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trabajo, por no haber hecho de la distancia un obstáculo, por su tiempo y dedicación, por su infinita paciencia,
y sobretodo, por su particular forma de hacerme trabajar.

1



Contents

1 Rigid body 8
1.1 Lagrangian and Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Equations of motion for the rigid body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Hamiltonian form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Lagrangian and Hamiltonian formalisms 16
2.1 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Canonical symplectic structure of the cotangent bundle . . . . . . . . . . . . . . . . . 18
2.2 Mechanics on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Configuration manifold, phase space of the velocities and phase space of momenta . . 19
2.2.2 Lagrangian mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Legendre transformation and Hamilton Equations . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Hamiltonian mechanics and the symplectic structure of the cotangent bundle . . . . . 23

3 Lie groups 25
3.1 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Lie groups and Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Homomhorpisms of Lie groups and Lie algebras . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Exponential map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.4 Lie subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Actions of Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Infinitesimal generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Adjoint and coadjoint action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Momentum map 46
4.1 Definitions and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Properties of the momentum map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Momentum maps on the cotangent bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Poisson manifolds 51
5.1 Generalities on Poisson structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Poisson 2-vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.3 Symplectic manifolds and Poisson structures . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.4 Linear Poisson structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Poisson morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Infinitesimal automorphims and Hamiltonian vector fields . . . . . . . . . . . . . . . . 58

5.3 Symplectic foliation of a Poisson manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Symplectic foliation of linear Poisson structures . . . . . . . . . . . . . . . . . . . . . . 62

2



CONTENTS 3

6 Lie-Poisson reduction theorem 64
6.1 Lie-Poisson reduction theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Rigid body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Schouten-Nijenhuis bracket 69
A.1 k-vectors and k-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1.1 2-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.2 Lie derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2.1 Schouten-Nijenhuis bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B Distributions 75
B.1 Regular distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.2 Generalized distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Introducción

Contexto histórico

El objetivo principal de este trabajo es probar el Teorema de Reducción de Lie-Poisson. Uno de los elementos
más importantes para la demostración del Teorema serán precisamente las estructuras de Lie-Poisson. Estas
estructuras fueron introducidas por primera vez por Lie en 1880 en su tratado de grupos de transformaciones.
De hecho, en esta obra introdujo el concepto de estructura de Poisson y luego trató el caso particular de las
estructuras de Poisson lineales en el dual de una álgebra de Lie. Posteriormente, estas estructuras han sido
bautizadas por Marsden y Weinstein con el nombre de estructuras de Lie-Poisson debido a su historia.

Cabe destacar que el trabajo de Lie sobre estructuras de Poisson pasó inadvertido mucho tiempo e incluso
Elie Cartan no era consciente de este aspecto del trabajo de Lie que le habŕıa ayudado con la descripción
Hamiltoniana de algunos de los sistemas que estudió. No fue hasta la década de 1950 cuando se hace patente
la importancia de trabajar en los duales de álgebras de Lie para la descripción de la mecánica Hamiltoniana.

Es en 1977 cuando se da la primera definición formal de estructura de Poisson en un art́ıculo de Lich-
nerowicz (véase [Lic]). Finalmente, en 1983 Weinstein [Wei] en su trabajo fundacional da un importante
impulso a la geometŕıa de Poisson describiendo la estructura local de las variedades de Poisson.

Teorema de reducción de Lie-Poisson

Es bien sabido que el espacio fase de momentos de un sistema Hamiltoniano es el fibrado cotangente T ∗Q
del espacio de configuración Q. Por tanto, usando la estructura simpléctica canónica de T ∗Q y la función
Hamiltoniana H del sistema mecánico se puede obtener el campo Hamiltoniano de H . La curvas integrales
de dicho campo vienen dadas por las soluciones de las ecuaciones de Hamilton para H (véase, por ejemplo,
[AbMa],[LeRo]).

En el caso particular en que el espacio de configuración es un grupo de Lie G, la estructura simpléctica
canónica del espacio fase de momentos T ∗G es invariante bajo la acción usual de G en T ∗G. Además, si
la función Hamiltoniana es también G-invariante, se puede definir una función Hamiltoniana reducida en el
espacio dual g∗ del álgebra de Lie de G.

El espacio g∗ no es simpléctico pero si es una variedad de Poisson. Aśı, usando la estructura de Lie-
Poisson de g∗ y la función Hamiltoniana reducida, obtenemos un nuevo sistema dinámico en g∗: el sistema
Hamiltoniano reducido. Las soluciones del sistema Hamiltoniano original en T ∗G se proyectan a través de
la aplicación momento en las soluciones del sistema Hamiltoniano reducido en g∗. Esto es lo que establece
el teorema de reducción de Lie-Poisson (véase, por ejemplo [MaRa]).

El proceso de reducción de Lie-Poisson puede aplicarse a numerosos sistemas mecánicos. Uno de estos
sistemas es el sólido ŕıgido (véase [MaRa]).

El objetivo principal de este proyecto es probar el teorema de reducción de Lie-Poisson usando la teoŕıa
básica de grupos de Lie, la aplicación momento y la geometŕıa de Poisson.

El proyecto está estructurado como sigue. Los caṕıtulos 1 y 2 están dedicados a la revisión de algunas
definiciones y resultados básicos de la dinámica del sólido ŕıgido (como ejemplo motivador) y a la formulación
simpléctica de la mecánica Hamiltoniana, respectivamente. En el caṕıtulo 3 se dará la teoŕıa de grupos de
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Lie que se usará en el resto del proyecto. En la primera parte del caṕıtulo se introducirá el álgebra de
Lie de un grupo de Lie y se tratarán algunos aspectos de la aplicación exponencial y de subgrupos de Lie.
La segunda parte está dedicada a acciones de grupos de Lie en variedades diferenciables. En el caṕıtulo
4 introducimos la noción de aplicación momento, damos ejemplos y probamos algunas de sus propiedades.
La geometŕıa de Poisson es tratada en el caṕıtulo 5. Se prestará especial atención a las estructuras de
Lie-Poisson y a la foliación simpléctica generalizada de una variedad de Poisson. En el caṕıtulo 6 probamos
el teorema de reducción de Lie-Poisson. El proyecto se cierra con dos apéndices; el primero sobre el corchete
de Schouten-Nijenhuis de multi-vectores en una variedad diferenciable y el segundo sobre la integrabilidad
de las distribuciones generalizadas.



Introduction

Historical context

The main objective of the project is to proof the Lie-Poisson reduction theorem. One of the most important
elements needed to the proof are the Lie-Poisson structures. Such structures were first introduced by Lie
about 1880 in his treatise on transformation groups. In fact, in this work Lie introduced the concept of
Poisson structure and then considered the particular case of linear Poisson structures on the dual of a Lie
algebra. Subsequently, these structures have been called by Marsden and Weinstein Lie-Poisson structures
due to its history.

It is noteworthy that the Lie work on Poisson structures passed unnoticed and even Elie Cartan was
unaware of this aspect of the Lie work that would have helped him with the Hamiltonian description of some
of the systems that he studied. It was in the 1950s when it arose the importance of working in the dual Lie
algebras for the description of Hamiltonian mechanics.

It was 1977 when Lichnerowicz gives for the first time the formal definition of a Poisson structure (see
[Lic]). Finally, in 1983 Weinstein [Wei] in their seminal work gave a boost to the Poisson Geometry describing
the local structure of Poisson manifolds.

Lie-Poisson reduction Theorem

It is well-known that the phase space of momenta of a Hamiltonian system is the cotangent bundle T ∗Q of
the configuration space Q. So, using the canonical symplectic structure of T ∗Q and the Hamiltonian function
H of the mechanical system one may construct the Hamiltonian vector field of H. The integral curves of
this vector field are just the solutions of the Hamilton equations for H (see, for instance, [AbMa],[LeRo]).

