atlas on the total space E can be constructed from an atlas on the base space M and
an atlas on the typical fiber F using the local trivialisations, for they give diffeomorphisms
ϕU : π−1(U) −→ U × F satisfying pr1 ◦ ϕU = π|π−1(U), where U can be taken to be a
chart on M , and then U × F can be given a product atlas. For these charts the first
dim(M) coordinates of points in the same fiber will be equal. We will write coordinates
as (xi, ya), where xi denote the coordinates in the base space and ya the coordinates in
the fiber, and we will call them adapted coordinates or fiber coordinates.

Definition 4. In case there is a global trivialisation, that is, a diffeomorphism

φ : E
∼=−→M × F

with π = pr1 ◦ φ, then E is called a trivial bundle.

Remark 3. One can define a fiber bundle starting with a tuple (E, π,M,F ) satisfying
the property of having local trivialisations around any p ∈ M and then obtain that π
must be a submersion, for it is locally a projection.

We will usually assume an additional structure on F and also on the transition func-
tions. For instance one might require that F be a vector space and gUV be linear functions.

As in the following example, fiber bundles are often defined as projections from a set
to a manifold. To ensure that the projection gives a fiber bundle we need the following
theorem:

Theorem 1. Let M and F be differentiable manifolds of dimensions n and m respectively,
E a set and π : E −→ M a map such that the fibers π−1(x), x ∈ M , have the structure
of a differentiable manifold of dimension m. Assume also that for each x ∈ M there is
an open neighborhood x ∈Wx and a bijection

Φx : π−1(Wx) −→Wx × F

such that pr1 ◦ Φx = π|π−1(Wx) and pr2 ◦ Φx|π−1(y) : π−1(y) −→ F is a diffeomorphism
for all y ∈Wx.

Then E admits a unique differentiable structure such that π : E −→M becomes a fiber
bundle and the maps Φx are local trivialisations.
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A proof of this theorem can be found in [9].

Note that a product manifold M × F gets its differentiable structure from the cor-
responding differentiable structures on M and F . Here we are getting a differentiable
structure on each π−1(Wx) by writing it as a product manifold.

Example 1 (Tangent and cotangent bundles). LetM be a smooth manifold with dim(M) =
n. Consider the disjoint union

TM =
⋃
x∈M

TxM

and let π be the projection

π : TM −→ M
v ∈ TxM 7−→ x.

We can define a fiber atlas on TM from an atlas on M . Let (U, xi) be a chart on
M . There is a bijection between π−1(U) and U × Rn given by v 7−→ (xi, vi), where
v = vi

∂
∂xi

∣∣
x
∈ π−1(U). Note that the other conditions of theorem 1 are satisfied, for

π−1(x) is a vector space diffeomorphic to Rn. (TM, τM ,M) will be called the tangent
bundle.

We can also define a fiber bundle structure on the disjoint union

T ∗M =
⋃
x∈M

T ∗xM

in a similar fashion. The resulting bundle (T ∗M, τ∗M ,M) will be called the cotangent
bundle.

Note that dim(TM) =dim(T ∗M) = 2n.

Definition 5 (Sections). Let (E, π,M) be a fiber bundle.

• A smooth function s : M −→ E is called a global section of π if π ◦ s = idM .

• A smooth function s : U −→ E, where U ⊂ M is an open subset, is called a local
section of π if π ◦ s = idU .

The notation used for the set of all sections of a fiber bundle E −→ M will be Γ(E).
We will denote the set of local sections defined in some neighborhood of a point x ∈ M
by Γx(E) and use this set in the definition of jet bundles later. When dealing with jet
bundles we will also use the notation ΓW (E), where W ⊂ M is an open subset, for all
local sections defined on W .

Example 2. Sections of the tangent and cotangent bundle are vector fields and differential
forms respectively.

Definition 6 (Bundle morphism). Let (E, π,M) and (E′, π′,M ′) be two fiber bundles. A
bundle morphism is a pair of smooth maps (F, f), F : E −→ E′, f : M −→M ′, such that
the following diagram commutes:

E
F //

π

��

E′

π′

��
M

f //M ′,

that is, it is a morphism that sends fibers of E to fibers of E′.
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Note that F determines f (once we know its existence), namely f(x) = (π′ ◦ F )|π−1(x).

There are several ways to construct new fiber bundles from given fiber bundles. We
define one of these which will be used later:

Definition 7 (Pull-back bundle). Let (E, π,M) be a fiber bundle and h : N −→ M a
smooth map. The pull-back bundle (h∗E, h∗π,N) is the fiber bundle with total space

h∗E = {(x, p) ∈ N × E : h(x) = π(p)}

and projection
h∗π : h∗E −→ N

(x, p) 7−→ x.

Remark 4. The pull-back bundle has the same typical fiber as the original bundle. In
fact the fiber of h∗π over x ∈ N is diffeomorphic to the fiber of π over h(x).

2.2 Vector bundles and affine bundles

Vector bundles will appear constantly. We will also work with first order jet bundles and
bundles of connections, which are affine bundles, so we give the definitions here. First let
us introduce the notation Ex for the fiber of π over x ∈M , that is Ex := π−1(x).

Definition 8 (Vector bundle). A vector bundle is a fiber bundle (E, π,M,F ) where the
typical fiber F is a vector space and the transition functions are linear isomorphisms.

Definition 9 (Affine bundle). An affine bundle is a fiber bundle (E, π,M,F ) where the
typical fiber F is an affine space and the transition functions are affine isomorphisms.

We will say that an affine bundle (E, π,M,F ) is modelled on a vector bundle (E′, π′,M, V )
if the affine space F is modelled on the vector space V .

Remark 5. Note that if (E, π,M,F ) is a vector (affine) bundle then Ex is a vector
(affine) space. Consider a local trivialisation around x ∈M

ϕUx : π−1(Ux)
∼=−→ Ux × F

and define a sum and a scalar multiplication on Ex as

y + y′ := ϕ−1
Ux

(x, pr2(ϕUx(y)) + pr2(ϕUx(y′))), for all y, y′ ∈ Ex,

λy := ϕ−1
Ux

(x, λpr2(ϕUx(y))), for all λ ∈ R, y ∈ Ex.

Note that because of the conditions imposed on the transition functions, that is, linearity,

this definition does not depend on the local trivialisation. Let ϕVx : π−1(Vx)
∼=−→ Vx × F

be another local trivialisation around x. Then

ϕVx ◦ ϕ−1
Ux

(x, pr2ϕUx(y) + pr2ϕUx(y′)) = (x, gUxVx(pr2ϕUx(y) + pr2ϕUx(y′)))

= (x, gUxVx(pr2ϕUx(y))) + (x, gUxVx(pr2ϕUx(y′))) = ϕVx(y) + ϕVx(y′)

= (x, pr2ϕVxy + pr2ϕVxy
′),

so ϕ−1
Vx

(ϕVx(y) + ϕVx(y′)) = y + y′, using bijectivity. Similarly one deals with scalar
multiplication and with the affine case.
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Definition 10 (Dual bundle). Given a vector bundle (E, π,M,F ), the dual vector bundle
(E∗, π̂,M, F ∗) is defined to be the vector bundle with total space

E∗ =
⋃
x∈M

E∗x

and projection
π̂ : E∗ −→ M

fx 7−→ x,

where fx ∈ E∗x. If we have a local trivialisation on E given by (xi, ya) ((xi) are coordi-
nates on an open subset U ⊂ M and (xi, ya) are coordinates on π−1(U)), then we can
define a bijection fx 7−→ (xi, ya) between π̂−1(U) and U × F ∗ as xi(fx) = xi(π̂(x)) and
ya(fx) = fx(Ba), where {B1, . . . , Bm} is the basis of Ex corresponding to the coordinates
(y1, . . . , ym), that is, Ba = (0, . . . , 1, . . . , 0), where the 1 is in position a and the rest are
zeroes.

Definition 11 (Tensor bundle). Given two vector bundles (E, π,M,F ), (E′, π′,M, F ′)
over the same base space M , the tensor bundle (E⊗E′, π̃,M, F ⊗F ′) is defined to be the
vector bundle with total space

E ⊗ E′ =
⋃
x∈M

Ex ⊗ E′x

and projection
π̃ : E ⊗ E′ −→ M

vx ⊗ v′x 7−→ x,

where vx ∈ Ex and v′x ∈ E′x. Given local trivialisations of E and E′, π−1(U) ∼= U × F
and (π′)−1(U) ∼= U × F ′ with coordinates (xi, ya) and (xi, zb) respectively, we define a
local trivialisation π̃−1(U) ∼= U × (F ⊗ F ′) of E ⊗ E′ with coordinates (xi, tab), where
tab(vx ⊗ v′x) = ya(vx)zb(v′x).

Remark 6. Analogously one can define the tensor bundle of an arbitrary finite number
of vector bundles. An interesting example arises when considering tensor products of a
vector bundle and its dual: E⊗ r. . . ⊗E⊗E∗⊗ s. . . ⊗E∗. In particular, if we take E = TM
then we get a fiber bundle whose sections are s-covariant and r-contravariant tensor fields.
For example we can consider the vector bundle T ∗M ⊗ TM , which has fibers isomorphic
to End(TxM) and whose sections are 1-forms taking values in TM . We will later consider
1-forms taking values in a Lie algebra g which will be sections of the fiber bundle T ∗M⊗g.

2.3 Principal fiber bundles and connections

A principal fiber bundle is a fiber bundle in which the fibers are diffeomorphic to a Lie
group G and the transition functions are given by a product on the Lie group. More
precisely:

Definition 12 (Principal fiber bundle). Let (P, π,M,G) be a fiber bundle with typical fiber
a Lie group G. It will be called a principal fiber bundle if we can find local trivialisations

φα : π−1(Uα) −→ Uα ×G
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satisfying
φα ◦ φ−1

β : Uαβ ×G −→ Uαβ ×G
(x, h) 7−→ (x, gαβ(x) · h)

for some smooth map gαβ : Uαβ −→ G, where Uα, Uβ ⊂ M are open subsets and Uαβ =
Uα ∩ Uβ.

Alternatively,

Definition 13 (Principal fiber bundle). Consider a tuple (P, π,M,G), where P and M
are differentiable manifolds, G is a Lie group and π : P −→M is a smooth map. We will
say that (P, π,M,G) is a principal fiber bundle if the following properties are satified:

• G acts freely on P on the right, with the action denoted by

P ×G −→ P
(p, g) 7−→ p · g,

• M is the quotient manifold P/G,

• π is the canonical projection,

• P is locally trivial, meaning in this case that for each x ∈ M there exists an open
neighborhood x ∈ Ux and a smooth map ϕ : π−1(Ux) −→ G such that

π−1(Ux)
∼=−→ Ux ×G

p 7−→ (π(p), ϕ(p))

is a diffeomorphism and ϕ(p · g) = ϕ(p) · g for all g ∈ G.

G will be referred to as the structure group.

Remark 7. Note that, since the action is free, the fibers will be diffeomorphic to G.

Proposition 1. A principal fiber bundle (P, π,M,G) has a global section if and only if
it is trivial.

Proof. If the fiber bundle P is trivial, that is, we have a diffeomorphism Φ : P
∼=−→M ×G

satisfying π = pr1 ◦ Φ, then we can define the global section

s : M −→ M ×G −→ P
x 7−→ (x, e) 7−→ Φ−1(x, e).

Conversely, if there is a global section s : M −→ P , then a global trivialisation is defined
by

M ×G −→ P
(x, g) 7−→ s(x) · g.

Let p ∈ P . Since s(π(p)) and p are in the same fiber, and the orbits of G coincide with
the fibers in P , there exists necessarily an element g ∈ G such that p = s(π(p)) · g. Hence
the map is surjective.

Now we see that it is injective: suppose that s(x) · g = s(x′) · g′. Then s(x) and s(x′)
are in the same fiber and necessarily x = x′. Since the action is free, also g = g′.

�
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Remark 8. We can formulate the local version of the previous proposition. If (P, π,M,G)
is a principal fiber bundle, then we have that for an open subset U ⊂ M there is a local
trivialisation π−1(U) ∼= U ×G if and only if there is a local section defined on U .

Definition 14 (Principal bundle morphism). Given two principal fiber bundles (P, π,M,G)
and (P ′, π′,M ′, G′), we define a principal bundle morphism as a pair of smooth functions
(F, f), F : P −→ P ′, f : M −→M ′, such that π′ ◦ F = f ◦ π, that is, the diagram

P
F //

π
��

P ′

π′

��
M

f //M ′

commutes, together with a homomorphism of groups Φ : G −→ G′ such that F (p · g) =
F (p) · Φ(g) for all p ∈ P , g ∈ G. Note again that f is determined by F .

Definition 15 (Principal bundle automorphism). A principal bundle morphism between
a principal bundle P and itself given by diffeomorphisms is called an automorphism of P .
We denote the group of all such morphisms by AutP .

Definition 16 (Gauge transformation). A principal bundle automorphism (F, f) such
that the induced function f is the identity map on M will be called a gauge transformation
or vertical morphism. The group of all gauge transformations is denoted by GauP .

A fiber bundle that will appear quite often is the adjoint bundle, which is a particular
case of associated bundle. The definition of associated bundle, as the one of principal
bundle, also involves a group action on the fibers but does not require the fibers to be
diffeomorphic to the group.

Definition 17 (Associated bundle). Let (P, π,M,G) be a principal fiber bundle and F
a differentiable manifold on which G acts on the left; we will construct another fiber
bundle with these ingredients (the associated bundle to the given principal bundle and to
the action on F ). Let us consider the product manifold P × F and define a right action
of G on it by

(P × F )×G −→ P × F
((p, ξ), g) 7−→ (p · g, g−1 · ξ).

This action defines an equivalence relation on P × F and the quotient (P × F )/G is
denoted by P ×G F . The associated bundle has E := P ×G F as its total space, M as its
base space and the projection is given by

πE : P ×G F −→ M
[(p, ξ)] 7→ π(p).

The idea of the associated bundle is to replace the fiber G of a principal bundle by
some other differentiable manifold F . Let us check that this is what we are doing with
the above definition:

The fiber of πE over x ∈M is, by definition,

π−1
E (x) = {[(p, ξ)] : p ∈ P, ξ ∈ F with π(p) = x} .

If we fix a point p0 ∈ π−1(x) then

π−1
E (x) = {[(p0 · g, ξ)] : g ∈ G, ξ ∈ F} = {[(p0, g · ξ)] : g ∈ G, ξ ∈ F}

9



= {[(p0, ξ)] : ξ ∈ F} ,

so the fiber of the associated bundle is diffeomorphic to F .

Now we construct local trivialisations of P ×G F from local trivialisations of P . Let
ϕU : π−1(U) −→ U ×G be a local trivialisation of P . Then

π−1
E (U) ∼= (π−1(U)× F )/G ∼= (U ×G× F )/G ∼= U × F,

where the last bijection is given by [(x, g, ξ)] 7−→ (x, g · ξ), which is well-defined since
[(x, g, ξ)] = [(x, gh, h−1 · ξ)] is mapped to [(x, g · ξ)] = [(x, (gh) · (h−1 · ξ))]. Then by
theorem 1 we get that P ×G F is the total space of a fiber bundle.

If P is a trivial bundle we can reason as above with a global trivialisation and get that
P ×G F ∼= M × F is trivial.

Example 3. We now introduce the frame fiber bundle. Let M be a differentiable man-
ifold. We define a frame as a basis of TxM for some x ∈ M and denote by FxM the set
of all frames at x ∈M . The total space of the frame bundle will be the set of all frames,
that is

FM =
⋃
x∈M

FxM,

and the projection will be
π : FM −→ M

p 7−→ x,

where p ∈ FxM .