In the particular case when the configuration space is a Lie group G then the canonical symplectic
structure of the phase space of momenta T ∗G is invariant under the standard action of G on T ∗G. In
addition, if the Hamiltonian function H also is G-invariant one may define a reduced Hamiltonian function
on the dual space g∗ of the Lie algebra of G.

The space g∗ is not a symplectic manifold but a Poisson manifold. Thus, using the Lie-Poisson structure of
g∗ and the reduced Hamiltonian function, we obtain a new dynamical system on g∗: the reduced Hamiltonian
system. The solutions of the original Hamiltonian system on T ∗G project, via the momentum map, over
the solutions of the reduced Hamiltonian system on g∗. This is the statement of the Lie-Poisson reduction
theorem (see, for instance, [MaRa]).

The Lie-Poisson reduction process may be applied to several interesting mechanical systems. One of
these systems is the rigid body (see [MaRa]).

The aim of this project is to prove the Lie-Poisson reduction theorem using the basic theory of Lie groups,
momentum map and Poisson geometry.

The project is structured as follows. Chapters 1 and 2 are devoted to review some definitions, results
and basic constructions on the dynamics of the rigid body (as a motivating example) and the symplectic
formulation of the Hamiltonian Mechanics, respectively. In Chapter 3, we will present the theory of Lie
groups which will be used in the rest of the project. In the first part of the chapter, we will introduce the
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Lie algebra of a Lie group and we will discuss some aspects on the exponential map and Lie subgroups.
The second part is devoted to actions of Lie groups on smooth manifolds. In Chapter 4, the notion of a
momentum map for a symplectic action is introduced. Examples of such maps are presented and some of
its properties are proved. Poisson geometry is discussed in Chapter 5. Special attention is paid to the Lie-
Poisson structures and the generalized symplectic foliation of a Poisson manifold. In Chapter 6, we prove the
Lie-Poisson reduction theorem. The project closes with two appendices on the integrability of generalized
distributions and the Schouten-Nijenhuis bracket of multi-vector fields on a smooth manifold.



Chapter 1

Rigid body

We will start studying, from a physical point of view and using only the fundamental and basic mathematical
tools, the equations of motion of the rigid body. We will use this example as a reference throughout the
project that will provide the necessary mathematical tools to prove that such a case is part of a much more
general theory.

Before going further, it is important to underline that this chapter does not intend to study the math-
ematical concepts in great depth. Our goal right now is to present a first approach and, over next few
chapters, develope the idea further.

1.1 Lagrangian and Hamiltonian Mechanics

Let us begin recalling what the equations of motion are. Given a physical system, our aim is to describe the
behaviour of that system over time and we achieve it by means of the equations of motion. Formally, they
are differential equations which give the existing relationship between the time derivative of the variables
describing the system and the magnitudes which cause its evolution on time. As an example and starting
point of our next discussions we have the well known Euler-Lagrange equations for a mechanical system

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 for i = 1, . . . , n (1.1)

where qi = qi(t) are the coordinates describing the position of the system, q̇i = dqi

dt are the velocities and
L is the Lagrangian function L(qi, q̇i) = L(q1, . . . , qn, q̇1, . . . , q̇n). The space of the variables (qi) is the
configuration space of the mechanical system and the space of the variables (qi, q̇i) is the phase space of
velocities.

As we will show in the next chapter, the Euler-Lagrange equations arise from the principle of minimum
action1 which states that every mechanical system is characterized by the Lagrangian function and satisfies
the following condition:
Let t0 and t1 be two instants of time where the system ocuppies two diferent and fixed positions, then, in
the time interval [t0, t1], the system will evolve in such a way that the following integral is minimized

S =

∫ t1

t0

L(qi(t), q̇i(t))dt (1.2)

Assuming this statement, some calculations lead to (1.1).
Before going further, let us study a very significant case of Euler-Lagrange equations. Suppose L is the

1Also known as Hamilton variational principle.
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kinetic minus the potential energy for a N -particle system, that is

L(qi, q̇i) =
1

2

n∑
i=1

mi

∥∥q̇i∥∥2 − V for i = 1, . . . , N (1.3)

where qi are the position vectors of the particles whose mass is mi and V = V (qi) is the potential energy.
In this case, Euler-Lagrange equations are just Newton’s second law for this potential system, i.e.,

d

dt
(miq̇

i) = −∂V
∂qi

for i = 1, . . . , N

Even though we have introduced the Euler-Lagrange equations of motion, our main interest will be in
the Hamiltonian ones. Nevertheless, the Hamiltonian formulation can be obtained from the Lagrangian one,
and that is the reason why we first introduce Lagrangian. From now on, we will focus on obtaining Hamilton
equations.

Let L = L(qi, q̇i) be a Lagrangian, to pass to the Hamiltonian formalism define the conjugate momenta
as

pi =
∂L

∂q̇i
for i = 1, . . . , n (1.4)

and following that, introduce a change of variables

(qi, q̇i)→ (qi, pi) for i = 1, . . . , n (1.5)

called the Legendre transformation. The space of the variables (qi, pi) is the phase space of momenta.
We remark that the matrix of the differential of the Legendre transformation is(

I 0
∂2L
∂qi∂q̇j

∂2L
∂q̇i∂q̇j

)
(1.6)

which is invertible if and only if
∣∣∣ ∂2L
∂q̇i∂q̇j

∣∣∣ 6= 0. In this case, we will say that the Lagrangian is regular. If

the Legendre transformation is a global diffeomorphism, we will say that the Lagrangian is hyperregular.
From (1.6) we conclude that if a Lagrangian is hyperregular then it is regular. For instance, the Legendre
transformation asociated with (1.3) is regular since we are assuming non-zero masses,

∣∣∣∣ ∂2L

∂q̇i∂q̇j

∣∣∣∣ =

∣∣∣∣∣∣∣
m1 0

. . .

0 mN

∣∣∣∣∣∣∣ 6= 0

and hyperregular due to the transformation is defined by pi = miq̇
i which has inverse q̇i = 1

mi
pi. Moreover,

in this particular case, the conjugate momenta pi = miq̇
i, are exactly the linear momentum.

Now, given any hyperregular Lagrangian L, define the Hamiltonian function as

H(qi, pi) =

n∑
j=1

pj q̇
j − L(qi, q̇i) (1.7)

Note that the Legendre transformation is a diffeomorphism and, thus, q̇i may be seen as a real function on
the phase space of momenta. Therefore, H also is a real function on the phase space of momenta.

Keeping Legendre transformation in mind and making some rearrangements using (1.1), we obtain the
Hamilton equations

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
for i = 1, . . . , n (1.8)
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In the following chapter, we will proof that, in the regular case, they are equivalent to Euler-Lagrange equa-
tions (1.1). Specifically, we remark that when the hyperregular Lagrangian is given by (1.3), the Hamiltonian
function coincides with the total energy of the system. Indeed, using the Legendre transformation calculated
above for this particular case and keeping in mind (1.3) we get

H(qi, pi) =
1

2

n∑
i=1

‖pi‖2

mi
+ V

which is the kinetic plus the potential energy, i.e., the total energy of the system.
Up to this point, we have worked with two equivalent but different ways of obtaining equations of motion.

The important fact is that the latter one allows us to reduce the order of the differential equations describing
the system. While Euler-Lagrange equations are second order ODE’s, in the Hamiltonian formulation the
equations of motion are given by first order ODE’s.