Using theorem 1 we can give (FM, π,M) the structure of a fiber bundle. Note that
π−1(x) ∼= Gl(n,R). Let (U, xi) be a chart on M . Then each frame p ∈ π−1(U) can

be given coordinates (xi, Xi
k), where p =

(
Xi

1
∂
∂xi

∣∣
x
, . . . , Xi

n
∂
∂xi

∣∣
x

)
. This gives us the

bijection required to apply theorem 1.

FM is in fact a principal fiber bundle with structure group Gl(n,R). Let p =
(v1, . . . , vn) ∈ FM be a frame, then the action (on the right) of g = (aij) ∈ Gl(n,R)

on p is defined as p · g = (y1, . . . , yn), where yk = vja
j
k. Note that the action is free,

the orbits coincide with the fibers and FM is locally trivial in the sense of the second
definition of principal bundle (definition 13).

Now we consider the action of Gl(n,R) on Rn on the left given by the usual product,
that is, if ξ = (ξ1, . . . , ξn) ∈ Rn, g = (aij) ∈ Gl(n,R) then g · ξ = (a1

jξ
j , . . . , anj ξ

j). The
associated bundle to the frame bundle and this action of Gl(n,R) on Rn is the tangent
bundle. The identification is given by the map [(p, ξ)] 7−→ vjξ

j which is clearly well-
defined and gives and isomorphism between π−1

E (π(p)) and Tπ(p)M .

Proposition 2. If the action of G on F is trivial, that is, g · ξ = ξ for all g ∈ G and
ξ ∈ F , then the associated bundle P ×G F is trivial.

Proof. Since [(p, ξ)] = [(p · g, g−1 · ξ)] = [(p · g, ξ)] for all p ∈ P , g ∈ G, ξ ∈ F , we get

P ×G F ∼= P/G× F = M × F.

�

A particular example of associated bundle is the adjoint bundle, which replaces the
fiber G by its Lie algebra g.
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Definition 18 (Adjoint bundle). Let (P, π,M,G) be a principal fiber bundle and consider
the action of the structure group G on its Lie algebra g given by the adjoint representation

Ad : G −→ Aut(g)
g 7−→ Adg.

Recall that Adg was defined to be the differential of the conjugation map at the identity,
that is Adg = (dCg)e, where

Cg : G −→ G
h 7−→ ghg−1.

The adjoint bundle is the associated bundle to π and to this action of G on g; its fibers
are therefore isomorphic to g. We will denote it by g̃. Another frequent notation is ad(P ).

For a rewiev of the adjoint representation or other related concepts see [10].

Remark 9. If G is abelian then g̃ is trivial, since the conjugation map is the identity.
Then the adjoint representation is trivial and proposition 2 gives that g̃ is trivial.

There are several ways to define a connection on a principal fiber bundle P , for instance
as a horizontal distribution on P , as a 1-form on P taking values in the Lie algebra g of
the structure group G (which corresponds to the vertical projection with respect to the
horizontal distribution) or as a covariant derivative in the linear case.

The tangent space at p ∈ P , TpP , has a canonical direction, the vertical direction,
determined by the action of the structure group. The subspace of vertical vectors at p,
that is, vectors tangent to the fiber, is called the vertical subspace and denoted by VpP
or just Vp. The subbundle of TP with fibers Vp will be denoted by V P . If we consider
the differential of the projection π, (dπ)p : TpP −→ Tπ(p)M , then this subspace is defined
as

VpP = {v ∈ TpP : (dπ)p(v) = 0} ,

since the vectors tangent to the fibers are the vectors tangent to curves on which π is
constant. In order to express any vector v ∈ TpP as a sum of a vertical component and
some other component we need to choose some other direction, that is, define what will
be horizontal. This will allow us to derive sections of arbitrary vector bundles, but for
now let us give the first definition of connection, which is just the choice of a horizontal
space.

Definition 19 (Connection 1). A connection on a principal fiber bundle (P, π,M,G) is
a differentiable distribution H on P of rank dim(M) such that the following properties
are satisfied:

• TpP = Vp ⊕Hp, for all p ∈ P , so any v ∈ TpP can be uniquely written as v = x+ y
with x ∈ Vp and y ∈ Hp,

• Hp·g = (dRg)p(Hp), for all g ∈ G, p ∈ P , where

Rg : P −→ P
p 7−→ p · g.

11



For the splitting of v ∈ TpP when a connection is given, we will use the notation
v = vv + vh, with vv ∈ VpP and vh ∈ HpP .

A particular type of vector field on P which will be important is the following:

Definition 20 (Horizontal vector field). A vector field X ∈ X(P ) is called horizontal if
Xp ∈ Hp for all p ∈ P .

We will now introduce another type of vector field on P which will be needed in the
second definition of connection:

Definition 21 (Fundamental vector field). For each A ∈ g, the fundamental vector field
A∗ associated to it is the vector field on P with flow given by

Φ(p, t) = p · exp(tA), for all p ∈ P, t ∈ R,

that is, A∗p = d
dt

∣∣
t=0

p · exp(tA).

Remark 10. Since the integral curves remain on the fiber, fundamental vector fields are
vertical.

The interesting fact about these vector fields is that for each p ∈ P they give a linear
isomorphism with the vertical subspaces:

σp : g −→ VpP
A 7−→ A∗p.

Note that (dRg)pA
∗
p = (Adg−1A)∗p·g. Indeed,

(dRg)pA
∗
p =

d

dt

∣∣∣∣
t=0

Rg(p · exp(tA)) =
d

dt

∣∣∣∣
t=0

p · exp(tA)g

=
d

dt

∣∣∣∣
t=0

(p · g) · g−1exp(tA)g = (Adg−1A)∗p·g.

As we mentioned above, the second definition of a connection follows from the first one
by taking the projection of tangent vectors to its vertical component with respect to the
chosen distribution. Then we assign the corresponding element in g via the isomorphism
σp, so we obtain a 1-form w on P with values in g called the associated connection form.
This 1-form satisfies the following properties:

• w(A∗) = A for all A ∈ g,

• (R∗gw)(X) = Adg−1w(X), for all g ∈ G, X ∈ X(P ).

On the other hand, if we consider a 1-form w on P with values in g satisfying the
above properties, we can take

Hp = {v ∈ TpP : w(v) = 0} ,

which defines a distribution on P satisfying the properties of the first definition of con-
nection. Therefore, instead of referring to w as the 1-form associated to the connection,
we will also call w a connection.

12



Definition 22 (Connection 2). A connection w on P is a 1-form on P taking values in
g which satisfies

• w(A∗) = A for all A ∈ g,

• (R∗gw)(X) = Adg−1w(X), for all g ∈ G, X ∈ X(P ).

Let us see the equivalence between the two defintions with a little more detail:

Proposition 3. The two previous definitions of connection are equivalent.

Proof. Let H be a distribution satisfying the properties of the first definition. We define
a 1-form on TP with values in g as

w : TP −→ g
v 7−→ A,

where v ∈ TpP and A∗p = vv. Since A∗p is vertical, the first property is satisfied (recall that
w is just the vertical projection composed with the isomorphism σ−1

p ). Now we check the
second property. Let v ∈ TpP , then

R∗gw(v) = w(dRg(v)) = w(dRg(v
v + vh)) = w(dRg(v

v)) + w(dRg(v
h))

= w(dRgA
∗
p) = w((Adg−1A)∗p·g) = Adg−1A = Adg−1(w(A∗p)),

where we are using the second property of the first definition ((dRg)p(v
h) is horizontal),

the property of fundamental vector fields we mentioned above and the first property of
the second definition.

Now, if w is a 1-form on P with values in g satisfying the properties of the second
definition, define Hp = {v ∈ TpP : w(v) = 0}. Then TpP = VpP ⊕ Hp, for w : TpP −→
g ∼= VpP is surjective, because of the first property. To see the second property we use
the following equalities:

w((dRg)pv) = R∗gw(v) = Adg−1w(v),

where v ∈ TpP . Adg−1 is an isomorphism and therefore w(v) = 0 ⇔ Adg−1w(v) = 0 ⇔
w((dRg)pv) = 0, that is, we have Hp·g = (dRg)p(Hp).

Note that if we start with the distribution, define the associated 1-form and then take
the null spaces then we recover the original distribution. �

Now assume that a connection H on P is given, according to the first definition.
Then (dπ)p : TpP −→ Tπ(p)M gives an isomorphism between Hp and Tπ(p)M , so each
vector v ∈ TxM can be assigned a unique vector on TpP for each p ∈ π−1(x) via these
isomorphisms. Given a vector field X ∈ X(M), let us consider the vector field on P
defined in this manner:

Definition 23 (Horizontal lift). Given a principal fiber bundle (P, π,M,G), a connection
on it and a vector field X ∈ X(M), the horizontal lift X∗ of X is defined as the only
horizontal vector field on P such that

(dπ)pX
∗
p = Xπ(p), for all p ∈ P.
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Note that the horizontal lift X∗ is G-invariant, that is,

(dRg)pX
∗
p = X∗p·g for all g ∈ G, p ∈ P,

because of the G-invariance of the connection.

Remark 11. Any horizontal vector field Y on P which is G-invariant is the horizontal
lift of a vector field X on M , namely X = dπ(Y ), which means Xq = (dπ)pYp for an
arbitrary p ∈ π−1(q) and which is well-defined because of the G-invariance.

Now we give some properties of horizontal lifts and fundamental vector fields:

Proposition 4. Let X,Y ∈ X(M), f ∈ F(M) and A,B ∈ g. We have

• (X + Y )∗ = X∗ + Y ∗,

• (fX)∗ = f∗X∗, where f∗ = f ◦ π,

• [X,Y ]∗ = [X∗, Y ∗]h (recall that ·h denotes the horizontal projection), so in general
[X∗, Y ∗] is not horizontal,

• if X is horizontal, then [X,A∗] is also horizontal,

• [A,B]∗ = [A∗, B∗].

Proof. For the first three properties apply dπ to both sides. For example, the third
property follows from

dπ[X∗, Y ∗]h = dπ[X∗, Y ∗] = [dπX∗, dπY ∗] = [X,Y ].

For the fourth property just write the Lie bracket as the Lie derivative

[A∗, X]p = lim
t→0

(dφ−t)φt(p)(Xφt(p))−Xp

t
,

where φ(t, p) is the flow of the vector field A∗, that is, φ(p, t) = p · exp(tA), and therefore
φt = Rexp(tA). Then dφ−t = dR−exp(tA), so (dφ−t)φt(p)(Xφt(p)) is horizontal and also
[A∗, X]p.

For the fifth property we use [σpA, σpB] = σp([A,B]) which follows again from the
expression of the Lie bracket as the Lie derivative and the fact that σp is an isomorphism:

[σpA, σpB] = lim
t→0

(dφ−t)φt(p)σφt(p)B − σpB
t

= lim
t→0

(dR−exp(tA))φt(p)B
∗
φt(p)

− σpB
t

= lim
t→0

(Adexp(tA)B)∗φt(p)·(−exp(tA)) − σpB
t

= lim
t→0

σp·exp(tA)·(−exp(tA))Adexp(tA)B − σpB
t

= σp lim
t→0

Adexp(tA)B −B
t

= σp[A,B],

for Adexp(tA)B = dR−exp(tA)dLexp(tA)B = dR−exp(tA)B (here Rg and Lg denote right and
left multiplication on the Lie group). Then

[A∗p, B
∗
p ] = [σpA, σpB] = σp([A,B]) = [A,B]∗p.

�
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Remark 12. Note that in general if f, g ∈ F(P ) then fX∗+gY ∗ will not be a horizontal
lift, although it is a horizontal vector field, since it will not necessarily be G-invariant.
For example, if the two vector fields are independent then fX∗+ gY ∗ will be G-invariant
if and only if f = f̃ ◦ π and g = g̃ ◦ π for some f̃ , g̃ ∈ F(M) (that is, f = f̃∗ and g = g̃∗

with the notation in the second property).

Using the connection we can define an alternative way to derive r-forms to the exterior
derivative, namely the exterior covariant derivative. First we introduce some particular
types of r-forms:

Definition 24. Let ϕ be an r-form on P taking values in a vector space V of finite
dimension on which G acts on the left. We say that ϕ is

• horizontal, if

ϕ(X1, . . . , Xr) = 0 whenever Xi is vertical for some i,

• pseudotensorial, if
R∗gϕ(p) = g−1 · ϕ(p),

where we are using the notation · for the action of G on V , and

• tensorial, if it is pseudotensorial and horizontal.

If ρ denotes the action on V then we say that the pseudotensorial or tensorial form is
of type (ρ, V ).

Remark 13. The connection form w is pseudotensorial of type (Ad, g).

Definition 25 (Exterior covariant derivative). Let ϕ be an r-form on P . The exterior
covariant derivative Dϕ of ϕ is the (r + 1)-form defined as

Dϕ(X1, . . . , Xr+1) = dϕ(Xh
1 , . . . , X

h
r+1),

where X1, . . . , Xr+1 ∈ X(P ).

If we want to put emphasis on the connection w we will write D = dw.

Proposition 5. Let ϕ be a pseudotensorial r-form on P of type (ρ, V ). Then

• dϕ is a pseudotensorial (r + 1)-form of type (ρ, V ),

• ϕ◦πh is a tensorial r-form of type (ρ, V ), where πh is the projection to the horizontal
space given by the connection,

• Dϕ is a tensorial (r + 1)-form of type (ρ, V ).

Definition 26 (Curvature form). The curvature form Ω is the exterior covariant deriva-
tive of the connection form ω, that is,

Ω = Dω.

The curvature form is therefore a tensorial 2-form of type (Ad, g).
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Proposition 6. A connection (as a distribution) is integrable in the sense of Frobenius
if and only if its curvature vanishes.

Proof. Since

Ω(X,Y ) = dw(Xh, Y h) = Xh(w(Y h))− Y h(w(Xh))− w([Xh, Y h]) = −w([Xh, Y h]),

we have
Ω = 0⇔ [Xh, Y h] is horizontal,

that is,
Ω = 0⇔ the distribution H is involutive .

Furthermore H can be locally generated by dim(M) vector fields, that is, H is differen-
tiable. Hence, by Frobenius theorem, we get that H is integrable if and only if Ω ≡ 0.
�

Proposition 7 (Structure equation). If w is a connection on a principal fiber bundle and
Ω is its curvature form, then

Ω = dω + [w,w],

where by definition, [w,w](X,Y ) = [w(X), w(Y )].

Remark 14. In coordinates, if a = aαj dx
j ⊗Bα is a 1-form with values in g ({Bα}α is a

basis of g), then

[a, a] = aαj a
β
kdx

j ∧ dxk ⊗ [Bα, Bβ].

In order to prove proposition 7, just do the calcuations separating the cases when both
vector fields are horizontal, when both are vertical and when one is horizontal and the
other one is vertical. Some of the properties of proposition 4 are used.

Proposition 8. If ϕ is a tensorial 1-form of type (Ad, g) then

dωϕ = dϕ+ ω ∧ ϕ,

where ω ∧ ϕ(X,Y ) = [ω(X), ϕ(Y )]− [ω(Y ), ϕ(X)].

A proof is given in [6].

Remark 15. The connection form is not tensorial, so there is no contradiction with the
structure equation.

Remark 16. In fact the formula dωα = dα+ ω ∧ α is also valid for a tensorial k-form α
of type (Ad, g), taking into account all permutations in the definition of ω ∧ α.

Proposition 9 (Bianchi identity). Let Ω be the curvature form of a connection. Then

DΩ = 0.

For the proof take the exterior derivative on the structure equation and see that the
resulting 3-form vanishes when applied to three horizontal vectors.

Remark 17. In general it is not true that D2 = 0, in fact D2(·) = Ω ∧ ·.
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We will now study another side of the connection, namely the parallel transport and
covariant derivative, which provides a way to derive sections of a vector bundle using the
connection.