Hamiltonian mechanics is very suitable for studying conserved quantities and we achieve it by introducing
a new operation between functions called the Poisson bracket. Given two functions F (qi, pi) and G(qi, pi)
on the phase space of momenta, the canonical Poisson bracket of F and G is a new function in such a space
given by

{F,G}can :=

n∑
i=1

(
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
(1.9)

Then, for any function F and any Hamiltonian H, we deduce from (1.8) that Ḟ = {F,H}can along the
solutions of the system. As well, it is not hard to check that Hamilton equations (1.8) for a Hamiltonian
function H, are equivalent to

Ḟ = {F,H}can for all real function F = F (qi, pi) (1.10)

Finally, a conserved quantity for a given Hamiltonian is a function F (qi, pi) such that it is constant along
any solution of the system. Particularly, F is a constant of motion, if and only if, {F,H}can = 0.

For more details on the above topics we remit to [AbMa], [LeRo].

Regarding our current concern, we do not expect the reader to comprehend these concepts in depth, but to
remember that the time evolution of a mechanical system might be described from both Euler-Lagrange and
Hamilton equations (see (1.1) and (1.8)). It would be also suitable to retain the Legendre transformation and
the canonical Poisson bracket in order to follow the next example. The next chapter will do a more through
revision of these concepts and will study them from a geometric point of view recalling the Lagrangian and
Hamiltonian formalisms.

1.2 Equations of motion for the rigid body

Once we have reviewed Lagrangian and Hamiltonian mechanics, we are ready to start dealing with the
particular case of the rigid body. Let us start defining it. A rigid body is any solid body in which the
distance between any of two of its points remains constant over time. Furthermore, we will assume no
external forces acting on the body and there is a fixed point we will call it the center of mass.

We set an inertial frame, called spatial coordinate system, in which the origin and the center of mass
coincides. We also fix the reference configuration and note with X the position of a given particle in this
configuration. Normally, X is called the label of the particle. Denote by x(X, t) and ẋ(X, t) (also denoted by
x(t) and ẋ(t)) the position and velocity of the particle X of the body at time t in the inertial frame. Since
the distance between any two particles is constant over time, the map which relates position x(t) with X
must preserve the distance, so it is an isometry in R3. As it is known, any isometry in the three dimensional
space is obtained by composing a rotation with a translation. According to this, the resulting map might be
written as
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X → RX + b

where R is a rotation matrix and b ∈ R3. Imposing the extra condition that the center of mass is fixed, we
conclude that b = 0. Then, the relationship between x(t) and X is given by

x(t) = R(t)X (1.11)

Since R(t) is a rotation matrix, it must be orthogonal and the following condition is satisfied

R(t)RT (t) = Id ∀t ⇒ |R(t)| = ±1

On the other hand, the motion is assumed to be continuous and R(0) = Id. Thus,

|R(t)| = 1 ∀t (1.12)

that is, R(t) is a rotation matrix which preserves the orientation. Moreover, using again that R(t) is a
rotation matrix, we deduce that

ṘRT = −RṘT (1.13)

which means that ṘRT is skew-symmetric. In other words, there exist ω1, ω2, ω3 such that

ṘRT =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


On the other hand, taking derivatives with respect to time in (1.11) we get

ẋ = ṘX = ṘR−1x = ṘRTx

If we define ω = (ω1, ω2, ω3), it is easy to check that,

ẋ(t) = ω(t)× x(t) (1.14)

which gives the relationship between linear velocity and angular velocity. As well, if we define the hat map
as

ω̂ :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


then,

ṘR−1 = ω̂ and ẋ(t) = ω̂(t)x(t) (1.15)

It is interesting to point out that, later, in the next chapters, we will come back over the hat map but in a
much more general way.

Due to equation (1.14), the inertia tensor, I, which will depend only on the geometry of the body and its
mass distribution, can be introduced. Moreover, it can be shown that I is a symmetric and positive definite
matrix, a fact which will simplify our work in the following lines.

Now, we will set a non-inertial frame whose origin coincides again with the center of mass and which is
fixed in the body and moves with it. We will call it body coordinate system. Usually, our previous inertial
frame is chosen in order to match with the body frame at some instant of time t . Notice that the position
of a particle in body coordinates will remain constant and will be equal to its label X. It is in this sense
that our new frame will be very useful to obtain the equations of motion of the body. Indeed, inertia tensor
in body coordinates remains constant unlike in spatial coordinates where its components depend on time.
Using all previous considerations it can be shown that the equations of motion of the rigid body in body
coordinates are given by

Iω̇ + ω × Iω = 0 (1.16)
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Where I does not depend on time. Since I is symmetric and positive definite we can find a coordinate system
in which I is diagonal. Let I1, I2, I3 be the eigenvalues of I (which are positive), also called moments of
inertia, then, equation (1.16) is rewritten as

I1ω̇1 = (I2 − I3)ω2ω3

I2ω̇2 = (I3 − I1)ω3ω1 (1.17)

I3ω̇3 = (I1 − I2)ω1ω2

These are called the Euler-Poincaré equations for the motion of a rigid body and they are written in the
body coordinate system. They are equations of motion since the integration of them determines the angular
velocity ω which enables us to obtain the position by integration of equation (1.14).

Finally, if instead of working with angular velocity we do with angular momentum Π = Iω in body
coordinates, we still get another form for the equations of motion

Π̇ = I × ω̇ (1.18)

which leads us to

Π̇1 =
I2 − I3
I2I3

Π2Π3

Π̇2 =
I3 − I1
I3I1

Π3Π1 (1.19)

Π̇3 =
I1 − I2
I1I2

Π1Π2

These equations are known as the Lie-Poisson equations for the motion of a rigid body and they are also
given in body coordinates. Finally, let us consider another form of writing (1.19) through the Lie-Poisson
bracket of functions and the Hamiltonian defined below.

Let f = f(Π1,Π2,Π3) and g = g(Π1,Π2,Π3) be two real functions. We define the Lie-Poisson bracket
for the rigid body as a new function {f, g} in the variables (Π1,Π2,Π3) given by

{f, g} (Π1,Π2,Π3) = −(Π1,Π2,Π3)

((
∂f

∂Π1
,
∂f

∂Π2
,
∂f

∂Π3

)
×
(
∂g

∂Π1
,
∂g

∂Π2
,
∂g

∂Π3

))
(1.20)

Next, we will introduce a real function h in the variables (Π1,Π2,Π3) as follows,

h(Π1,Π2,Π3) =
1

2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
(1.21)

and call it the Hamiltonian of the rigid body. By now, there is no reason for this name since, apparently, it
has nothing to do with the Hamiltonian H defined in section 1.1 (note that H is defined on a space with an
even number of variables and, moreover, h is a real function on R3). In any case, this new Hamiltonian is
needed in order to write (1.19) in a much more suitable way. In fact, now (1.19) can be written as

Π̇i = {Πi, h} i = 1, 2, 3 (1.22)

Last theorem in this chapter will help us, among many other things, to understand why this function is
called Hamiltonian.

1.2.1 Hamiltonian form

So far we have found the equations that describe the state of the system we would like to learn whether or
not they are Hamiltonian, i.e., if their canonical form can be written as (1.8). Obviously, since (1.8) has an
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even number of equations and (1.19) has an odd number, they can not be equivalent. However, we are going
to see that if we describe the rigid body using Euler angles, then the dynamical equations may be written
in a Hamiltonian form. Once we build the Hamiltonian form of the equations of motion, the only thing that
will be left is to study how the solutions of both systems are related. It will be our goal during the section
and we will reach it in the last theorem.