Definition 27. Let P be a principal fiber bundle with a connection. A smooth curve
on P is called horizontal if its tangent vectors are horizontal with respect to the given
connection.

Proposition 10. Let (P, π,M,G) be a principal fiber bundle with a connection and let
α : [0, 1] −→ M be a smooth curve in M . Then for each p ∈ π−1(α(0)) there exists a
unique horizontal curve α∗p : [0, 1] −→ P in P such that α∗p(0) = p and π(α∗(t)) = α(t)
for all t ∈ [0, 1]. We call α∗ the horizontal lift of α.

See [6] for a proof.

The horizontal lift α∗ induces a diffeomorphism between π−1(α(0)) and π−1(α(1)),
called parallel transport:

c0,1 : π−1(α(0)) −→ π−1(α(1))
p = α∗p(0) 7−→ α∗p(1).

In fact, the horizontal lift of the curve induces a diffeomorphism between π−1(α(s)) and
π−1(α(t)) for all s, t ∈ [0, 1], denoted by cs,t. Note that the parallel transport commutes
with the group action.

For each associated bundle to P we can define a notion of horizontality from the
connection on the original bundle. Since the associated bundle is not necessarily principal
we need to adapt the definition of connection:

Definition 28 (Ehresmann connection). An Ehresmann connection A on a fiber bundle
π : E −→M is a 1-form on E taking values in the vertical subbundle, that is,

Ap : TpE −→ VpE, for all p ∈ E

and satisfying also Ap(vp) = vp for all vp ∈ VpE.

Remark 18. Note that in the particular case of a principal bundle, an Ehresmann con-
nection and a connection take values in different spaces.

An Ehresmann connection can also be defined as a horizontal distribution as in the case
of connections but without the condition concerning the action of the structure group.

Given a connection H on the principal fiber bundle P , we can define an Ehresmann
connection on E = P ×G F by H[(p,ξ)] = dξ(Hp), where

ξ : P −→ E
p 7−→ [(p, ξ)].

In this case we have an analogous result to proposition 10 and can define the parallel
transport.

If the associated bundle E is a vector bundle, the parallel transport is an isomorphism
and provides a way to define the derivative of a section, a covariant derivative. Let
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s ∈ Γ(E), and denote by α̇(t) the tangent vector of α at t. Then the covariant derivative
of s at α(t) in the direction of α̇(t) is given by the formula

∇α̇(t)s = lim
h→0

1

h

(
c−1
t,t+h(s(α(t+ h)))− s(α(t))

)
.

If X ∈ X(M), we can define the covariant derivative ∇Xs taking the integral curves
of X in the above definition. ∇Xs is a section of E defined by

∇Xs(x) = ∇α̇(t)s

where α is an integral curve of X, with α(t) = x and α̇(t) = Xx.

In general a covariant derivative in a vector bundle (E, π,M) is a map

∇ : X(M)× Γ(E) −→ Γ(E)
(X, s) 7−→ ∇Xs

satisfying the following properties:

• ∇X+Y s = ∇Xs+∇Y s,

• ∇X(s+ t) = ∇Xs+∇Xt,

• ∇fXs = f∇Xs,

• ∇X(fs) = X(f)s+ f∇Xs,

for all X,Y ∈ X(M), f ∈ F(M), s, s′ ∈ Γ(E).

If the associated bundle is a vector bundle, then we can relate the covariant derivative
defined by the parallel transport in the associated bundle with the exterior covariant
derivative in the original bundle. This relation is given by the following result:

Proposition 11. Let (P, π,M,G) be a principal fiber bundle with a connection and let
(E, ρ,M, V ) be an associated vector bundle with an induced connection. Let Y ∈ TpP ,
X ∈ Tπ(p)M with dπ(Y ) = X. Let s be a section of E and f : P −→ V be the smooth
map defined by f(p) = p−1s(π(p)), where

p : V −→ Eπ(p)

ξ 7−→ [(p, ξ)]

is an isomorphism. Then we get

∇Xs = p(Df(Y )).

Now let (xi, ya) be adapted coordinates on a fiber bundle E −→ M . Locally we can
define an Ehresmann connection by giving the horizontal lift:

∂

∂xi
7−→ ∂

∂xi
− Γai (x, y)

∂

∂ya
,

where Γia depend both on xi and ya.

In the case of a vector bundle, if there exist smooth maps Γaij ∈ F(M) such that

Γai (x, y) = Γaij(x)yj then we say that the connection is linear. In this case a covariant
derivative is another alternative definition of connection, for we have
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Theorem 2. There is a bijection between linear connections and covariant derivatives in
a vector bundle (E, π,M).

See chapter 3 of [6].

Example 4. For the tangent bundle TM −→ M , sections are vector fields on M , so a
covariant derivative (linear connection) is a map

∇ : X(M)× X(M) −→ X(M)
(X,Y ) 7−→ ∇XY

satisfying the corresponding properties which coincide with the usual definition of affine
connection onM from Riemannian geometry. In this case the coefficients of the connection
coincide with the Christoffel symbols.

In the case of a principal connection there is locally a basis of the vertical space such
that we can write the horizontal lift with coefficients depending only on the coordinates
(xi) of the base space. Let {B1, . . . , Bm} be a basis of g and let π−1(U) ∼= U × G be a
local trivialisation of P . We define the following vector fields on π−1(U):

(B̃a)p =
d

dt

∣∣∣∣
t=0

(x, exp(tBa) · g),

where p = (x, g) ∈ U × G ∼= π−1(U). These vector fields are clearly vertical and give
a basis for each vertical subspace. In contrast with the fundamental vector fields they
depend on the trivialisation, but have the advantage of being G-invariant, that is,

(dRg)p(B̃a)p = (B̃a)p·g.

Recall that this was not true for fundamental vector fields, for they satisfied (dRg)B
∗ =

(Adg−1B)∗.

We write the local expression of the horizontal lift given by the G-invariant vertical
vector fields B̃a as (

∂

∂xi

)
x

7−→
(
∂

∂xi

)
(x,g)

− Γai (x, g)(B̃a)(x,g).

If w denotes the connection form (with values in V P ) then the G-invariance of B̃a gives

w

((
∂

∂xi

)
(x,gh)

)
= w

(
Γai (x, gh)(B̃a)(x,gh)

)
= dRh

(
Γai (x, gh)(B̃a)(x,g)

)
.

Since

w

(
∂

∂xi

)
(x,gh)

= w

(
dRh

(
∂

∂xi

)
(x,g)

)
= dRh

(
w

(
∂

∂xi

)
(x,g)

)
,

we also have
dRh

(
Γai (x, gh)(B̃a)(x,g)

)
= dRh

(
Γai (x, g)(B̃a)(x,g)

)
,

and hence
Γai (x, g) = Γai (x, gh), for all h ∈ G.

Then we can write the horizontal lift as

∂

∂xi
7−→ ∂

∂xi
− Γai (x)B̃a,

with Γai ∈ F(U).

19



2.4 Jet bundles

The idea of jet bundles is to put together all local sections of a given fiber bundle having
the same Taylor expansion of first order at a point, that is,

Definition 29 (1-jet of a section). Given a fiber bundle π : E −→M and a point x ∈M ,
we say that two local sections s, s′ ∈ Γx(E) belong to the same equivalence class j1

xs if
s(x) = s′(x) and (ds)x = (ds′)x. We call j1

xs the 1-jet of s at x.

1-jets can also be viewed as a generalisation of the concept of tangent vector, which
is what we get if we consider the trivial bundle π : R × Q −→ R for some differentiable
manifold Q. The sections of this bundle can be identified with smooth curves on Q,
and 1-jets of sections will be equivalence classes of smooth curves on Q with the same
differential at a point, that is, tangent vectors at a point.

It can be shown that this set of equivalence classes is a manifold and that respective
projections to the total space and the base space give rise to fiber bundles. A thorough
study on jet bundles is given in [9].

Definition 30 (First jet manifold). Let π : E −→ M be a fiber bundle. The set of all
1-jets {

j1
xs : x ∈M, s ∈ Γx(E)

}
is called the first jet manifold of E and is denoted by J1E. The projection of J1E onto
the total space

π1,0 : J1E −→ E
j1
xs 7−→ s(x)

will be called the target projection. The notation indicates that the projection goes from
the first jet manifold to E, which would be the 0-jet manifold. Higher order jet manifolds
can be defined and corresponding projections can be written as πk,k−1. The projection onto
the base space

π1 : J1E −→ M
j1
xs 7−→ x

is called the source projection (corresponding πk source projections for higher orders are
also defined).

An atlas on J1E can be defined from an atlas on E in a way analogous to how an atlas
on M induced an atlas on TM .

Let us give coordinates on J1E. If (xi, yα) are local adapted coordinates on E, then
(xi, yα, yαi ) with xi(j1

xs) := xi(x) = xi(s(x)), yα(j1
xs) := yα(s(x)) and

yαi (j1
xs) :=

∂(yα ◦ s)
∂xi

∣∣∣∣
x

are local adapted coordinates on J1E −→ E. Note that if (xi, yα) are coordinates on
an open subset U ⊂ E then the coordinates defined on J1E are valid for j1

xs such that
s(x) ∈ U .

Now we want to see that the first jet manifold is indeed a manifold. We will not prove
this result in detail, but it can be found in [9]. An outline of the proof would be as follows:

Lemma 1. If two local coordinate systems u = (xi, yα, yαi ) and v = (zj , tβ, tβj ) on J1E

have overlappig domains then the composition v ◦ u−1 is smooth.
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Lemma 2. The source and target projections are smooth submersions.

Lemma 3. π1,0 : J1E −→ E admits local affine trivialisations around any point.

Finally applying theorem 1 we get that the first jet manifold J1E is a manifold, namely
the total space of the now fiber bundle π1,0 : J1E −→ E.

In fact we have

Proposition 12. The jet bundle π1,0 : J1E −→ E is an affine bundle modelled on the
vector bundle T ∗M ⊗ V E (formally we should write π∗(T ∗M)⊗ V E).

Consider (J1E)y the fiber of π1,0 : J1E −→ E over y ∈ E. Take j1
xs, j

1
xs
′ ∈ (J1E)y,

where necessarily x = π(y) and s(x) = s′(x) = y. Then v ∈ TxM can be lifted to TyE in
two different ways according to each of the 1-jets and the difference is a vertical vector.
We can define the difference j1

xs − j1
xs
′ to be the co-vector that sends v to this vertical

vector and so obtain that the fiber (J1E)y is modelled on T ∗xM⊗VyE and J1E is modelled
on T ∗M ⊗ V E, that is, on the fiber bundle of 1-forms on M with values in V E.

Note that the same is not valid for π1 : J1E −→ M since vectors on M would not
necessarily be lifted to the same tangent space on E when considering the horizontal spaces
determined by jets in the same fiber. Then we cannot take the difference. Nevertheless,
we have the following proposition:

Proposition 13. π1 : J1E −→M is a fiber bundle.

This result follows from the fact that π1 = π ◦ π1,0, that is, π is a composite fiber
bundle. See [4] or [5].

Remark 19. Note that a 1-jet j1
xs is a choice of horizontal space at s(x). Therefore, given

a section of π1,0 we obtain an Ehresmann connection on E, taking Hs(x) = Im(ds)x.

Let us see a couple of useful examples:

Example 5. Let pr1 : M × R −→ M be a trivial fiber bundle. The first jet manifold
J1(M × R) is canonically diffeomorphic to T ∗M × R via the map

J1(M × R) −→ T ∗M × R
j1
xs 7−→ ((ds̄)x, s̄(x)) ,

where if s is a local section of M × R, then s̄ = pr2 ◦ s is a smooth map on some open
subset of M . Note that in this case the condition of first jet equivalence can be rewritten
as j1

xs = j1
xs
′ if s̄(x) = s̄′(x) and (ds̄)x = (ds̄′)x, where s, s′ ∈ Γx(M ×R), for pr1 ◦ s is the

identity map on its domain. Therefore the map is well-defined and injective. Note that
it is also surjective and that its local expression is just a swap of coordinates:

(xi, y, yi) 7−→ (xi, yi, y),

so we get that it is a diffeomorphism.

Example 6. Let pr1 : R ×M −→ R be a trivial fiber bundle. The first jet manifold
J1(R×M) is canonically diffeomorphic to R× TM via the map

J1(R×M) −→ R× TM
j1
xs 7−→ (x, d

dt

∣∣
t=x

pr2 ◦ s(t)).
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Remark 20. Note that in both examples the first jet manifold is a vector bundle. In
fact one can strengthen proposition 12 and get that if the fiber bundle E −→M is trivial,
via a diffeomorphism Φ, then π1,0 : J1E −→ E is a vector bundle. In order to get this,
a global section of π1,0 is defined, determining a zero for each affine fiber. This global
section is given by z(a) = j1

π(a)sa, where a ∈ E and sa is the section of E defined by

sa(x) = Φ−1(x, pr2(Φ(a))).

We now introduce the concepts of prolongation of a section and prolongation of a
morphism to the first jet manifold.

Definition 31 (Prolongation of a section). Let π : E −→ M be a fiber bundle and let
s ∈ ΓW (π) be a local section defined on W ⊂ M . We define the prolongation of s to the
first jet manifold as

j1s : W −→ J1E
x 7−→ j1s(x) := j1

xs.

Remark 21. Note that the following diagram is commutative:

J1E

π10
��

π1

""

E

π
��
W.

s

YY j1s

bb

In particular we have that j1s is a section of π1, for π1 ◦ j1s(x) = π1(j1
xs) = x, and that

π1,0 ◦ j1s(x) = π1,0(j1
xs) = s(x).

Remark 22. There are sections of J1E −→ M which are not the prolongation of a
section of E −→M . If we have local coordinates (xi, yα, yαi ) on J1E, a local section s of
J1E −→M can be written as

(xi) 7−→ (xi, sα, sαi ),

where no relation between sα and sαi is assumed. If s happens to be the prolongation of
a section of E −→M then the expression of s in coordinates is

(xi) 7−→
(
xi, sα,

∂sα

∂xi

)
.

Remark 23. If ψ is a local section of J1E −→ M , then ψ satisfies j1(π1,0 ◦ ψ) = ψ if
and only if ψ is the prolongation of some section of E −→M .

Definition 32 (Prolongation of a bundle morphism). Let π : E −→M and π′ : E′ −→M ′

be fiber bundles and let (F, f) be a bundle morphism between E and E′ such that f is a
diffeomorphism. The 1-jet prolongation of (F, f) is defined as

j1F : J1E −→ J1E′

j1
xs 7−→ j1

f(x)(F ◦ s ◦ f
−1).
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See the following diagram:

J1E
j1F //

π10
��

J1E′

π′10
��

E
F //

π
��

E′

π′

��
M

f //

s

>>

M ′.

F◦s◦f−1

``

Remark 24. Given j1
xs = j1

xs
′, we have j1F (j1

xs) = j1F (j1
xs
′), that is, the prolongation

of a morphism is well-defined, since the conditions F ◦ s ◦ f−1(f(x)) = F ◦ s′ ◦ f−1(f(x))

and ∂(F◦s◦f−1)
∂xi

∣∣∣
f(x)

= ∂(F◦s′◦f−1)
∂xi

∣∣∣
f(x)

depend on the values and first derivatives of s and

s′, which coincide.

Remark 25. The definition of prolongation of a bundle morphism is a generalisation
of the definition of prolongation of a section, which is the prolongation of the bundle
morphism (s, idM ) between (M, idM ,M) and (E, π,M):

M
j1s //

idM
��

J1E

π1,0
��

M
s //

idM
��

E

π
��

M
idM //M.

Proposition 14. The pairs (j1F, F ) and (j1F, f) are bundle morphisms between π10 and
π′10, and between π1 and π′1 respectively.

Proof. We have to check that the diagram

J1E
j1F //

π1

��

π10
��

J1E′

π′10
��

π′1

��

E
F //

π
��

E′

π′

��
M

f //M ′

commutes, and to that end it is enough to check that

J1E
j1F //

π10
��

J1E′

π′10
��

E
F // E′

commutes, which follows easily:

π′10 ◦ j1F (j1
xs) = π′10(j1

f(x)(F ◦ s ◦ f
−1)) = F ◦ s ◦ f−1(f(x)) = F ◦ s(x) = F ◦ π10(j1

xs).

�
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Proposition 15. Let π′′ : E′′ −→ M ′′ be another fiber bundle and (G, g) a bundle mor-
phism between π′ and π′′ with g a diffeomorphism. Then we have j1(G ◦F ) = j1G ◦ j1F .
Moreover j1idE = idJ1E.

Proof. Just write the definitions. �

If (zj , tβ, tβj ) are coordinates in J1E′, then using the chain rule we get that the local

expression of j1F is written as

(xi, yα, yαi ) 7−→

(
F j , F β,

(
∂F β

∂xi

∣∣∣∣
x

+ yαi
∂F β

∂yα

∣∣∣∣
x

)
∂(f−1)i

∂xj

∣∣∣∣
f(x)

)
.

Therefore we have that the morphism j1F restricted to each fiber is affine for its local
expression is

yαi 7−→
∂F β

∂xi

∣∣∣∣
x

∂(f−1)i

∂xj

∣∣∣∣
f(x)

+
∂F β

∂yα

∣∣∣∣
x

∂(f−1)i

∂xj

∣∣∣∣
f(x)

yαi .

Note that conditions on the last set of coordinates are imposed, so we get again that
not every bundle morphism between jet bundles will be a prolongation.

Let X be a projectable vector field on E, that is, there exists a vector field Y ∈ X(M)
such that dπ(X) = Y , that is, such that the diagram

E
X //

π
��

TE

dπ
��

M
Y // TM

commutes. Then the flow of X, {Φt}t∈R, are bundle morphisms and its prolongations
to the first jet manifold

{
j1Φt

}
t∈R are the flow for a vector field on J1E which will we

called the prolongation of X and denoted by j1X. A projectable vector field is written
in coordinates as

X = f i
∂

∂xi
+ gα

∂

∂yα
,

where f i = f i(xj) and gα = gα(xi, yβ).

If we locally write Φt = (Φi,Φα) for the flow of X, and then Ψt = (Φi) for the flow of
Y , the prolongation of Φt to J1E is given by

(xj , yβ, yβj ) 7−→

(
Φi,Φα,

(
∂Φα

∂xj

∣∣∣∣
x

+ yβj
∂Φα

∂yβ

∣∣∣∣
x

)
∂(Ψ−1

t )j

∂xi

∣∣∣∣
Ψt(x)

)
.

Then taking derivatives with respect to t we get that the expression of j1X in coordi-
nates is

j1X = f i
∂

∂xi
+ gα

∂

∂yα
+

(
∂gα

∂xi
+
∂gα

∂yβ
yβi −

∂f j

∂xi
yαj

)
∂

∂yαi
.

Now let us define a 1-form on J1E with values in V E which is useful to distinguish
which sections and vector fields on J1E come from sections and vector fields on E and
which do not. It is called the contact structure and it is defined as

Θ(v) = dπ1,0(v)− ds(dπ1(v)) ∈ Vs(x)E,
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where v ∈ Tj1xs(J
1E). The expression in coordinates is given by

Θ = (dyα − yαi dxi)⊗
∂

∂yα
.

Proposition 16. Let π : E −→M be a fiber bundle and s̄ a section of J1E −→M . We
have that s̄ = j1s for some section s of E −→M if and only if s̄∗Θ = 0.

Proof. We write the section s̄ in coordinates as s̄(xi) = (xi, s̄α, s̄αi ), where s̄α = yα ◦ s̄ and
s̄αi = yαi ◦ s̄ as usual. Then

s̄∗Θ = (ds̄α − s̄αi dxi)⊗
∂

∂yα
=

(
∂s̄α

∂xi
dxi − s̄αi dxi

)
⊗ ∂

∂yα

and

s̄∗Θ = 0⇔ ∂s̄α

∂xi
= s̄αi ⇔ s̄ = j1s with s = π1,0 ◦ s̄.

�

The contact structure also characterizes which bundle morphisms defined on the jet
bundle are prolongations:

Theorem 3. Let π : E −→ M and π′ : E′ −→ M ′ be fiber bundles and let (F, f) be
a bundle morphism between π1 : J1E −→ M and π′1 : J1E′ −→ M ′ such that f is
a diffeomorphism. Then dF (ker(Θπ)) ⊂ ker(Θπ′) if and only if F is the prolongation
of a bundle morphism (f0, f) between E and E′, where Θπ and Θπ′ denote the contact
structures on J1E and J1E′ respectively.

See [9] for a proof.

Remark 26. In [9] it is shown that the pull-back bundle π∗1,0(TE) has a canonical de-
composition

π∗1,0(TE) = π∗1,0(V E)⊕H,
and then the contact structure can be defined as

pr1 ◦ (dπ1,0, τJ1E) : TJ1E −→ π∗1,0(V E),

where
(dπ1,0, τJ1E) : v ∈ Tj1xsJ

1E 7−→ (dπ1,0(v), j1
xs) ∈ π∗1,0(TE)

and pr1 is the projection onto the first factor with respect to the above decomposition.
Recall that π∗1,0(TE) ⊂ TE × J1E, so it is intuitively clear that the element j1

xs in

(v, j1
xs) ∈ π∗1,0(TE) provides a way to decompose v ∈ Ts(x)E into a vertical and a hori-

zontal component. If pr1 ◦ (dπ1,0, τJ1E) : v ∈ Tj1xsJ
1E 7−→ (w, j1

xs), with w ∈ Vs(x)E, then
w = Θ(v).

Finally we state how the contact structure characterizes the prolongued vector fields
(see [9] again). First we need the following definition:

Definition 33 (Infinitesimal symetry). We say that a vector field X on J1E is an in-
finitesimal symmetry if it satisfies that for every vector field Y ∈ Ker(Θ), also [X,Y ] ∈
Ker(Θ).

Proposition 17. Let X be a projectable vector field on J1E with respect to π1,0. X is
an infinitesimal symmetry if and only if X is the prolongation of a vector field on E.
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2.5 Bundles of connections

Let π : P −→M be a principal bundle. We can define a bundle (the bundle of connections)
whose sections will be the connections on P . See [2] or [4].

Let p ∈ P with π(p) = x. The short sequence

0 −→ V P
i
↪→ TP

dπ−→ TM −→ 0

is exact (recall that π is a submersion).

A splitting h of this sequence, that is, a map h : TM −→ TP satisfying dπ◦h = IdTM ,
gives a connection on P ; we take h(Tπ(p)M) as the horizontal subspace in TpP and then
apply dRg for each g ∈ G to define the horizontal distribution at each point of the fiber
of x. Alternatively we can consider the sequence

0 −→ V P/G
i
↪→ TP/G

dπ−→ TM −→ 0,

where the action of G is given by dRg, and then a splitting gives us directly a connection
on P . This sequence is called the Atiyah sequence.

Remark 27. Note that V P/G ∼= g̃. We already said that, for A ∈ g and p ∈ P , A 7−→ A∗p
gives an isomorphism and, since (Adg−1A)∗p·g = dRg(A

∗
p), the map

g̃ −→ V P/G
[(p,A)] 7−→

[
A∗p
]

is well-defined (recall that [(p,A)] = [(p · g,Adg−1A)] and that A∗p and dRg(A
∗
p) represent

the same class in V P/G).

The following definition is the one given in [2]:

Definition 34. The bundle of connections of π : P −→ M is the fiber bundle with total
space

C(P ) = {λx : TxM −→ (TP/G)x : λx is linear and dπ ◦ λx = IdTxM , x ∈M}

and projection
ρ : C(P ) −→ M

λx 7−→ x.

A section of the bundle of connections gives a splitting of the above sequence and
therefore a connection on P .

For each x ∈M ,

C(P )x = {λ ∈ T ∗xM ⊗ (TP/G)x : dπ ◦ λ = IdTxM}

is an affine subspace of T ∗xM ⊗ (TP/G)x modelled on the vector space

{λ ∈ T ∗xM ⊗ (TP/G)x : dπ ◦ λ = 0} ∼= {λ ∈ T ∗xM ⊗ g̃x} ,

where we are using the above isomorphism between (V P/G) and g̃. Therefore, the bundle
of connections C(P ) is an affine bundle, an affine subbundle of T ∗M ⊗ (TP/G), modelled
on the vector bundle T ∗M ⊗ g̃ −→M .
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Recall that the first jet bundle J1P was an affine bundle modelled on the vector
bundle T ∗M ⊗ V E. If we consider the action of G on J1P given by j1

xs = j1
x(Rg ◦ s),

that is, the action given by the first jet prolongation j1Rg of (Rg, IdM ), then we get that
J1P/G −→ P/G is a fiber bundle diffeomorphic to C(P ) −→M .

We said in the previous subsection that a section of J1P −→ P gave an Ehresmann
connection on P . Then a section of J1P/G −→ P/G = M gives a G-invariant Ehresmann
connection, that is, a principal connection. We could as well have taken J1P/G −→ M
as the definition of the bundle of connections and a section of it as the definition of a
principal connection, as in [4].

Example 7. If P = M × G is a trivial bundle, then C(P ) = T ∗M ⊗ g̃, for we can take
a gobal section of P and define a corresponding zero connection. In fact, we already
saw in remark 20 that J1P can be identified with T ∗M ⊗ V P in this case, and then
C(P ) = J1P/G with T ∗M ⊗ g̃. We will use this later, in the fourth section. Note that
since P is trivial, the adjoint bundle must be trivial too and then C(P ) can be thought
of as T ∗M ⊗ g.

Now we introduce coordinates in the bundle of connections. Let {B1, . . . , Bn} be a
basis of g and let π−1(U) ∼= U×G be a local trivialisation of P , so that we can construct the
vector fields B̃1, . . . , B̃m introduced in section 2.3. The fibers of the bundle of connections
over U can be thought of as TxM ⊗ g and for each A ∈ C(P )x with x ∈ U we can write
A = Aαi dx

i ⊗Bα. Coordinates (xi, Aαi ) give a local trivialisation of C(P ).

Remark 28. If A(x) ∈ Γ(C(P )) is a connection on P with horizontal lift given locally
by

∂

∂xi
7−→ ∂

∂xi
− Γαi (x)B̃α,

then Aαi (A(x)) = Γαi (x).

3 Geometric variational calculus

3.1 Geometric Mechanics

Here we give a brief introduction to the Lagrangian and Hamiltonian formalisms in Me-
chanics and refer the reader to [7] for a detailed exposition. We start with the Lagrangian
formalism.

Let Q be a differentiable manifold which represents the space where particles move;
it is called the configuration space. In order to model how particles move we consider
the tangent bundle TQ, that is, positions and velocities. Now to describe the evolution
of a system we want to define a vector field on TQ whose integral curves will be the
trajectories of particles on TQ. We denote by (qi, q̇i) the local coordinates on TQ.

In this context a Lagrangian is a smooth map L : TQ −→ R. Generally L is given by
the difference between kinetic and potential energy.

Consider the space of all C2 curves on Q with fixed endpoints:

C2(q0, q1, [a, b]) =
{
c : [a, b] −→ Q : c ∈ C2([a, b]), c(a) = q0 and c(b) = q1

}
and the functional

S : C2(q0, q1, [a, b]) −→ R
c 7−→

∫ b
a L(c(t), ċ(t))dt.
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Hamilton’s variational principle states that a curve c ∈ C2(q0, q1, [a, b]) describes the
evolution of the system defined by the Lagrangian L if and only if c is a critical point of
the functional S, meaning that

d

dε

∣∣∣∣
ε=0

∫ b

a
L(cε(t), ċε(t))dt = 0,

for all variations cε ∈ C2(q0, q1, [a, b]) of c.

This condition is equivalent to∫ b

a

(
∂L

∂qi
d

dε

∣∣∣∣
ε=0

cε(t) +
∂L

∂q̇i
d

dt

d

dε

∣∣∣∣
ε=0

cε(t)

)
dt = 0,

using the chain rule, and to∫ b

a

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
d

dε

∣∣∣∣
ε=0

cε(t)dt = 0,

using integration by parts in the second addend and the fact that

d

dε

∣∣∣∣
ε=0

cε(a) =
d

dε

∣∣∣∣
ε=0

cε(b) = 0.

Since we are considering all variations of c, we get the Euler-Lagrange equations:{
∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0,

q̇i − dqi

dt = 0
⇔

{
∂2L
∂q̇j∂q̇i

dq̇j

dt = − ∂2L
∂qj∂q̇i

dqj

dt + ∂L
∂qi
,

q̇i = dqi

dt .

If the Lagrangian is regular, that is, det
(

∂2L
∂q̇j∂q̇i

)
6= 0, then we can write{

dq̇j

dt = F j(qi, q̇i),

q̇i = dqi

dt

and the Euler-Lagrange equations define a second order differential equation on Q:

d2c(t)

dt
= F

(
c(t),

dc(t)

dt

)
.

For the Hamiltonian formalism we work on T ∗Q instead of TQ. We define a Hamil-
tonian to be a smooth map H : T ∗Q −→ R and denote by (qi, pi) the coordinates on
T ∗Q.

In T ∗Q we can define a vector field from the Hamiltonian using the canonical symplectic
form Ω on T ∗Q (in coordinates Ω = dqi ∧ dpi), namely the vector field XH ∈ X(T ∗Q)
such that

iXHΩ = dH.

The equations associated to this vector field, that is, ż = XH(z), are called Hamilton’s
equations. In coordinates they are {

dqi

dt = ∂H
∂pi

dpi

dt = −∂H
∂qi
.
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Given a Lagrangian L, we can relate both viewpoints through the Legendre transfor-
mation FL : TQ −→ T ∗Q defined by

FL(v)(w) =
d

ds

∣∣∣∣
s=0

L(v + sw),

where v, w ∈ TpQ. The expression in coordinates is (qi, q̇i) 7−→ (qi, ∂L
∂q̇i

).

The condition we used to define a regular Lagrangian is equivalent to FL being locally
a diffeomorphism. If FL is a global diffeomorphism then we say that the Lagrangian L is
hyperregular.

The following result states that, under some circumstances, Euler-Lagrange equations
and Hamilton’s equations are equivalent:

Proposition 18. Let L be a hyperregular Lagrangian and define an associated Hamilto-
nian H = E ◦ FL−1 ∈ F(T ∗Q), where

E : TQ −→ R
v 7−→ FL(v)(v)− L(v)

is called the energy of L. If Z is the vector field on TQ associated to the Lagrangian L
and XH is the vector field on T ∗Q associated to the Hamiltonian H, then

XH ◦ FL = Z.

If c(t) and d(t) are integral curves of Z and XH respectively such that FL(c(0)) = d(0),
then FL(c(t)) = d(t) and they project to the same curve on the base space Q, that is
τQ(c(t)) = τ∗Q(d(t)).

Remark 29. If we consider the pull-back form ΩL = FL∗Ω on TQ, then the vector field
Z ∈ X(TQ) in the above proposition is the unique vector field on TQ such that

iZΩL = dE

(writing ΩL in coordinates shows that it is nondegenerate if and only if L is regular). It
is denoted by XE .

3.2 Field theories

In this section we introduce the Lagrangian formalism for an arbitrary bundle E −→ M
(in contrast with Q×R −→ R). The role of the tangent bundle will be played by the first
jet bundle:

Definition 35 (Lagrangian density). Let (E, π,M) be a fiber bundle with M orientable
and compact. A Lagrangian density is a bundle morphism

L : J1E −→
n∧
T ∗M.