Denote by

Rϕ =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 Rθ =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Rψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (1.23)

the rotation through an angle ϕ, (θ, ψ respectively) about the axis OZ, (OX, OZ respectively). Denote also
by Rϕθψ their composition

Rϕθψ =

 cosϕ cosψ − sinϕ cos θ sinψ − cosϕ sinψ − sinϕ cos θ cosψ sinϕ sin θ
sinϕ cosψ + cosϕ cos θ sinψ − sinϕ sinψ + cosϕ cos θ cosψ − cosϕ sin θ

sinϕ sinψ sinϕ cosψ cos θ

 (1.24)

Then, it can be shown that any rotation R which preserves the orientation can be expressed in terms of
ϕ, θ, ψ, that is R = Rϕθψ. The angles ϕ, θ, ψ are called Euler angles and they form a set of generalized
coordinates.

Back to our example and reinterpreting the equation (1.11) from a geometric point of view, we can think
it as a rotation from the body frame to the inertial frame . As in general this relationship depends on the
time, the matrix R which gives this rotation also does. Using the results we have just proved, we can write
R(t) = Rϕ(t)θ(t)ψ(t). Therefore, a long computation using (1.15) proves that

ω =

 θ̇ cosψ + ϕ̇ sinψ sin θ

−θ̇ sinψ + ϕ̇ cosψ sin θ

ϕ̇ cos θ + ψ̇

 (1.25)

Or, in terms of angular the momentum Π,

Π =

 I1(θ̇ cosψ + ϕ̇ sinψ sin θ)

I2(−θ̇ sinψ + ϕ̇ cosψ sin θ)

I3(ϕ̇ cos θ + ψ̇)

 (1.26)

Now, we may introduce a new real function T = T (ϕ, θ, ψ, ϕ̇, θ̇, ψ̇). T is the Lagrangian function L on
the phase space of velocities (ϕ, θ, ψ, ϕ̇, θ̇, ψ̇). Indeed, using (1.21) and (1.26) we define T to be

T (ϕ, θ, ψ, ϕ̇, θ̇, ψ̇) = h
(
I1(θ̇ cosψ + ϕ̇ sinψ sin θ), I2(−θ̇ sinψ + ϕ̇ cosψ sin θ), I3(ϕ̇ cos θ + ψ̇)

)
(1.27)

However, what we are looking for is a Hamiltonian function in the phase space of momenta. To do this we
can calculate the Legendre transformation according to (1.5) and (1.4) and verify that it is a diffeomorphism.
This allows us to ensure that we can solve for (ϕ̇, θ̇, ψ̇) in terms of ϕ, θ, ψ and the conjugate momenta
pϕ, pθ and pψ.

If all indicated calculations and verifications are made, then we can rewrite (1.26) in terms of ϕ, θ, ψ, pϕ,
pθ, pψ as follows

Π =

 1
sin θ ((pϕ − pψ cos θ) sinψ + pθ sin θ cosψ)

1
sin θ ((pϕ − pψ cos θ) cosψ − pθ sin θ sinψ)

pψ

 (1.28)
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Now, using (1.21) and (1.28), the real function T may be considered as a Hamiltonian function in the phase
space of momenta, that is, a real function in the variables (ϕ, θ, ψ, pϕ, pθ, pψ). H is given by

H(ϕ, θ, ψ, pϕ, pθ, pψ) =

1

2

(
((pϕ − pψ cos θ) sinψ + pθ sin θ cosψ)

2

I1 sin2 θ
+

((pϕ − pψ cos θ) cosψ + pθ sin θ sinψ)
2

I1 sin2 θ
+
p2
ψ

I3

)
(1.29)

Now that we have defined the Hamiltonian function, do not lose sight of our goal. We want to express in a
Hamiltonian form the equations of motion (1.19) for the rigid body. First of all, we will need to relate the
variables ϕ, θ, ψ, pϕ, pθ, pψ with the variables Π1,Π2,Π3. But we have already done it in (1.28). Just
define J , called the momentum map, as the map which gives this relation

(ϕ, θ, ψ, pϕ, pθ, pψ)
J−→

 1
sin θ ((pϕ − pψ cos θ) sinψ + pθ sin θ cosψ)

1
sin θ ((pϕ − pψ cos θ) cosψ − pθ sin θ sinψ)

pψ

 (1.30)

From the definition above, it is clear that H = h ◦ J . Moreover, recalling (1.9) it is easy to check after
some calculations that {f, g} ◦ J = {f ◦ J, g ◦ J}can, where f and g are two real functions in the variables

Π1,Π2,Π3. Indeed, if Π̃i = Ji(ϕ, θ, ψ, pϕ, pθ, pψ) i = 1, 2, 3,

{f, g} ◦ J(ϕ, θ, ψ, pϕ, pθ, pψ) = {f, g} = (Π̃1, Π̃2, Π̃3)

= −Π̃1

(
∂f

∂Π2

∂g

∂Π3
− ∂f

∂Π3

∂g

∂Π2

)
− Π̃2

(
∂f

∂Π3

∂g

∂Π1
− ∂f

∂Π1

∂g

∂Π3

)
− Π̃3

(
∂f

∂Π1

∂g

∂Π2
− ∂f

∂Π2

∂g

∂Π1

)
On the other hand, using that ∂Π̃1

∂ϕ = ∂Π̃2

∂ϕ = ∂Π̃3

∂ϕ = ∂Π̃3

∂θ = ∂Π̃3

∂pθ
= ∂Π̃3

∂ψ = 0, we deduce that

{f ◦ J, g ◦ J}can (ϕ, θ, ψ, pϕ, pθ, pψ) =

=

(
∂f

∂Π2

∂g

∂Π3
− ∂f

∂Π3

∂g

∂Π2

)(
∂Π̃2

∂ψ

)
+

(
∂f

∂Π3

∂g

∂Π1
− ∂f

∂Π1

∂g

∂Π3

)(
−∂Π̃1

∂ψ

)
+

+

(
∂f

∂Π1

∂g

∂Π2
− ∂f

∂Π2

∂g

∂Π1

)(
∂Π̃1

∂ψ

∂Π̃2

∂pψ
+
∂Π̃1

∂θ

∂Π̃2

∂pθ
− ∂Π̃1

∂pψ

∂Π̃2

∂ψ
− ∂Π̃1

∂pθ

∂Π̃2

∂θ

)
Then, the equality arises from

Π̃1 = −∂Π̃2

∂ψ

Π̃2 =
∂Π̃1

∂ψ

−Π̃3 =
∂Π̃1

∂ψ

∂Π̃2

∂pψ
+
∂Π̃1

∂θ

∂Π̃2

∂pθ
− ∂Π̃1

∂pψ

∂Π̃2

∂ψ
− ∂Π̃1

∂pθ

∂Π̃2

∂θ

So far, we have proved two of the three statements of the following theorem.

Theorem 1.1. Let h and J be the Hamiltonian and the momentum map for the rigid body and H be the
Hamiltonian function on the phase space of momenta. Let { , }can be the canonical Poisson bracket and
{ , } the Lie-Poisson bracket. Then,

i. H = h ◦ J
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ii. If f and g are two real functions in the variables Π1,Π2,Π3,

{f, g} ◦ J = {f ◦ J, g ◦ J}can

iii. If σ : t → (ϕ(t), θ(t), ψ(t), pϕ(t), pθ(t), pψ(t)) is a solution of the Hamilton equations for the Hamilto-
nian H, J ◦σ : t→ (Π1(t),Π2(t),Π3(t)) is a solution of the Lie-Poisson equations for h, i.e, a solution
of (1.22).

Proof. It is enough to check that,
Π̇i(t) = {Πi, h}

is true under the assumption that Hamilton equations holds true for H, i.e,

ϕ̇ =
∂H

∂pϕ
, ṗϕ = −∂H

∂ϕ
,

θ̇ =
∂H

∂pθ
, ṗθ = −∂H

∂θ
,

ψ̇ =
∂H

∂pψ
, ṗψ = −∂H

∂ψ
.