If a volume form v is given on M then we can write L = Lv, where L ∈ F(J1E).

Now consider the functional

S : Γ(E) −→ R
s 7−→

∫
M L ◦ j

1s =
∫
M

(
L ◦ j1s

)
v,

where s is a section of E −→ M . We want to minimize this functional in the following
sense:
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Definition 36. A section s of E −→M is said to be an extremal of L if

d

dt

∣∣∣∣
t=0

∫
M

(
L ◦ j1(st)

)
v = 0,

for all variations of s, where a variation of s is a smooth map

M × R −→ E
(x, t) 7−→ s(x, t) = st(x)

such that s0(x) = s(x) for all x ∈M .

Proposition 19. A section s of E −→ M is extremal if and only if the Euler-Lagrange
equations

∂L

∂yα
◦ j1s− ∂

∂xi

(
∂L

∂yαi
◦ j1s

)
= 0

are satisfied for all α, for adapted coordinates such that v = dnx.

This is proved by doing analogous calculations to the case of Mechanics in 3.1 and
applying Stokes theorem.

Definition 37 (Poincaré-Cartan form). Given a Lagrangian L, the associated Poincaré-
Cartan form is the n-form on J1E with expression in coordinates given by

ΘL =
∂L

∂yαi
dyα ∧ dn−1xi +

(
L− ∂L

∂yαi
yαi

)
dnx.

It can be shown that this expression does not depend on the choice of coordinates; an
intrinsic definition is given in the following subsection.

Note that the n-form L ◦ j1s on M can be rewritten in terms of the Poincaré-Cartan
form ΘL as

L ◦ j1s = (j1s)∗ΘL.

Indeed,

(j1s)∗ΘL = (j1s)∗
(
∂L

∂yαi
dyα ∧ dn−1xi +

(
L− ∂L

∂yαi
yαi

)
dnx

)
=

∂L

∂yαi
◦ j1s dsα ∧ dn−1xi +

(
L ◦ j1s− sαi

∂L

∂yαi
◦ j1s

)
dnx = L ◦ j1s dnx.

The (n+ 1)-form ΩL = −dΘL gives another characterization for critical sections:

Proposition 20. A section s of E −→M is extremal if and only if

(j1s)∗(iXΩL) = 0,

for all vertical vector fields X on J1E (vertical with respect to π1).

This result can be shown by direct computation and using proposition 19.

Remark 30. The last proposition implies that the Euler-Lagrange equations are inde-
pendent of the choice of coordinates.
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Example 8. If we consider the trivial bundle R × Q −→ R for some smooth manifold
Q then J1(R × Q) ∼= R × TQ and we recover the situation described in 3.1. Note that
we were looking for curves on Q that would describe the evolution of a system, that is,
sections of R×Q −→ R.

If we denote by (t, qi, q̇i) coordinates on R × TQ then the Poincaré-Cartan form is
written as

ΘL =
∂L

∂q̇i
dqi +

(
L− ∂L

∂q̇i
q̇i
)
dt =

∂L

∂q̇i
dqi − E(qi, q̇i)dt

and Euler-Lagrange equations as

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0.

3.3 Hamiltonian formulation, the polysymplectic bundle and brackets

Now we introduce the analogues of the cotangent bundle for arbitrary bundles.

A first attempt to develop the Hamiltonian formalism could be to work on the dual
jet bundle:

Definition 38 (Dual jet bundle). Let π : E −→M be an arbitrary fiber bundle. The dual
jet bundle is a fiber bundle over E, (J1E)∗ −→ E, with fibers given by the affine duals of
the fibers of the jet bundle J1E −→ E (which are affine spaces). We will take as affine
dual the set of affine maps taking values in

∧n T ∗M .

Given adapted coordinates (xi, ya) on the base space E, we define adapted coordinates
on (J1E)∗ by (xi, ya, pia, p), where if (xi, ya, yai ) are coordinates on the fiber of J1E over
(xi, ya) then pia and p define all possible affine maps on this fiber by

yai 7−→ (piay
a
i + p)dx1 ∧ · · · ∧ dxn.

One advantage that the dual jet bundle (J1E)∗ presents is that it can be endowed
with a canonical multisymplectic form. This is accomplished by identifying it with a
subbundle Z of

∧n T ∗E, namely the subbundle consisting of all n-covectors that vanish
after contraction by two vertical vectors. The fiber of Z over y ∈ E is given by

Zy =

z ∈
(

n∧
T ∗E

)
y

: iuivz = 0, for all u, v ∈ VyE

 .

Note that the n-covectors that vanish after contraction by two vertical vectors are the
ones that have just one factor dya or none, so for each z ∈ Z we can write

z = pdx1 ∧ · · · ∧ dxn + piady
a ∧ dn−1xi.

Now we relate Z and (J1E)∗ through the fiber map

Φ : Z −→ (J1E)∗

z 7−→ Φ(z),

where Φ(z)(j1
xs) = s∗z ∈

∧n T ∗M and, if z ∈ Zy, then Φ(z) ∈
(
(J1E)∗

)
y
, that is,

s(x) = y. Φ is a vector bundle isomorphism. Note that if we write s(xi) = (xi, sa),
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then s∗z = pdxn + piads
a ∧ dn−1xi = pdxn + pia

∂sa

∂xj
dxj ∧ dn−1xi =

(
p+ pia

∂sa

∂xi

)
dnx =(

p+ piay
a
i

)
dnx, that is, Φ(z) is the map yai 7→ (p + piay

a
i )dnx, so the expression of Φ in

coordinates is
(xi, ya, pia, p) 7−→ (xi, ya, pia, p).

In
∧n T ∗E we can define a canonical n-form Θ, which can be pull-backed to Z and

then to (J1E)∗. It is given by

Θ(W )(X1, . . . , Xn) = W (dπ(X1), . . . , dπ(Xn)),

where W ∈
∧n T ∗E, X1, . . . , Xn ∈ TW (

∧n T ∗E), π :
∧n T ∗E −→ E is the projection,

and so dπ : T (
∧n T ∗E) −→ TE.

Now if i : Z ↪→
∧n T ∗E denotes the inclusion then (Φ−1)∗i∗Θ gives us a canonical

n-form on (J1E)∗ which we will also denote by Θ. The canonical multisymplectic (n+1)-
form is defined to be Ω = −dΘ.

In local coordinates one can write

Θ = piady
a ∧ dn−1xi + pdnx,

Ω = dya ∧ dpia ∧ dn−1xi − dp ∧ dnx.

Now we want a bridge between J1E and (J1E)∗. Given a Lagrangian density L :
J1E −→

∧n T ∗M we can define a fiber bundle morphism as follows:

Definition 39 (Legendre transformation). The Legendre transformation is the bundle
morphism over E defined as

FL : J1E −→ (J1E)∗

j1
xs 7−→ FL(j1

xs),

where

FL(j1
xs)(j

1
xs
′) = L(j1

xs) +
d

dε

∣∣∣∣
ε=0

L(j1
xs+ ε(j1

xs
′ − j1

xs)).

Remark 31. We define FL to be a gauge bundle morphism over E. This means that the
first n+m coordinates of j1

xs and j1
xs
′ are equal, so we are taking derivatives only in the

vertical directions and FL is just the first-order vertical Taylor approximation to L.

In coordinates the Legendre transform gives

pia =
∂L

∂yai
,

p = L− ∂L

∂yai
yai .

Remark 32. The dimensions of J1E and (J1E)∗ are different, so we cannot expect the
Lengendre transformation to be a diffeomorphism.

Remark 33. The n-form FL∗Θ and the (n+ 1)-form FL∗Ω on J1E coincide respectively
with the forms ΘL and ΩL defined in the previous subsection.

We will now introduce an alternative fiber bundle to develop the Hamiltonian formal-
ism which will have the same dimension as J1E:
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Definition 40 (Polysymplectic bundle). Let π : E −→M be a fiber bundle. The polysym-
plectic bundle Π −→ E is defined as

Π = π∗(TM)⊗E V ∗E ⊗E π∗
(

n∧
T ∗M

)
.

We will usually write

Π = TM ⊗ V ∗E ⊗
n∧
T ∗M,

but keep in mind that it is a bundle over E. Note that indeed the polysymplectic bundle
has the same dimension as the jet bundle.

Remark 34. The polysymplectic bundle is the linear version of the dual jet bundle. Note
that TM ⊗ V ∗E is the dual bundle of T ∗M ⊗ V E, precisely the vector bundle on which
J1E is modelled. So, instead of taking the bundle with fibers the set of affine maps on
the fibers of J1E, we take the bundle with fibers the set of linear maps on the vector
spaces on which the fibers of J1E are modelled.

Coordinates on Π will be written as (xi, ya, πia), so that elements in Π are written as

πia
∂

∂xi
⊗ dya ⊗ dnx.

Definition 41 (Linear Legendre transformation). The linear Legendre transformation is
defined as

F̂L : J1E −→ Π

j1
xs 7−→ F̂L(j1

xs),

where

F̂L(j1
xs)(ω) =

d

dε

∣∣∣∣
ε=0

L(j1
xs+ εω),

for any ω ∈ T ∗M ⊗ V E.

In coordinates it gives

πia =
∂L

∂yai
.

Let k : (J1E)∗ −→ Π denote the bundle morphism which assigns to each affine map
the corresponding linearization. Since we had a canonical (n + 1)-form on (J1E)∗, it is
enough to have a section of k : (J1E)∗ −→ Π in order to write Hamilton equations on Π,
so let us define a Hamiltonian system as a pair (Π, δ) where δ is a section of k. Then we
can take the pull-backs of Ω and Θ to Π, which will be denoted by Ωδ and Θδ respectively,
and write the equation

π∗ (iXΩδ) = 0,

where X is any vertical vector field on Π and π is a section of Π −→M . If the equation
is satisfied then the section π is said to be a solution of the Hamiltonian system.

Furthermore, if we have a connection A on E, then one can equivalently define a
Hamiltonian system as a pair (Π,H), where H is a smooth map

H : Π −→
n∧
T ∗M,
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called a Hamiltonian density. We will write H = −Hdnx. To relate both definitions
note that given two sections δ1, δ2 of k : (J1E)∗ −→ Π, the difference Θδ1 − Θδ2 is a
Hamiltonian density. Indeed, if we write

δj(x
i, ya, πia) = (xi, ya, πia,−Hδj ), j = 1, 2,

then

Θδ1 −Θδ2 = πiady
a ∧ dn−1xi −Hδ1d

nx− πiadya ∧ dn−1xi +Hδ2d
nx = (Hδ2 −Hδ1)dnx.

Now a section of (J1E)∗ −→ Π can be defined from an Ehresmann connection A :
TE −→ V E on E −→M as

δA|Πy : TxM ⊗ V ∗y E ⊗
∧n T ∗xM −→ Zy ∼= (J1E)∗y

w ⊗ ξ ⊗ dnx 7−→ (ξ ◦A) ∧ iwdnx.

In coordinates we write w = wi ∂
∂xi

, ξ = ξαdy
α and w ⊗ ξ ⊗ dnx = πiα

∂
∂xi
⊗ dyα ⊗ dnx.

Then iwd
nx = widn−1xi and, if the connection is locally given by

∂

∂xi
7−→ ∂

∂xi
− Γαi

∂

∂yα
,

then A = Γαi dx
i ⊗ ∂

∂yα + dyα ⊗ ∂
∂yα , for A

(
∂
∂yα

)
= ∂

∂yα and A
(

∂
∂xi
− Γαi

∂
∂yα

)
= 0 implies

A
(
∂
∂xi

)
= Γαi

∂
∂yα .

Hence the local expression of ξ ◦A is

ξady
a ◦
(

Γαi dx
i ⊗ ∂

∂yα
+ dyα ⊗ ∂

∂yα

)
= ξαΓαi dx

i + ξαdy
α

and finally (ξ ◦A) ∧ iwv is locally written as

wiξαΓαi d
nx+ wiξαdy

α ∧ dn−1xi = πiαΓαi d
nx+ πiαdy

α ∧ dn−1xi.

So if we have a Hamiltonian system (Π, δ) and we have a connection A on E, then
define (Π,H) with −Hdnx = H and H = Hδ − HδA and conversely, given H we can
recover Θδ = ΘδA +H and Θδ defines δ.

Having a connection A on E and taking the definition of a Hamiltonian system as
(Π,H), we can write Hamilton’s equations as

π∗(iXd(ΘδA +H)) = 0,

where X is a vertical vector field and π is a section of Π −→M .

Remark 35. We can also get a Hamiltonian density HAL from a hyperregular Lagrangian

density L, where hyperregular means that F̂L is a diffeomorphism. We just need to take

δ = FL ◦ F̂L
−1

and define HAL = Θδ − ΘδA . The pair (Π,HAL) is called the Hamiltonian
system associated to L and A.

Theorem 4. Let L : J1E −→
∧n T ∗M be a hyperregular Lagrangian. A section s :

M −→ E is a solution of the variational problem defined by L if and only if the section
π = F̂L ◦ j1s of Π −→M is a solution of the Hamiltonian system (Π,HAL).
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See [8] for a proof.

Proposition 21. The expression of the equation π∗(iXd(ΘδA +H)) = 0 in coordinates is(
∂H

∂πiα

)
π

=

(
∂yα

∂xi
+ Γαi

)
π

,

(
∂H

∂yα

)
π

= −

(
∂πjα
∂xj
−
∂Γβi
∂yα

πiβ

)
π

.

They are called Hamilton-Cartan equations.

Proof. Recall from the calculation above that

ΘδA = πiαΓαi d
nx+ πiαdy

α ∧ dn−1xi.

Then
ΘδA +HA = (πiαΓαi −H)dnx+ πiαdy

α ∧ dn−1xi

and

d(ΘδA +HA) =

(
πiα
∂Γαi
∂ya
− ∂H

∂ya

)
dya ∧ dnx

+

(
∂πiα

∂πja
Γαi −

∂H

∂πja

)
dπja ∧ dnx+

∂πiα

∂πja
dπja ∧ dyα ∧ dn−1xi

=

(
πiα
∂Γαi
∂ya
− ∂H

∂ya

)
dya ∧ dnx+

(
Γaj −

∂H

∂πja

)
dπja ∧ dnx+ dπja ∧ dya ∧ dn−1xj .

Taking a vertical vector field X = Xγ ∂
∂yγ +Xk

β
∂
πkβ

then

iXd(ΘδA +HA) = Xa

(
πiα
∂Γαi
∂ya
− ∂H

∂ya

)
dnx

+Xj
a

(
Γaj −

∂H

∂πja

)
dnx+Xj

ady
a ∧ dn−1xj −Xadπja ∧ dn−1xj ,

and writing a section s of Π −→M as (xi, sa, sia) we get

s∗(iXd(ΘδA +HA)) = Xa

(
πiα
∂Γαi
∂ya
− ∂H

∂ya

)
s

dnx

+Xj
a

(
Γaj −

∂H

∂πja

)
s

dnx+Xj
ads

a ∧ dn−1xj −Xadsja ∧ dn−1xj

= Xa

(
πiα
∂Γαi
∂ya
− ∂H

∂ya

)
s

dnx+Xj
a

(
Γaj −

∂H

∂πja

)
s

dnx+Xj
a

∂sa

∂xj
dnx−Xa ∂s

j
a

∂xj
dnx.
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Therefore (
∂H

∂ya

)
s

=

(
−∂π

j
a

∂xj
+ πiα

∂Γαi
∂ya

)
s

,(
∂H

∂πja

)
s

=

(
∂ya

∂xj
+ Γaj

)
s

.

�

Remark 36. Note that taking R × Q −→ R and the trivial connection ∂
∂t 7−→

∂
∂t , we

recover Hamilton’s equations from section 3.1.

We will now give some definitions and state some results for which we would like to
write analogues in the Yang-Mills case, where we will not be working in the whole Π.

Definition 42 (Horizontal forms). An r-form on (J1E)∗ is said to be horizontal if it
vanishes after contraction with any vertical vector field with respect to (J1E)∗ −→M .

Definition 43 (Poisson forms). A horizontal r-form F on (J1E)∗ is said to be Poisson
if there exists an (n− r)-multivector field XF ∈ Γ

(∧n−r T (J1E)∗
)

such that iXFΩ = dF .

Proposition 22. Every (horizontal) Poisson r-form F on (J1E)∗ with r > 0 is pro-
jectable to Π, that is, the expression in coordinates does not depend on p.

See [1] for a proof of this result (and also for the following in this section). In the proof
it is seen that a multivector field X such that iXΩ = dF must be vertical, meaning that
it contains no elements of the form Xi1···is(∂/∂xi1) ∧ · · · ∧ (∂/∂xis).

Proposition 23. Every function F : (J1E)∗ −→ R which does not depend on the affine
coordinate, alternatively every function F : Π −→ R, is a Poisson 0-form.

Proof. Take

XF = − ∂F
∂πiα

∂

∂yα
∧ v∗i +

∂F

∂yα
∂

∂πiα
∧ v∗i −

∂F

∂xi
∂

∂p
∧ v∗i ,

where v∗ = (∂/∂x1) ∧ · · · ∧ (∂/∂xn) and v∗i = idxiv
∗. �

Poisson (n − 1)-forms will be of interest for us since they characterize the solutions
of a Hamiltonian system (see proposition 25 below). The local expression of a Poisson
(n− 1)-form F is given by

F = (πiαX
α + gi)dn−1xi + z,

where Xα, gi ∈ F(E) and z is a horizontal closed (n− 1)-form on Π.

We will see more details later in the Yang-Mills case.

Poisson (n− 1)-forms can be written without using coordinates as

F = θX + π∗w + Z,

where X is a vertical vector field on E −→M , θX is the map

θX : Π = π∗(TM)⊗ V ∗E ⊗ π∗
(

n∧
T ∗M

)
−→ π∗

(
n−1∧

T ∗M

)
which contracts the vertical form component part with the vertical vector field and then
contracts vectors with n-forms giving (n− 1)-forms, w is a horizontal (n− 1)-form on E
and Z is a closed horizontal (n− 1)-form on Π.
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Definition 44 (Poisson bracket). Let F and H be (horizontal) Poisson forms on (J1E)∗

of degrees r and s respectively and XF and XH denote associated multivector fields. We
define the Poisson bracket to be the (r + s+ 1− n)-form

{F,H} = −iXF iXHΩ.

If F is a (horizontal) Poisson (n − 1)-form and H ∈ F(Π) (so that it is a Poisson
0-form) then the local expression for the Poisson bracket is

{F,H} =
∂F i

∂ya
∂H

∂πia
− ∂F i

∂πia

∂H

∂ya
.

Proposition 24. Given an Ehresmann connection A on E −→ M and a Riemannian
connection on M , there is a canonical connection on Π −→ M with horizontal lift given
by

∂

∂xi
7−→ ∂

∂xi
− Γαi

∂

∂yα
−

(
−
∂Γβi
∂yα

πjβ + Γjikπ
k
α − Γkikπ

j
α

)
∂

∂πjα
,

where Γαi are the coefficients of the connection on E and Γijk are the Christoffel symbols
of the connection on M .

Proposition 25. A section π of the bundle Π −→ M is a solution of the Hamiltonian
system (Π, A,H) if and only if for every horizontal Poisson (n− 1)-form F we have

{F,H} dnx ◦ π = d(π∗F )− (dhF ) ◦ π,

where dhF is the horizontal differential of F with respect to the connection on Π given in
the above proposition.

If we have a principal bundle P −→M with structure group G, then

Π

G
∼= TM ⊗ g̃∗ ⊗

n∧
T ∗M

(recall from the subsection on bundles of connections that the action of G on V P and
TM is given by dRg, and hence V P/G ∼= g̃ and TM/G ∼= TM).

If we ask a (horizontal) Poisson (n− 1)-form F on Π to be G-invariant then

F = θX + π∗w + Z,

where X is a G-invariant vertical vector field, w is an (n−1)-form on M and Z is a closed
horizontal G-invariant (n− 1)-form on Π.

Remark 37. A vector field X ∈ X(P ) is G-invariant if and only if its flow Φt is an
automorphism of P for all t ∈ R and it is G-invariant and vertical if and only if its flow
Φt is a gauge transformation for all t ∈ R. These last vector fields are called gauge vector
fields and its set is denoted by gauP . Sections of TP/G −→ M can be identified with
G-invariant vector fields and sections of g̃ ∼= V P/G −→M with gauge vector fields.

Let f be an (n− 1)-form on Π/G which is the projection of a G-invariant (horizontal)
Poisson (n− 1)-form on Π. Using the identification gauP ∼= Γ(g̃) we can write

f = θξ + π∗w + Z

for some ξ ∈ Γ(g̃), where θξ is defined in an analogous way to θX , w is an (n − 1)-form
on M and Z is a closed horizontal (n− 1)-form on Π/G.
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Definition 45 (Vertical derivative). The vertical derivative of h ∈ F(Π/G) is the fiber
bundle morphism

δh
δµ : TM ⊗ g̃∗ ⊗

∧n T ∗M −→ T ∗M ⊗ g̃⊗
∧n TM

µ 7−→ δh
δµ(µ)

defined by
δh

δµ
(µ)(τ) =

d

dε

∣∣∣∣
ε=0

h(µ+ ετ),

with µ, τ ∈ TxM ⊗ g̃∗x ⊗
∧n T ∗xM .

Definition 46 (Lie-Poisson brackets). Let f be an (n − 1)-form on Π/G which is the
projection of a G-invariant horizontal Poisson (n− 1)-form on Π and let h be a function
on Π/G. We define the Lie-Poisson brackets on Π/G as

{f, h}± (µ) = ±
〈
µ,

[
ξ,
δh

δµ
(µ)

]〉
,

where ξ is the section of g̃ −→M such that f = θξ + π∗ω, µ ∈ TxM ⊗ g̃∗x ⊗
∧n T ∗xM , [, ]

takes the Lie bracket on the corresponding component giving an element in (Π/G)∗x and
〈, 〉 is the pairing between Π/G and (Π/G)∗.

Theorem 5. Let (P, π,M,G) be a principal fiber bundle, f an (n−1)-form on Π/G which
is the projection of a G-invariant horizontal Poisson (n− 1)-form on Π and h a function
on Π/G. Then

{p∗f, p∗h} = p∗ {f, h}+
where p : Π −→ Π/G is the projection.

Definition 47 (Divergence). Let P −→M be a principal fiber bundle with a connection
A and let V be an associated vector bundle. The divergence with respect to A is defined
to be the only R-linear operator

divA : Γ(TM ⊗ V ) −→ Γ(V )

such that
div 〈X, η〉 =

〈
divAX, η

〉
+
〈
X,∇Aη

〉
,

for all X ∈ Γ(TM⊗V ) and η ∈ Γ(V ∗), where div is the usual divergence defined on vector
fields and ∇A denotes the covariant derivative defined by the connection induced by A on
V ∗. Here we see ∇A as ∇A : Γ(V ∗) −→ Γ(T ∗M⊗V ∗) rather than ∇A : X(M)×Γ(V ∗) −→
Γ(V ∗).

Remark 38. The usual divergence of a vector field X ∈ X(M) with respect to an n-form
ω ∈ Ωn(M) is defined to be the function f = divX such that LXω = fω; it is a particular
case of the above definition taking E = M × R.

Theorem 6. Let (P, π,M,G) be a principal fiber bundle with n =dim(M) and v a volume
form on M . Let A be a connection on P −→M and H a G-invariant Hamiltonian density
on Π. We write h for the dropped density to Π/G and for each section π of Π −→M we
write µ for the reduced section p ◦ π.

Then the following assertions are equivalent:
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1. for every horizontal Poisson (n− 1)-form F on Π

π∗ {F,H} v = d(π∗F )− dhF ◦ π,

2. the section π satisfies the Hamilton-Cartan equations,

3. for every dropped horizontal Poisson (n− 1)-form f on Π/G

µ∗ {f, h}+ v = d(µ∗f)− dhf ◦ µ,

4. the section µ satisfies
divAµ = ad∗δh

δµ
(µ)
µ.

Π
p

''

����

Π/G ∼= TM ⊗ g̃∗

ww
M

π

AA

µ

DD

Remark 39. The operator

ad∗ : g× g∗ −→ g∗

(v, α) 7−→ ad∗vα

is defined as ad∗vα(u) = α([u, v]) = 〈α, [u, v]〉, for all u ∈ g. Note that for each ξ ∈ Γ(g̃),

ad∗δh
δµ

(µ)
µ(ξ) =

〈
µ,

[
ξ,
δh

δµ
(µ)

]〉
,

which is the definition of the Lie-Poisson bracket.

4 Yang-Mills equations

4.1 Introduction

In order to define the Yang-Mills equations we first need to recall the definition of the
Hodge star operator:

Definition 48 (Hodge star operator). Let (M, g) be a semi-Riemannian manifold of
dimension n. The Hodge star operator is defined to be the only linear operator

∗ : Ωk(M) −→ Ωn−k(M)
α 7−→ ∗α

satisfying that β ∧ (∗α) = g(α, β)vg for all β ∈ Ωk(M).

Proposition 26. Let (x1, . . . , xn) be a local coordinate system, and write α = αi1···ikdx
1∧

· · · ∧ dxik , then

∗α =
1

(n− k)!
εi1···in

√
det(g)αj1···jkg

i1j1 · · · gikjkdxik+1 ∧ · · · ∧ dxin ,

where εi1···in is the sign of the permutation (1, . . . , n) 7−→ (i1, . . . , in).
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We will constantly write
√
det(g) for

√
|det(g)|.

The following properties of the Hodge star operator are satisfied:

• ∗vg = 1, ∗1 = vg,

• ∗(∗α) = (−1)k(n−k)α.

Let π : P −→ M be a principal fiber bundle with structure group G over a compact
semi-Riemannian manifold (M, g). Yang-Mills equations are

∗dA ∗ FA = 0,

where A is a connection on P and is the unknown of the equation, and FA is the curvature.
∗dA∗ is often denoted by δA.

Remark 40. Note that the Hodge star operator is defined on Ωk(M), so here we are
seeing FA as an element of Ω2(M, g̃) rather than Ω2(P, g). Then if w ⊗ η ∈ Ω2(M, g̃), we
define

∗(w ⊗ η) = (∗w)⊗ η.
To see FA in Ω2(M, g̃) we define, for each u, v ∈ TxM ,

FA(u, v) = [(p, FA(uhp , v
h
p ))],

where p ∈ π−1(x) and uhp and vhp are the horizontal lifts of u and v to Hp. It is well-defined
since R∗gFA = Adg−1 ◦ FA, so that

[(p · g, FA(uhp·g, v
h
p·g))] = [(p · g, FA(dRg(u

h
p), dRg(v

h
p )))]

= [(p · g,Adg−1 ◦ FA(uhp , v
h
p ))] = [(p, FA(uhp , v

h
p ))].

Yang-Mills equations are the Euler-Lagrange equations corresponding to the Lagrangian
in the next subsection. Now we just give a lemma and a couple of calculations which will
be useful in the next subsection:

Lemma 4. If for α = ω1 ⊗B1, β = ω2 ⊗B2 ∈
∧2 T ∗M ⊗ g̃ we write

α∧̇β = h(B1, B2)ω1 ∧ ω2,

then
d(α∧̇β) = (dAα)∧̇β + α∧̇(dAβ).

We will need the following:

• If A is a connection, that is, a section of the bundle of connections, ω a section of
the underlying vector bundle and ε a real number, then

FA+εω = d(A+ εω) + [A+ εω,A+ εω] = dA+ εdω + [A,A] + εA ∧ ω + ε2[ω, ω]

= dA+ [A,A] + ε(dω +A ∧ ω) + ε2[ω, ω] = FA + εdAω + ε2[ω, ω].

• If M is a compact manifold, then∫
M

(dAω)∧̇ ∗ FA =

∫
M
d(ω∧̇ ∗ FA)−

∫
M
ω∧̇(dA ∗ FA) = −

∫
M
ω∧̇(dA ∗ FA),

using the previous lemma and Stokes theorem.
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4.2 Covariant Lagrangian reduction for Yang-Mills

Let π : P −→ M be a principal fiber bundle with structure group G over a semi-
Riemmanian compact manifold (M, g). Consider the corresponding bundle of connections
C −→M over M , and define the Lagrangian density

L : J1(C) −→
∧n T ∗M

j1
xA 7−→ 1

2((FA)x, (FA)x)g,hvg
,

where, if ω1 ⊗ α1, ω2 ⊗ α2 ∈
∧2 T ∗M ⊗ g̃ then (ω1 ⊗ α1, ω2 ⊗ α2)g,h = g(ω1, ω2)h(α1, α2),

being h the Killing form (or any other Ad-invariant bilinear form on g).

Note that we just applied the Killing form to elements in g̃: if α1 = [(p,B1)] and
α2 = [(p,B2)], we put

h(α1, α2) = h(B1, B2),

which is well-defined because of the Ad-invariance of h.

We will see the expression of the Lagrangian in coordinates in the following subsection.

Let Φ : P −→ P be a gauge transformation and write locally Φ(x, g) = (x, γ(x) · g) for
some smooth function γ : U ⊂M −→ G, which can be seen as a section of U ×G −→ U .

Remark 41. Indeed, we can write Φ on U ×G as Φ(x, g) = (x, γ(x, g)). Since Φ satisfies
Φ(x, g · h) = Φ(x, g) · h, we get γ(x, g · h) = γ(x, g) · h and therefore we can write
γ(x, g) = γ(x, e) · g = γ(x) · g.

For each connection A on P , Φ induces the transformed connection given locally by

A′ = AdγA+ dγγ−1

(if ω is the connection form associated to A, then this expression corresponds to (Φ−1)∗ω).

Then we have an action of J1(U ×G) on C|U defined by

J1(U ×G)× C|U −→ C|U
(j1
xγ,Ax) 7−→ Adγ(x)Ax + (dγ)xγ

−1(x)
,

and by 1-jet prolongation we get an action of J2(U ×G) on J1(C|U ):

J2(U ×G)× J1(C|U ) −→ J1(C|U )
(j2
xγ, j

1
xA) 7−→ j1

x(AdγA+ dγγ−1)
.

Proposition 27. The quotient space J1(C)/J2(AdP ) can be identified with
∧2 T ∗M ⊗ g̃

and the projection with the curvature bundle map

Ω : J1C −→
∧2 T ∗M ⊗ g̃

j1
xA 7−→ (FA)x

,

which is a surjective submersion with connected fibers, and where AdP = P ×G G is the
associated bundle with action of G on G given by g̃ · g = g̃gg̃−1.

See [3] for a proof.
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Remark 42. Alternatively one can think of
∧2 T ∗M⊗ g̃ as J1C/GauPx, where the group

GauPx =
{

Φ ∈ GauP : Φ|Px = IdPx
}

acts on J1C with orbits that coincide with the fibers of the curvature map, and where
GauP denotes the group of all gauge transformations on P . Note that we are using
GauPx ∼= GauPy.

Since FA′ = AdγFA and the Killing form is Ad-invariant, the Lagrangian density L
remains invariant under gauge transformations, that is L(j1

xA) = L(j1
x(AdγA+ γ−1dγ)),

and hence it drops to the quotient space as

l :

2∧
T ∗M ⊗ g̃ −→

n∧
T ∗M.