But using ii. and i. we obtain,

{Πi, h} (Π̃1, Π̃2, Π̃3) = {Πi, h} ◦ J(ϕ, θ, ψ, pϕ, pθ, pψ) = {Πi ◦ J, h ◦ J}can (ϕ, θ, ψ, pϕ, pθ, pψ)

= {Πi, H}can (ϕ, θ, ψ, pϕ, pθ, pψ)

Then, using the Hamilton equations we get the result

{Πi, H}can =
∂Πi

∂ϕ

∂H

∂pϕ
+
∂Πi

∂θ

∂H

∂pθ
+
∂Πi

∂ψ

∂H

∂pψ
− ∂Πi

∂pϕ

∂H

∂ϕ
− ∂Πi

∂pθ

∂H

∂θ
− ∂Πi

∂pψ

∂H

∂ψ

=
∂Πi

∂ϕ
ϕ̇+

∂Πi

∂θ
θ̇ +

∂Πi

∂ψ
ψ̇ +

∂Πi

∂pϕ
ṗϕ +

∂Πi

∂pθ
ṗθ +

∂Πi

∂pψ
ṗψ

= Π̇i.

The most important idea that we have to keep in mind after viewing this theorem is that the inital system
of ODE’s had three equations while the latter has six. In practice, usually, the fewer ODE’s the system has
the easier it is to solve. This is precisely the main motivation of the project, which aims to study under
what conditions the number of equations describing a system can be reduced, and obviously, the rigid body
is one particular case.



Chapter 2

Lagrangian and Hamiltonian
formalisms

After a first part which was, essentially physics, here we will start working with mathematics. Nevertheless,
this chapter will be, basiquely, a review of concepts which are already known. It means that we will look
over it quickly in order to set the mathematical basis that we will use later. Anyway, for more information
on these topics we remit to [AbMa],[LeRo], [Hol].

First of all, we associate to any mechanical system a structure of smooth manifold and we call it the
configuration space. It allows us to introduce the phase space of the velocities and the phase space of momenta
as the tangent and cotangent bundle of that manifold, respectively. Then, we will use the geometric structure
of the tangent and the cotangent bundle in order to develop the Lagrangian and the Hamiltonian formalisms
and their equivalence in the hyperregular case. But, before that, we will go over symplectic manifolds since
they will be essential in order to present some important propierties in the Hamiltonian formalism.

2.1 Symplectic manifolds

Symplectic manifolds are one of the main ingredients of theory that we are working up, and that is why we
give a brief overview. At first, we have that the cotangent bundle of any manifold has symplectic structure.
This will allow us to see the Hamiltonian formalism from a more interesting perspective. As well, when we
define Poisson manifolds, we will see that they have a symplectic foliation associated with them. These two
natural symplectic structures will be crucial in order to prove the most important results of the project.

Let us start with the definition of an almost symplectic manifold and its immediate properties.

Definition 2.1. An almost symplectic form over a manifold Q is a non-degenerate 2-form ω. The couple
(Q,ω) is said to be an almost symplectic manifold.

Proposition 2.2. i. If ω is an almost symplectic form over Q, then Q has even dimension.

ii. If ω is an almost symplectic form over Q and dimQ = 2n, then ωn = ω∧ (n. . . ∧ω 6= 0, that is,

ω(x) = ω(x)∧ (n. . . ∧ω(x) 6= 0 ∀ x ∈ Q

iii. Any almost symplectic manifold (Q,ω) is orientable.

Let ω be any 2-form (not necessarily non-degenerate) defined over a manifold Q. It induces a vector
bundle morphism between the tangent bundle and the cotangent bundle bω : TQ→ T ∗Q as follows

bω |TxQ = bω(x) : TxQ → T ∗xQ
v → ω(x)(v, ·) (2.1)

16
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Moreover, we have the following result.

Proposition 2.3. Let ω be a 2-form over a manifold Q, then the following statements are equivalent:

i. ω is an almost symplectic form over Q.

ii. bω is an isomorphism of vector bundles.

Let (Q,ω) be an almost symplectic manifold and bω the induced isomorphism. With the definition above,
bω induces a map between the sapce X (Q) of the vector fields on Q and the space Ω1(Q) of the 1-forms on
Q,

bω : X (Q)→ Ω1(Q) (2.2)

denoted again by bω by abuse of notation. Indeed, for x ∈ Q and X ∈ X (Q) we define bω(X)(x) =
bω(x) (X (x)). With this definition, it can be shown that bω is an isomorphism of F(Q)-modules. All those
results that we have just seen will be extensively used in order to characterize symplectic manifolds, so it is
important to bear them in mind.

After being working on almost symplectic manifolds, we will go on to symplectic manifolds.

Definition 2.4. An almost symplectic form ω over a manifold Q is a symplectic form if it is closed , i.e,
dω = 0. The couple (Q,ω) is said to be a symplectic manifold

Now, we will introduce the definition of a symplectic map.

Definition 2.5. Let (Q,ω) and (S, α) be symplectic manifolds such that dimQ = dimS = 2n. A map
h : Q→ S is called symplectic map if h∗α = ω, i.e.,

αh(x) = (TxhX, TxhY ) = ωx(X,Y ) ∀x ∈ Q and X,Y ∈ TxQ

This last definition is telling us that if h is a symplectic map, then it is a local diffeomorphism.

Definition 2.6. Let (Q,ω) and (S, α) be symplectic manifolds and h : Q→ S be a symplectic map.

i. If h is bijective then h is said to be a symplectomorphism.

ii. If h is a symplectomorphism, ω = α and Q = S, we will call h a canonical transformation.

Due to these definitions we can define a symplectic vector field as follows.

Definition 2.7. Let (Q,ω) be a symplectic manifold. A vector field X over Q is called a symplectic vector
field if its flow consists on symplectic maps.

Since it is not at all easy to check that the flow of a vector field is made up of symplectic maps, we give a
last result which characterizes the symplectic vector fields in terms of the Lie derivative and the isomorphism
bω. This result is proved by using the Poincaré lemma which is the reason motivating us to enunciate it. As
well, although it is not exactly part of the symplectic theory, it is very helpful to prove many results.

Lemma 2.8 (Poincaré Lemma). Let ω be a closed p-form over a manifold Q. Then, for any x ∈ Q, there
exists an open set U such that x ∈ U and a (p-1)-form α defined over U , such that ω = dα in U .

Proposition 2.9. Let (Q,ω) be a symplectic manifold and X be a vector field over Q. Then, the following
statements are equivalent:

i. X is a symplectic vector field.

ii. The Lie derivative of ω with respect to X is zero, that is, LXω = 0.

iii. For any x ∈ Q, there exists an open set U in Q such that x ∈ U and a smooth function f : U → R
such that bω(X) = df in U .
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Our review on symplectic geometry ends here (for more details on symplectic geometry see, for instance,
[AbMa], [LeRo]). Nontheless, before moving on, we will see an example of what we have been doing.
Specifically, we will show that given any manifold Q, its cotangent bundle T ∗Q can be provided with a
symplectic structure. Therefore, this will yield to plenty of examples and, at the same time, it will leave a
very rich theory from which we can keep working on.

2.1.1 Canonical symplectic structure of the cotangent bundle

From now until the end of this section assume that Q is a manifold, T ∗Q its cotangent bundle and ΠQ :
T ∗Q→ Q the canonical projection. Let us begin defining the Liouville 1-form which is key in order to obtain
a symplectic structure in T ∗Q.

Definition 2.10. The Liouville 1-form, is the 1-form λQ : T ∗Q→ T ∗(T ∗Q) over the cotangent bundle given
by

λQ(α)(X) = α(TαΠQ(X)) for α ∈ T ∗Q and X ∈ Tα(T ∗Q)

It can be easly shown that if (U,ϕ ≡ (q1, . . . , qn)) is a local chart inQ and (π−1
Q (U), ϕ ≡ (q1, . . . , qn, p1, . . . , pn))

is the corresponding induced chart, then λQ can be expressed locally as

λQ =

n∑
i=1

pidq
i (2.3)

And not as easily, we have the following proposition which gives a characterization of the Liouville 1-form.

Proposition 2.11. The Liouville 1-form λQ is the unique 1-form over T ∗Q satisfying β∗λQ = β, for any
1-form β on Q.

Now, let us define a closed 2-form ωQ over T ∗Q as ωQ = −dλQ. Taking the same charts as before we
conclude

ωQ =

n∑
i=1

dqi ∧ dpi (2.4)

which implies that the 2-form is non-degenerate.

Definition 2.12. The 2-form ωQ over T ∗Q defined as ωQ = −dλQ is called the canonical symplectic
structure of the cotangent bundle.

This symplectic 2-form is fundamental in order to prove the last result of this section. It will show a
property that satisfies any diffeomorphism defined over a manifold. But first, remember the definition of the
cotangent lift of a map.

Let F : Q→ Q be a diffeomorphism. Define the cotangent lift of F, T ∗F : T ∗Q→ T ∗Q as

T ∗xF = T ∗F|T∗xQ : T ∗xQ → T ∗F−1(x)Q

α → T ∗F (α)
(2.5)

where T ∗F (α)(X) = α((TF−1(x)F )(X)) for X ∈ TF−1(x)Q.

Proposition 2.13. If F : Q→ Q is a diffeomorphism then the cotangent lift of F, T ∗F : T ∗Q→ T ∗Q, is a
symplectomorphism.

With this proposition ends the part of the project dedicated explicitly to symplectic geometry. From
now on, we will use all these results in order to reach our goal.



CHAPTER 2. LAGRANGIAN AND HAMILTONIAN FORMALISMS 19

2.2 Mechanics on manifolds

We began the first chapter giving some basic background about Lagrangian and Hamiltonian mechanics.
These notions were enough to deal with the example of the rigid body from a physical perspective. Never-
theless, since our current concern is to go back to the example but from a mathematical perspective, what
we have introduced will not be enough. Thus, we will go over the same, but now, in a deeper way. The only
matter that we will see later is the Poisson bracket that will be discussed in the chapter of Poisson manifolds.

Just like before, our main interest is the Hamiltonian formulation but we will obtain it from the Lagrangian
formulation via the Legendre transformation. But first, we will focus on a fact that we have left out in the
first chapter: identify in what kind of spaces we are formulating our theories.

2.2.1 Configuration manifold, phase space of the velocities and phase space of
momenta

In the last chapter when we introduced the equations of motion, we referred to the variables describing the
system, but we did not specify what they are. Here we will go back into it in depth.

First of all, let us define the configuration space of a given mechanical system as the set of all possible
positions of the system. In general, it is not an Euclidean space but a manifold, and that is why it is also
known as the configuration manifold. Under this definition, the variables describing the system will be the
local coordinates of the manifold, noted as qi. They are known as generalized coordinates and their number
will determine the dimension of the configuration manifold which coincides with the degrees of freedom of
the system.

As an example, recall the case of a N-particle system that we have already seen. In this case, the
configuration manifold was R3N since no restrictions were imposed over the positions of the system. A more
general case will be one in which the system is subjected to certain constraints, to adjust onto a given shape
or to verify some properties, for instance. In general, these constraints can be expressed as

fj(xi) = 0 for i = 1, . . . N and j = 1, . . . k ≤ 3N

Here (x1, . . . , x3N ) are the standard coordinates on R3. Then, the configuration manifold is Q =
{
xi ∈ Rk|

fj(xi) = 0 }.
However, it is not enough to determine the positions in order to describe the physical state of the system.

For this reason, we introduce the phase space of velocities and the phase space of momenta. The phase space
of velocities will be the set of all possible velocities of the system. Given a position q ∈ Q, mathematically,
the set of all possible velocities in that position will be the tangent space at the point q ∈ Q, that is, TqQ.
So, the phase space of the velocities is the tangent bundle TQ with coordinates (qi, q̇i), since we are not
imposing any constraint to the velocities. In an analogous way, define the phase space of momenta as the
cotangent bundle T ∗Q of the configuration manifold with coordinates (qi, pi).

We will spend the rest of the chapter studying two equivalent ways of obtaining the equations of motion
of an autonomous and conservative mechanical system. First, we will obtain them in the phase space of
velocities and after that in the phase space of momenta where we will use the symplectic structure that we
have seen before.

2.2.2 Lagrangian mechanics

As one can deduce from the first chapter approach, Lagrangian mechanics is formulated over the phase space
of velocities. We can define the Lagrangian function on it and deduce the Euler-Lagrange equations from a
variational perspective. Our purpose now is to accurately show that Hamilton variational principle leads to
the Euler-Lagrange equations for a given Lagrangian L.

From now on, suppose Q is the configuration manifold of some autonomous and conservative mechanical
system, TQ its phase space of velocities and T ∗Q its phase space of momenta. Let us define the Lagrangian
function of that mechanical system as follows.
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Definition 2.14. A smooth function L : TQ→ R is called a Lagrangian.

Suppose that L = L(qi, q̇i) is a Lagrangian function and qi(t0) and qi(t1) for i = 1, . . . , n are the positions
of the system in two given instants of time t0 and t1. Our interest is to determine which is the physical
trajectory that the system takes between those instants.

To do this, consider the family of trajectories qi(t, s) parameterized by s ∈ [−ε, ε] such that qi(t0, s) =
qi(t0) and qi(t1, s) = qi(t1) ∀s for i = 1, . . . , n. As well, we require that s parameterizes the family in a

smooth way which guarantees that ∂qi(t,s)
∂s exists in the time interval [t0, t1]. Let us consider also the following

functional action

S(s) =

∫ t1

t0

L(qi(t, s), q̇i(t, s))dt (2.6)

which depends on s since it depends on the trajectory and the trajectory depends on s. What the Hamilton
variational principle states is that among all possible trajectories, the system will take the one that minimizes
that functional. Let us try to put it in mathematical terms.

We can assume without loss of generality, that the minimum is reached when s = 0. Denote by δ = d
ds |s=0

and call it variation. Then, the Hamilton variational principle states that the physical trajectories of the
system verify

δS = δ

∫ t1

t0

L(qi, q̇i)dt = 0 (2.7)

Due to the fact that the s-dependence of the second term comes form the s-dependence of qi and q̇i involved
in the Lagrangian, (2.7) is equivalent to

δS =

∫ t1

t0

δL(qi, q̇i)dt = 0 (2.8)

Now, using

δL =

n∑
i=1

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)

(2.9)

and
∂L

∂q̇i
δq̇i =

∂L

∂q̇i
d

dt
δqi =

d

dt

[
∂L

∂q̇i
δqi
]
−
[
d

dt

∂L

∂q̇i

]
δqi for i = 1, . . . , n (2.10)

where the equality of the mixed partials has been used, we have

δL =

n∑
i=1

([
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δqi +

d

dt

[
∂L

∂q̇i
δqi
])

. (2.11)

Thus, inserting (2.11) to (2.8),

0 = δS =

n∑
i=1

∫ t1

t0

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δqidt+

n∑
i=1

∫ t1

t0

d

dt

[
∂L

∂q̇i
δqi
]
dt (2.12)

The second term of the integral is 0 since qi(s, t) has fixed endpoints in t0 and t1, which implies δqi(t0) =
δqi(t1) = 0 for i = 1, . . . , n. Finally, because δqi are arbitrary, we conclude

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 for i = 1, . . . , n (2.13)

which are the Euler-Lagrange equations. Then, we have just proved that a trajectory qi(t) verifies the
Euler-Lagrange equations if and only if it verifies Hamilton variational principle.
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Remark The proof above is not entirely general. In fact, the result is proved only in the case that the
two endpoints and the whole family of trajectories lie in the same chart (for instance, the result is proved
for Euclidean spaces). If that hypothesis was not true, we could break the trajectory into subtrajectories,
each one of them remaining in one chart. Also, we could do the same with the paths of the family qi(t, s).
These subpaths do not verify, necessarily, the propriety of leaving the endpoints fixed, so we could not use
the result that we have jut proved. Nontheless, from (2.12) and assuming that the endpoints are not fixed,
we get

n∑
i=1

∫ t1

t0

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δqidt =

n∑
i=1

∂L

∂q̇i
δqi

∣∣∣∣∣
t1

t0

(2.14)

Taking advantage of this result which holds for any path, it can be shown, without much work, that a
trajectory qi(t) verifies the Hamilton variational principle, if and only if, it verifies Euler-Lagrange equations
in every local coordinate system.