Remark 43. If ΦC : C −→ C denotes the induced gauge transformation on the bundle
of connections and j1ΦC its lifting to J1C, that is, j1ΦC(j1

xA) = j1
x(ΦC(A)) then the

previous statement is a particular case of the following theorem.

Theorem 7 (Utiyama). A smooth function L : J1C −→ R is gauge invariant, that is
L ◦ j1ΦC = L for all Φ ∈ GauP , if and only if L = L̂ ◦ Ω, where L̂ :

∧2 T ∗M ⊗ g̃ −→ R
is an Ad-invariant smooth function.

See [3] again for a proof of this theorem.

Now consider variations of a section A of C −→ M of the form Aε = A + εω, where
ω is a section of T ∗M ⊗ g̃ −→ M . These variations will drop to the quotient space as
FA+εω. Note that

d

dε

∣∣∣∣
ε=0

FA+εω = dAω,

for using the formula FA+εω = d(A+ εω) + [A+ εω,A+ εω] we get FA+εω = FA + εdAw+
ε2[ω, ω].

Hence, for a section F of
∧2 T ∗M ⊗ g̃ −→ M such that F = FA for some A ∈ Γ(C),

the variations along F we will take in the formulation of the variational problem in the
quotient space will be sections of the form FA + εdAw.

The variational principle then yields

0 =
d

dε

∣∣∣∣
ε=0

∫
M
l(Fε)vg =

d

dε

∣∣∣∣
ε=0

∫
M

1

2
(F + εdAw,F + εdAw)ghvg

=

∫
M

(F, dAω)ghvg =

∫
M

(∗dA ∗ F, ω)ghvg,

for arbitrary w (here we are using the last calculation in the previous subsection and the
fact that (α, β)ghvg = α∧̇ ∗ β). Hence we get the Yang-Mills equation

δAFA := ∗dA ∗ FA = 0.

Remark 44. It can be shown that it is only necessary to consider variations of a specific
type, namely variations of the form

Ψε = ΦX
ε ◦ s,

where s is the section and X is any vertical vector field, with flow denoted by ΦX
ε .

In our case, since the fibers are affine spaces, any such variation can be written as
Aε = A+ εw, with the notations above.
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4.3 Hamilton-Cartan equations for Yang-Mills

For a fiber bundle E −→M , the polysymplectic bundle was defined as Π = TM ⊗V ∗E⊗∧n T ∗M . Note that in our case we have Π = TM ⊗ (TM ⊗ g̃∗)⊗
∧n T ∗M since C −→M

is an affine bundle modelled on T ∗M ⊗ g̃. We will usually write Π = TM ⊗ (TM ⊗ g̃∗)
and assume that a fixed volume form dnx is given. α ∈ Π will be written in coordinates as
α = πijα

∂
∂xi
⊗ ∂

∂xj
⊗Bα, where {B1, . . . , Bm} is a basis for g and

{
B1, . . . , Bm

}
denotes its

dual basis. If (xi, Aαi ) are coordinates on C then we write (xi, Aαi , A
α
ij) for the coordinates

on J1C. Using the formula FA = dA+ [A,A] we can write the Yang-Mills Lagrangian in
coordinates as

L(xi, Aαi , A
α
ij) =

1

2

(
Aαij −Aαji −A

µ
i A

ν
j c
α
µν

)
gjsgir

(
Aβrs −Aβsr −AηrAτscβητ

)
hαβ

√
det(g),

where hαβ is an abbreviation for h(Bα, Bβ) and, in the right side of the equality, j < i
and s < r.

Indeed, if A(x) = Aαi (x)dxi ⊗ Bα denotes a section of C, that is, a connection on P ,
then

(dA)x = (Aαij −Aαji)dxj ∧ dxi ⊗Bα, j < i

and
[Ax, Ax] =

[
Aνj dx

j ⊗Bν , Aµi dx
i ⊗Bµ

]
= AνjA

µ
i

[
dxj ⊗Bν , dxi ⊗Bµ

]
= AνjA

µ
i c
α
νµdx

j ∧ dxi ⊗Bα = −AνjA
µ
i c
α
µνdx

j ∧ dxi ⊗Bα, j < i,

so
(FA)x =

(
Aαij −Aαji −A

µ
i A

ν
j c
α
µν

)
dxj ∧ dxi ⊗Bα, j < i.

Therefore we get

L(j1
xA) =

1

2
((FA)x, (FA)x)gh

√
det(g)

=
1

2

((
Aαij −Aαji −A

µ
i A

ν
j c
α
µν

)
dxj ∧ dxi ⊗Bα, (Aβrs −Aβsr −AηrAτscβητ )dxs ∧ dxr ⊗Bβ

)
gh

=
1

2
(Aαij −Aαji −A

µ
i A

ν
j c
α
µν)gjsgir(Aβrs −Aβsr −AηrAτscβητ )hαβ

√
det(g).

Then the expression of F̂L : J1C −→ Π in coordinates will be

F̂L(j1
xA) = F̂L(xi, Aαi , A

α
ij) =

(
xi, Aαi ,

∂L

∂Aαij

)

=
(
xi, Aαi ,

(
Aβrs −Aβsr −AηrAτscβητ

)
gjsgirhαβ

√
det(g)

)
,

with s < r and no restrictions on i and j.

So we get that the image are the curvature forms. Since we are working on a given point
and locally any 2-form is the curvature form of a 1-form, really we can reach any 2-form.

The image is therefore ImF̂L = TM ∧TM⊗ g̃∗, or alternatively ImF̂L =
{
πijα + πjiα = 0

}
.

Note that F̂L is not a diffeomorphism, that is, L is not hyperregular, since the image is
strictly contained in Π, and also not a diffeomorphism with the image since dim(ImF̂L) 6=
dimJ1C. Therefore we cannot apply theorem 4. Anyway, we will be able to develop the
Hamiltonian approach working on the image P :=ImF̂L = TM ∧ TM ⊗ g̃∗.
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Let ω ∈ TM ∧ TM ⊗ g̃∗. The elements of its fiber by F̂L
−1

will be of the form
j1
x(A + df), where f is a smooth function taking values in g with ∂fα

∂xi
(x) = 0 for all α, i

and F̂L(j1
xA) = ω. In coordinates the elements of the fiber can be written as(

xi, Aαi +
∂fα

∂xi
, Aαij +

∂2fα

∂xj∂xi

)
.

We see that FL is constant along the fiber of ω. In coordinates we have

FL
(
xi, Aαi +

∂fα

∂xi
, Aαij +

∂2fα

∂xj∂xi

)
=

(
xi, Aαi +

∂fα

∂xi
,
∂L

∂Aαij
, L− ∂L

∂Aαij
Aαij

)

=

(
xi, Aαi +

∂fα

∂xi
,

(
Aβkl +

∂2fβ

∂xl∂xk
−
(
Aβlk +

∂2fβ

∂xk∂xl

)

−
(
Aµk +

∂fµ

∂xk

)(
Aνl +

∂fν

∂xl

)
cβµν

)
gjlgikhαβ

√
det(g),

L−
(
Aβkl +

∂2fβ

∂xl∂xk
−
(
Aβlk +

∂2fβ

∂xk∂xl

)
−
(
Aµk +

∂fµ

∂xk

)(
Aνl +

∂fν

∂xl

)
cβµν

)

gjlgikhαβ
√
det(g)

(
Aαij +

∂2fα

∂xj∂xi

))

=
(
xi, Aαi ,

(
Aβkl −A

β
lk −A

µ
kA

ν
l c
β
µν

)
gjlgikhαβ

√
det(g),

L−
(
Aβkl −A

β
lk −A

µ
kA

ν
l c
β
µν

)
gjlgikhαβ

√
det(g)

(
Aαij +

∂2fα

∂xj∂xi

))
.

Note that

L

(
xi, Aαi +

∂fα

∂xi
, Aαij +

∂2fα

∂xj∂xi

)
= L(xi, Aαi , A

α
ij),

and also that (
Aβkl −A

β
lk −A

µ
kA

ν
l c
β
µν

)
gjlgik

(
Aαij +

∂2fα

∂xj∂xi

)

= g

((
Aβkl −A

β
lk −A

µ
kA

ν
l c
β
µν

)
dxl ⊗ dxk,

(
Aαij +

∂2fα

∂xj∂xi

)
dxj ⊗ dxi

)
.

Now, since T ∗M ⊗ T ∗M = (T ∗M ∧ T ∗M) ⊕⊥ (T ∗M ∨ T ∗M) and ∂2fα

∂xj∂xi
dxi ⊗ dxj ∈

T ∗M ∨ T ∗M , we get

g

((
Aβkl −A

β
lk −A

µ
kA

ν
l c
β
µν

)
dxl ⊗ dxk,

(
Aij +

∂2fα

∂xi∂xj

)
dxj ⊗ dxi

)
= g

((
Aβkl −A

β
lk −A

µ
kA

ν
l c
β
µν

)
dxl ⊗ dxk, Aijdxj ⊗ dxi

)
,
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for g
(

(Aβkl −A
β
lk +AµkA

ν
l c
β
µν)dxl ⊗ dxk, ∂2fα

∂xi∂xj
dxj ⊗ dxi

)
vanishes.

Consequently, FL does not depend on the element of the fiber, that is

FL
(
xi, Aαi +

∂fα

∂xi
, Aαij +

∂2fα

∂xj∂xi

)
= FL(xi, Aαi , A

α
ij).

Therefore we have a well-defined section δ = FL ◦ F̂L
−1

of k : (J1C)∗ −→ Π along P
and hence the multisymplectic structure on (J1C)∗ can be transferred to P.

J1C
FL //

F̂L ((

(J1C)∗

k
��

P ⊂ Π

δ

UU

Let Ω be the canonical multisymplectic (n+ 1)-form on (J1C)∗ we introduced earlier.
In coordinates,

Ω = dAαi ∧ dπijα ∧ dn−1xj − dp ∧ dnx,

where we are identifying the coordinates pijα with πijα .

We denote the pull-back of Ω to k−1(P) by ΩP = i∗Ω and the pull-back to P by
ΩPδ = δ∗i∗Ω, where i : k−1(P) −→ (J1C)∗ is the inclusion.

We will call (P, δ) a Hamiltonian system with constraints and say that a section π of
P −→M is a solution of the Hamiltonian system if the equation

π∗
(
iXΩPδ

)
= 0

is satisfied for any vertical vector field X on P.

We define the following change of coordinates on Π (and on (J1C)∗):

Rijα =
1

2
(πijα − πjiα ) , if i < j

Sijα =
1

2
(πijα + πjiα ) , if i ≤ j

Note that this change of coordinates corresponds to the expression of πijα as the direct
sum of its symmetric and antisymmetric parts:

πijα = Rijα + Sijα , R
ij
α ∈ TM ∧ TM ⊗ g̃∗, Sijα ∈ TM ∨ TM ⊗ g̃∗.

When i > j, we have Rijα = −Rjiα and Sijα = Sjiα .

The constraint manifold P is defined by Sijα = 0 for all i ≤ j and the pull-back of the
multisymplectic form Ω on k−1(P) will have the following expression in local coordinates:

ΩP = −
∑
i<j

dRijα ∧ (dAαi ∧ dn−1xj − dAαj ∧ dn−1xi)− dp ∧ dnx.

Indeed, the local expression of Ω on (J1C)∗ was

Ω = dAαi ∧ dπijα ∧ dn−1xj − dp ∧ dnx.
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Applying the change of coordinates we get

Ω = dAαi ∧ d(Rijα + Sijα ) ∧ dn−1xj − dp ∧ dnx.

If ΩP is the restriction of Ω to k−1(P), since on P (and therefore on k−1(P)) we have
Sijα = 0 and Riiα = 0 for all i, j, α, we obtain

ΩP = −dRijα ∧ dAαi ∧ dn−1xj − dp ∧ dnx

=
∑
i<j

−dRijα ∧ dAαi ∧ dn−1xj +
∑
i>j

dRjiα ∧ dAαi ∧ dn−1xj − dp ∧ dnx

= −
∑
i<j

dRijα ∧ (dAαi ∧ dn−1xj − dAαj ∧ dn−1xi)− dp ∧ dnx,

where we have used Rijα = −Rjiα .

Now we will write Hamilton’s equations.

Recall that
Ω = −dΘ,

where the expression of Θ in local coordinates is given by

Θ = πijα dA
α
i ∧ dn−1xj + pdnx.

When we had an Ehresmann connection A on C −→ M , we were able to define a
section of (J1C)∗ −→ Π associated to it in the following way:

δA : Π = TM ⊗ (TM ⊗ g̃∗)⊗
∧n T ∗M −→ Z ∼= (J1C)∗

w ⊗ ξ ⊗ v 7−→ (ξ ◦A) ∧ iwv,

where w ∈ TM , ξ ∈ TM ⊗ g̃∗ and v ∈
∧n T ∗M .

The expression in coordinates was

ΘδA = πijα dA
α
i ∧ dn−1xj + πijα Γαijd

nx,

where Γαij denote the coefficients of the horizontal lift

∂

∂xj
7−→ ∂

∂xj
− Γαijdx

i ⊗Bα

defined by the connection A. Hence HδA = −πijα Γαij . Note that we are using the vector

bundle structure to identify ∂
∂Aαi

with dxi ⊗Bα.

In the case of a linear connection we can write

∂

∂xj
7−→ ∂

∂xj
− ΓαkijσA

σ
kdx

i ⊗Bα.

We will assume that the symbols of the connection are symmetric, that is, Γαij = Γαji.

In the coordinates introduced, Hamilton-Cartan equations have the following expres-
sion: (

∂H

∂πijα

)
π

=

(
∂Aαi
∂xj

+ Γαij

)
π

,

(
∂H

∂Aαi

)
π

= −

(
∂πijα
∂xj

−
∂Γβkj
∂Aαi

πkjβ

)
π

.
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Let us rewrite them on P after the change of coordinates. Using the chain rule we get,
from the first set of equations,(

∂H

∂Rµνβ

)
=

(
∂H

∂πijα

)
∂πijα
∂Rµνβ

=
∂H

∂πµνβ
− ∂H

∂πνµβ

=

(
∂Aβµ
∂xν

+ Γβµν

)
−

(
∂Aβν
∂xµ

+ Γβνµ

)
=
∂Aβµ
∂xν

− ∂Aβν
∂xµ

,

where we are using the symmetry of the connection. Note that in these equations µ < ν.

The other set of equations gives us

∂H

∂Aαi
= −

(
∂πijα
∂xj

−
∂Γβkj
∂Aαi

πkjβ

)
= −

∂
(
Rijα + Sijα

)
∂xj

−
∂Γβkj
∂Aαi

(
Rkjβ + Skjβ

)

= −

(
∂Rijα
∂xj

−
∂Γβkj
∂Aαi

Rkjβ

)
= −∂R

ij
α

∂xj
,

where in the last equality we are using that
∂Γβkj
∂Aαi

Rkjβ = 0 since Γβkj = Γβjk and Rkjβ = −Rjkβ .

Now let us write the expression of H in coordinates, which is simply the difference
between the last coordinate of δA and of δ. This comes from taking the difference Θδ −
ΘδA = H = −Hdnx and ignoring the volume form dnx, so H = Hδ −HδA .

The expression of δ in coordinates was given by

(
xi, Aαi , π

ij
α

)
7−→

(
xi, Aαi , π

ij
α , L ◦ (F̂L)−1 − πijα

∂Aαi
∂xj

)
.

Then the expression of H on Π is

H = −
(
L ◦ (F̂L)−1 − πijα

∂Aαi
∂xj

)
+ πijα Γαij ,

and composing with F̂L yields

H ◦ F̂L = −L+
(
Aβrs −Aβsr −AµrAνscβµν

)
gjsgirhαβ

√
det(g)(Aαij −Aαji)

+
(
Aβrs −Aβsr −AµrAνscβµν

)
gjsgirhαβ

√
det(g)(Γαij − Γαji),

where the sum is taken over j < i and s < r, and where we are using that πijα = −πjiα in
P. Since Γαij = Γαji, the term depending on the connection vanishes. Now we write the
definition of L and compute:

H ◦ F̂L = −L+
(
Aβrs −Aβsr −AµrAνscβµν

)
gjsgirhαβ

√
det(g)(Aαij −Aαji)

= −1

2

(
Aαij −Aαji −A

µ
i A

ν
j c
α
µν

)
gjsgir

(
Aβrs −Aβsr −AηrAτscβητ

)
hαβ

√
det(g)

+
(
Aβrs −Aβsr −AµrAνscβµν

)
gjsgirhαβ

√
det(g)(Aαij −Aαji)
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=
1

2
(Aβrs −Aβsr −AηrAτscβητ )gjsgirhαβ

√
det(g)

(
Aαij −Aαji +Aµi A

ν
j c
α
µν

)
=

1

2
(Aβrs −Aβsr −AηrAτscβητ )gjsgirhαβ

√
det(g)

(
Aαij −Aαji −A

µ
i A

ν
j c
α
µν + 2Aµi A

ν
j c
α
µν

)
=

1

2
(Aβrs −Aβsr −AηrAτscβητ )gjsgirhαβ

√
det(g)

(
Aαij −Aαji −A

µ
i A

ν
j c
α
µν

)
+(Aβrs −Aβsr −AηrAτscβητ )gjsgirhαβ

√
det(g)Aµi A

ν
j c
α
µν .

Note that the first addend is equal to

1

2
(FA, FA)gh

√
det(g).

Substituting πijα = (Aβrs − Aβsr − AµrAνsc
β
µν)gjsgirhαβ

√
det(g) we get the expression of

H on P

H =
1

2
πijα π

rs
β grigsjh

αβ
(√

det(g)
)−1

+ πijαA
µ
i A

ν
j c
α
µν ,

which in the new coordinates is

H =
1

2
RjiαR

sr
β grigsjh

αβ
(√

det(g)
)−1
−RjiαA

µ
i A

ν
j c
α
µν ,

with j < i and s < r.

Now we can work out the left-hand sides of Hamilton-Cartan equations:

∂H

∂Rjiα
= Rsrβ grigsjh

αβ
(√

det(g)
)−1
−Aµi A

ν
j c
α
µν ,

∂H

∂Aµi
= −RjiαAνj cαµν .

So the Hamilton-Cartan equations will be

Rsrβ grigsjh
αβ
(√

det(g)
)−1
−Aµi A

ν
j c
α
µν = Aαji −Aαij ,

−RjiαAνj cαµν = −
∂Rilµ
∂xl

,

where j < i, s < r and i < l.

The first set of equations is equivalent to

−Rsrβ =
(
Aαij −Aαji −A

µ
i A

ν
j c
α
µν

)
grigsjhαβ

√
det(g).

If we write
Fαji = (Aαij −Aαji −A

µ
i A

ν
j c
α
µν), j < i,

that is, FA = Fαjidx
j ∧ dxi ⊗Bα, then

πijα = F βsrg
jsgirhαβ

√
det(g), s < r
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which we write as F jiα , so what we get is

Rsrβ = −
(
Aαij −Aαji −A

µ
i A

ν
j c
α
µν

)
grigsjhαβ

√
det(g)

= −Fαjigrigsjhαβ
√
det(g) = −F srβ = F rsβ ,

which implies that solutions of Hamilton-Cartan equations for Yang-Mills come from
sections of J1C composed with the linear Legendre transformation, in fact prolongations
of sections of C composed with the linear Legendre transformation.

Now we see that the second set of equations is equivalent to Yang-Mills equation

∗dA ∗ FA = 0.

In coordinates we write

FA =
(
Aαij −Aαji −A

µ
i A

ν
j c
α
µν

)
dxj ∧ dxi ⊗Bα.

Then using the expression in coordinates of the Hodge star operator we gave in the
introduction of this section we obtain

∗FA =
(
Aβrs −Aβsr −AµrAνscβµν

)
gjsgir

√
det(g)

(n− 2)!
εjii3···indx

i3 ∧ · · · ∧ dxin ⊗Bβ,

where j < i and s < r.

Using the other set of equations,

−Rsrβ =
(
Aαij −Aαji −A

µ
i A

ν
j c
α
µν

)
grigsjhαβ

√
det(g),

we get that

∗FA =
−Rjiα hαβ

(n− 2)!
εjii3···indx

i3 ∧ · · · ∧ dxin ⊗Bβ, j < i.

We will use the formula

dA(∗FA) = d(∗FA) +A ∧ (∗FA).

In the first addend we only need to derive with repect to the coordinates on M (recall
that we are looking for sections of Π −→M):

d(∗FA) = −∂R
ji
α

∂xj
hαβ

(n− 2)!
εjii3···indx

j ∧ dxi3 ∧ · · · ∧ dxin ⊗Bβ

−R
ji
α

∂xi
hαβ

(n− 2)!
εjii3···indx

i ∧ dxi3 ∧ · · · ∧ dxin ⊗Bβ.

The second gives

A ∧ (∗FA) =
(
Aαkdx

k ⊗Bα
)

∧

((
Aβrs −Aβsr −AµrAνscβµν

)
grigsj

√
det(g)

(n− 2)!
εjii3···indx

i3 ∧ · · · ∧ dxin ⊗Bβ

)

= Aαi

(
Aβrs −Aβsr −AµrAνscβµν

)
grigsj

√
det(g)

(n− 2)!
cγαβεjii3···indx

i ∧ dxi3 ∧ · · · ∧ dxin ⊗Bγ
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+Aαj

(
Aβrs −Aβsr −AµrAνscβµν

)
grigsj

√
det(g)

(n− 2)!
cγαβεjii3···indx

j ∧ dxi3 ∧ · · · ∧ dxin ⊗Bγ .

So Yang-Mills equation

∗(d ∗ FA) + ∗(A ∧ (∗FA)) = 0, equivalently, d ∗ FA +A ∧ (∗FA) = 0,

yield

−∂R
ji
α

∂xj
hαγ

(n− 2)!
εjii3···in = −Aαj

(
Aβrs −Aβsr −AµrAνscβµν

)
grigsj

√
det(g)

(n− 2)!
cγαβεjii3···in ,

−∂R
ji
α

∂xi
hαγ

(n− 2)!
εjii3···in = −Aαi

(
Aβrs −Aβsr −AµrAνscβµν

)
grigsj

√
det(g)

(n− 2)!
cγαβεjii3···in ,

that is,

−∂R
ji
µ

∂xj
hµγ = −Aαj

(
Aβrs −Aβsr −AµrAνscβµν

)
grigsj

√
det(g)cγαβ.

Substituting

−Rjil h
lβ =

(
Aβrs −Aβsr −AµrAνscβµν

)
grigsj

√
det(g),

we get

−∂R
ji
µ

∂xj
hµγ = Aαj R

ji
l h

βlcγαβ

and finally

−∂R
ji
µ

∂xj
= Aαj R

ji
γ c

γ
αµ = −Aαj Rjiγ cγµα, j < i,

or

−
∂Rilµ
∂xl

= −Aαj Rjiγ cγµα, i < l.

So we have that solutions of Hamilton-Cartan equations are the composition of the
linear Legendre transformation with the prolongation of solutions of Yang-Mills equations.

4.4 Poisson forms on the constraint manifold P

Recall that we can view Poisson r-forms on Π (r > 0) since they do not depend on the
affine coordinate of (J1E)∗. Using ΩP we can view them on P:

Definition 49 (Poisson forms on the constraied manifold). A horizontal r-form E on
k−1(P) is said to be Poisson if there esists an (n − r)-multivector field XE on k−1(P)
such that iXEΩP = dE.

Recall that the expression of ΩP in coordinates was

−
∑
i<j

dRijα ∧ (dAαi ∧ dn−1xj − dAαj ∧ dn−1xi)− dp ∧ dnx.
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Proposition 28. Poisson (n− 1)-forms on P can be locally written as

E = (Rjµα X
α
j +Gµ)dn−1xµ,

where Xα
j , G

µ ∈ F(T ∗M ⊗ g) and −∂Eµ

∂Aαi
= ∂Ei

∂Aαµ
.

Proof. Let E = Eµdn−1xµ be a Poisson (n− 1)-form on P. Then

dE =
∂Eµ

∂xµ
dnx+

∂Eµ

∂Aαi
dAαi ∧ dn−1xµ +

∂Eµ

∂Rijα
dRijα ∧ dn−1xµ,

where i < j. Now let

X = X
∂

∂p
+Xα

i

∂

∂Aαi
+Xij

α

∂

∂Rijα

be a vertical vector field on k−1(P). Then

iXΩP = −Xdnx+
∑
i<j

(Xα
i dR

ij
α ∧ dn−1xj −Xα

j dR
ij
α ∧ dn−1xi)

−
∑
i<j

Xij
α (dAαi ∧ dn−1xj − dAαj ∧ dn−1xi),

so
∂Eµ

∂xµ
= −X, Xiµ

α = −∂E
µ

∂Aαi
=
∂Ei

∂Aαµ
for i < µ, and

∂Eµ

∂Rijα
= δjµX

α
i − δiµXα

j .

Note that the first condition imposes no restrictions on E. The third condition gives
E = (Rjµα Xα

j + Gµ)dn−1xµ with Xα
j and Gi functions on T ∗M ⊗ g, where we are using

Rµjα = −Rjµα and not necessarily j < µ. Then the expression of E is as stated. �

Definition 50 (Poisson bracket). Let E and H be Poisson forms on P of degrees r and s
respectively and XE and XH denote associated multivector fields. We define the Poisson
bracket to be the (r + s+ 1− n)-form

{E,H} = −iXE iXHΩP .

We calculate the local expression of the Poisson bracket for a Poisson (n− 1)-form E
and a function H not depending on p:

Since H is Poisson on P we have

iXE iXHΩP = iXEdH = iXE

(
∂H

∂xi
dxi +

∂H

∂Aαi
dAαi +

∂H

∂Rijα
dRijα

)
.

On the other hand if

E = Eµdn−1xµ, XE = Xα
i

∂

∂Aαi
+Xij

α

∂

∂Rijα
+X

∂

∂p
,

then the condition iXEΩP = dE in coordinates gives

iXE

−∑
i<j

dRijα ∧ (dAαi ∧ dn−1xj − dAαj ∧ dn−1xi)− dp ∧ dnx


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=
∑
i<j

(
Xα
i dR

ij
α ∧ dn−1xj −Xα

j dR
ij
α ∧ dn−1xi

)
−
∑
i<j

Xij
α (dAαi ∧ dn−1xj − dAαj ∧ dn−1xi)−Xdnx

=
∂Eµ

∂xµ
dnx+

∂Eµ

∂Aαj
dAαj ∧ dn−1xµ +

∂Eµ

∂Rijα
dRijα ∧ dn−1xµ,

which implies that

XE =
∑
i<j

∂Ej

∂Rijα

∂

∂Aαi
−
∑
i<j

∂Ej

∂Aαi

∂

∂Rijα
− ∂Eµ

∂xµ
∂

∂p
.

Then

{E,H} = −
∑
i<j

(
∂Ej

∂Aαi

∂H

∂Rijα
− ∂Ej

∂Rijα

∂H

∂Aαi

)
.

Proposition 29. A section π of the constrained bundle P −→ M is a solution of the
Hamiltonian system (P, A,H) if and only if for every horizontal Poisson (n− 1)-form E
on P we have

{E,H} dnx = d(π∗E)− (dhE) ◦ π,

where dh denotes the horizontal differential with respect to the connection on the bundle
Π −→M .

Proof. One the one hand, we have E = (Rjµα Xα
j + Gµ)dn−1xµ, with −∂Eµ

∂Aαi
= ∂Ei

∂Aαµ
and

∂Eµ

∂Rijα
= δjµXα

i − δiµXα
j and

{E,H} =
∑
i<j

(
∂Ej

∂Aαi

∂H

∂Rijα
− ∂Ej

∂Rijα

∂H

∂Aαi

)
=
∑
i<j

(
∂Ej

∂Aαi

∂H

∂Rijα
−Xα

i

∂H

∂Aαi

)
.

On the other hand, the expression for the horizontal lift with respect to the connection
on Π given in proposition 24 is

d(π∗E)− (dhE) ◦ π =
∂Eµ

∂xµ
+
∂Eµ

∂Aαi

∂Aαi
∂xµ

+
∂Eµ

∂Rijα

∂Rijα
∂xµ

−∂E
µ

∂xµ
+ Γαiµ

∂Eµ

∂Aαi
+

(
−
∂Γβkµ
∂Aαi

Rkjβ + Γ̃jµlR
il
α − Γ̃lµlR

ij
α

)
∂Eµ

∂Rijα
.

Using that ∂Eµ

∂Aαi
= − ∂Ei

∂Aαµ
and ∂Eµ

∂Rijα
= δjµXα

i (for E = (Rjµα Xα
j +Gµ)dn−1xµ) we get

d(π∗E)− (dhE) ◦ π =
∑
µ<i

∂Eµ

∂Aαi

(
∂Aαi
∂xµ

−
∂Aαµ
∂xi

)
+ δjµX

α
i

∂Rijα
∂xµ

−
∑
µ<i

∂Eµ

∂Aαi

(
Γαµi − Γαiµ

)

−δjµXα
i

(
−
∂Γβkµ
∂Aαi

Rkjβ + Γ̃jµlR
il
α − Γ̃lµlR

ij
α

)
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=
∑
µ<i

∂Eµ

∂Aαi

(
∂Aαi
∂xµ

−
∂Aαµ
∂xi

)
+Xα

i

∂Rijα
∂xj

−Xα
i

(
−
∂Γβkj
∂Aαi

Rkjβ + Γ̃jjlR
il
α − Γ̃ljlR

ij
α

)

=
∑
µ<i

∂Eµ

∂Aαi

(
∂Aαi
∂xµ

−
∂Aαµ
∂xi

)
+Xα

i

∂Rijα
∂xj

,

=
∑
i<µ

∂Eµ

∂Aαi

(
∂Aαi
∂xµ

−
∂Aαµ
∂xi

)
+Xα

i

∂Rijα
∂xj

,

where we are using Γ̃jjl = Γ̃jlj , Γβkj = Γβjk and Rkjβ = −Rjkβ . Therefore we get that

∂H

∂Rijα
=
∂Aαi
∂xj

−
∂Aαj
∂xi

and
∂H

∂Aαi
= −∂R

ij
α

∂xj

are equivalent to
{E,H} dnx = d(π∗E)− (dhE) ◦ π.

�

4.5 Future work

If we denote by G the action of J1(AdP ) on Π and P we get

Π

G
= TM ⊗ TM ⊗ g̃∗ ⊗

n∧
T ∗M −→M,

P
G

= TM ∧ TM ⊗ g̃∗ ⊗
n∧
T ∗M −→M.

We define coordinates (xi, rijα ), i < j, on P/G such that the projection P −→ P/G is
given by (xi, Aαi , R

ij
α ) 7−→ (xi, rijα ), so G-invariant functions and forms on P are the ones

not depending on the coordinates (Aαi ).

In Electromagnetism the Hamiltonian is G-invariant, so the Poisson bracket vanishes
when applied also to G-invariant Poisson forms. Then the Lie-Poisson bracket also van-
ishes and an analog of theorem 6 is easily written (see [1]). The Yang-Mills Hamiltonian
is not invariant under this gauge action, so we cannot proceed as in [1] in order to reduce
the equations. We intend to tackle the issue from a different perspective in a near future.
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