Finally, remember from the first chapter the definition of a regular Lagrangian.

Definition 2.15. A Lagrangian L is regular if the Hessian matrix
∣∣∣ ∂L
∂q̇i∂q̇j

∣∣∣ is invertible for every system of

local coordinates (qi, q̇i) on TQ.

In the next section we will also remember the definition of a hyperregular Lagrangian, the one we need.
We are not giving it now because more definitions are necessary to do it.

2.2.3 Legendre transformation and Hamilton Equations

First of all, we will introduce the Legendre transformation associated with a Lagrangian function.

Definition 2.16. Let L : TQ → R be a Lagrangian, we define the corresponding Legendre transformation
LegL : TQ→ T ∗Q as

LegL|TqQ : TqQ → T ∗qQ

uq → LegL(uq)

where

LegL(uq) : TqQ −→ R

vq →
d

ds |s=0
L(uq + tvq)

Now, we are going to see that in local coordinates it has the same expression as the Legendre transfor-
mation defined in Chapter 1.

Let (U,ϕ ≡ (q1, . . . , qn)) be a local chart in Q, (τ−1
Q (U), ϕ ≡ (q1, . . . , qn, q̇1, . . . , q̇n)) be the corresponding

chart in TQ and (π−1
Q (U), ϕ ≡ (q1, . . . , qn, p1, . . . , pn)) be the corresponding chart in T ∗Q. Then, (ϕ◦LegL ◦

ϕ−1) is locally given by

ϕ(τ−1
Q (U))

ϕ−1

−→ τ−1
Q (U)

LegL−→ π−1
Q (U)

ϕ
−→ ϕ(π−1

Q (U))

(qi, q̇i) −→
∑n
i=1 q̇

i ∂
∂qi |ϕ−1(qj)

−→
∑n
i=1

∂L(ϕ−1(qj ,q̇j))
∂q̇i dqi|ϕ−1(qj) −→ (qi, ∂L(ϕ−1(qj ,q̇j))

∂q̇i )

(2.15)
Therefore, given a vector x ∈ τ−1

Q (U) the matrix associated to the linear map TxLegL : Tx(TQ) →
TLegL(T ∗Q)with respect to the bases

{
∂
∂qi |x

, ∂
∂q̇i |x

}
and

{
∂
∂qi |LegL(x)

, ∂
∂pi |LegL(x)

}
is(

I 0
∂2L
∂qi∂q̇j

∂2L
∂q̇i∂q̇j

)
(2.16)
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Thus, the Lagrangian will be regular if and only if LegL is a local diffeomorphism.

Definition 2.17. A Lagrangian L is hyperregular if the associated Legendre transformation is a global
diffeomorphism.

The hyperregular Lagrangians will be very important since they allow us to introduce the Hamiltonian
function of the system. First, we will introduce the Lagrangian energy associated with a Lagrangian function.

Definition 2.18. The energy function for a Lagrangian L : TQ→ R is the function EL, defined by

EL : TQ −→ R
v −→ LegL(v)(v)− L(v)

In the previous charts the local expression will be

EL =

n∑
i=1

q̇i
∂L

∂q̇i |(ϕ−1(qj ,q̇j))

− L(ϕ−1(qj , q̇j)) (2.17)

Remark Notice that if the Lagrangian is the kinetic minus the potential energy as in (1.3), then the energy
function is

EL =

n∑
i=1

mi(q̇
i)2 − 1

2

n∑
i=1

mi(q̇
i)2 + V (qi) =

n∑
i=1

mi(q̇
i)2 + V (qi) (2.18)

that is, the kinetic plus the potential energy, so the total energy of the system.

Finally, we are ready to introduce the Hamiltonian function.

Definition 2.19. Let L : TQ→ R be an hyperregular Lagrangian and EL the energy function associated to
L. Then, the Hamiltonian function H : T ∗Q→ R is given by

H = EL ◦ LegL−1

Again, assuming that LegL(qi, q̇i) = (qi, pi), the local expression of the Hamiltonian function in the given
charts will be

H(qi, pi) =

n∑
i=1

piq̇
i(qj , pj)− L(qi, q̇i(qj , pj)) (2.19)

which makes sense since the Lagrangian is hyperregular.
Taking partial derivatives in (2.19) we obtain

∂H

∂qi
=

n∑
j=1

pj
∂q̇j

∂qi
− ∂L

∂qi
−

n∑
j=1

∂L

∂q̇j
∂q̇j

∂qi
= − ∂L

∂qi
(2.20)

and,

∂H

∂pi
= q̇i +

n∑
j=1

pj
∂q̇j

∂pi
−

n∑
j=1

∂L

∂q̇j
∂q̇j

∂pi
= q̇i (2.21)

On the other hand, using Euler-Lagrange equations (2.13), we get,

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
=
dpi
dt

(2.22)

which together with dqi

dt = q̇i, (2.20) and (2.21), leads us to the Hamilton equations

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
for i = 1, . . . , n (2.23)
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Conversely, if t → (qi(t), pi(t)) is a solution of the Hamilton equations for H, then t → (qi(t)) is a solution
of Euler-Lagrange equations for L.

So, we have just proved the following theorem.

Theorem 2.20. Let L : TQ → R be any hyperregular Lagrangian, H : T ∗Q → R the corresponding
Hamiltonian function and σ : I → Q be a curve on Q. Then, σ is a solution of the Euler-Lagrange equations
for L if and only if LegL ◦ σ̇ : I → T ∗Q is a solution of the Hamilton equations for H.

As a result of the Legendre transformation, we have introduced Hamilton equations and we have shown
their equivalence to Lagrangian ones. Nevertheless, this way of viewing the Hamiltonian formalism has some
disadvantages since it has left some important properties of Hamiltonian systems out. In the next section,
we will see that one may associate a vector field to an arbitrary Hamiltonian function on T ∗Q. For this
purpose, we will use the canonical symplectic structure of the cotangent bundle.

2.2.4 Hamiltonian mechanics and the symplectic structure of the cotangent
bundle

Let Q be a smooth manifold. Denote by ωQ the canonical symplectic structure of T ∗Q and by bωQ :
X (T ∗Q)→ Ω1(T ∗Q) the corresponding isomorphism of F(Q)-modules.

It induces the following definitions.

Definition 2.21. If H : T ∗Q→ R is a Hamiltonian function on T ∗Q then the Hamiltonian vector field of
H is just the vector field XH on T ∗Q given by

XH = b−1
ωQ(dH)

In other words, XH ∈ X (T ∗Q) is characterized by the following condition

iXHω = dH (2.24)

Definition 2.22. The triple (T ∗Q,ωQ, XH) is called Hamiltonian system.

Notice that from Proposition 2.9 we conclude that any Hamiltonian vector field is a symplectic vector
field. The reciprocal is not always true, since the third condition of the proposition has local character.
Nevertheless, it leads us to introduce the definition of a locally Hamiltonian vector field on a symplectic
manifold.

Definition 2.23. A vector field on a symplectic manifold (S, ω) is said to be a locally Hamiltonian if for
every point x ∈ S there exists an open set U of S, x ∈ U , and a real smooth function H : S → R such that

b−1
ωS (dH) = (XH)|U

where bωS : X (S)→ Ω1(S) is the isomorphism of F(S)-modules induced by ω. If U = S then the vector field
is said to be Hamiltonian.

Now, we will see that the integral curves of the Hamiltonian vector field of an arbitrary Hamiltonian
function H : T ∗Q → R are just the solutions of the Hamilton equations. In fact, form (2.4) and (2.24), we
deduce that the local expression of XH is

XH = b−1
ωQ(dH) =

n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
(2.25)

Thus, if σ : (−ε, ε) → T ∗Q is a curve on T ∗Q, then, σ will be an integral curve of XH if and only if
XH(σ) = σ̇, which yields, almost immediately, to Hamilton equations (2.23).

On the other hand, it is easy to prove the following result.
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Proposition 2.24. Let h : Q→ S be a symplectic map between two symplectic manifolds (Q,ω) and (S, α).
Then,

Txh(XF◦h(x)) = XF (h(x))

for F ∈ F(S) and x ∈ Q.

From Proposition 2.24, we deduce the following corollary

Corollary 2.25. Let h : T ∗Q→ T ∗Q′ be a symplectic map and F ′ : T ∗Q′ → R be a real smooth function on
T ∗Q′. If γ : I → T ∗Q is a solution of the Hamilton equations for F ′ ◦ h : T ∗Q→ R, then h ◦ γ : I → T ∗Q′

is a solution of the Hamilton equations for F ′.

This last result may be very useful. In fact, if h : T ∗Q→ T ∗Q is a canonical transformation, H : T ∗Q→ R
is a Hamiltonian function such that H ◦ h = H and σ : I → T ∗Q is a solution of the Hamilton equations
for H, then σ ◦ h : I → T ∗Q also is a solution of such equations. Thus, from a solution of the Hamilton
equations for H we may obtain a new solution of such equations.

This corollary ends the review on the Lagrangian and Hamiltonian formulation that we give. Over the
next chapters we will use many of the stated results, specially those related with the phase space of momenta
and Hamiltonian mechanics.



Chapter 3

Lie groups

The starting point of the study of any mechanical system is the configuration manifold. The theory we want
to develop in this project deals with mechanical systems which have as a configuration manifold a Lie group.
The properties that verify such manifolds will be key in order to obtain the most important results of the
project and that is why we dedicate this chapter to Lie groups.

The chapter is divided in two main parts. The first one deals with the notions of Lie group and subgroup,
its associated Lie algebra and the left invariant vector fields, group homomorphisms and the exponential map.
In the second one we will discuss the definition of an action of a Lie group on a manifold and we will consider
two particular actions: the adjoint and the coadjoint actions associated with a Lie group. These two actions
together with the Lie algebra and the left invariant vector fields will be fundamental issues over the next
chapters.

3.1 Lie groups

3.1.1 Lie groups and Lie algebras

Let us start defining a special type of manifolds, Lie groups, which are the fundamental tool of the chapter.

Definition 3.1. A Lie group G is a smooth manifold which is endowed with a group structure such that the
maps

· : G×G → G
(g, h) → g · h

i : G → G
g → g−1

are smooth, where · is the group operation.

This last condition might be also reformulated in terms of the map µ defined below:

µ : G×G → G
(g, h) → g · h−1 (3.1)

Indeed, the inversion map i and the group operation are smooth, if and only if, µ is smooth. In fact, if e is
the identity element and Ce : G→ G×G is the map given by Ce(h) = (e, h), then, the following equalities
prove the result:

µ = · ◦ (IdG × i), i = µ ◦ Ce, · = µ ◦ (IdG × i).

Throughout the whole chapter G will denote a Lie group and e the identity element.

Example 3.2. i. Any vector space with the addition is a Lie group. Particularly, Rn with the vector
addition is a Lie group.

25
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ii. Define the General linear group GL(n,R) as the set of all n × n matrices with non-zero determinant,
that is, GL(n,R) = det−1(R − {0}). Note that, GL(n,R) is an open subset of the set of the square
matrices gl(n,R), so it is a submanifold of gl(n,R). Thus, it can be easily checked that GL(n,R) is a
Lie group with the standard multiplication of n× n matries.

iii. If G and L are Lie groups, G× L is a Lie group with the product manifold structure and the induced
operation between them, that is (g1, l1)(g2, l2) = (g1g2, l1l2) for g1, g2 ∈ G and l1, l2 ∈ L.

Next we will recall the definition of a Lie algebra and subalgebra and we will present some important
examples.

Definition 3.3. A Lie algebra is a couple (A, [ , ]) where A is a vector space and [ , ] : A × A → A is a
R-bilinear map such that

i. [u, v] = −[v, u], ∀u, v ∈ A (skew-symmetry)

ii. [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0, ∀u, v, w ∈ A (Jacobi identity)

Definition 3.4. A Lie subalgebra of a Lie algebra (A, [ , ]), is a subespace of A which is closed under the
bracket [ , ].

Clearly, a Lie subalgebra is also a Lie algebra with the same bracket.

Example 3.5. i. R3 endowed with the cross product [u, v] = u× v is a Lie algebra.

ii. Any vector space V with the trivial bracket [x, y] = 0 for all x, y ∈ V , is a Lie algebra. In particular,
Rn is a Lie algebra with such a bracket.

iii. If M is a manifold, then the standard Lie bracket of vector fields defines a Lie algebra structure on the
vector space X (M).

iv. gl(n,R) is a Lie algebra when endowed with the bracket

[A,B] = AB −BA ∀A,B ∈ gl(n,R) (3.2)

As we pointed out, our current goal is to associate to any Lie group G a Lie algebra of finite dimension.
In order to do it we will show that given a Lie group G, it exists a distinguished Lie subalgebra of X (G).
Moreover, we will show that it is isomorphic to TeG and hence, the tangent space of a Lie group at the
identity element will also have Lie algebra structure. But before that we give two definitions.

Definition 3.6. Let G be a Lie group and g ∈ G. Define the left translation and the right translation by g
as the maps given by

Lg : G → G
h → g · h

Rg : G → G
h → h · g

From the definition of Lie group we can assure that Lg andRg are smooth. Besides, since Lg1◦Lg2 = Lg1g2 ,
Rg1 ◦Rg2 = Rg1g2 and Le = Id = Re, it is clear that (Lg)

−1 = Lg−1 and (Rg)
−1 = Rg−1 . Therefore, Lg and

Rg are diffeomorphisms. It can be also easily checked that Lg ◦Rh = Rh ◦ Lg.
Now, we will introduce the notion of a left invariant vector field.

Definition 3.7. A vector field X ∈ X (G) is called left invariant if

ThLg(X(h)) = X(g · h) ∀g, h ∈ G

that is TLgX = X.

Denote by XL(G) the set of left invariant vector fields.
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Proposition 3.8. XL(G) is a Lie subalgebra of the Lie algebra (X (G), [ , ]).

Proof. Let X,Y ∈ XL(G), we have to check that [X,Y ] ∈ XL(G) or what is the same

ThLg([X,Y ](h)) = [X,Y ](g · h) = [X,Y ](Lg(h)) ∀g, h ∈ G

But this equality holds true since X and Y are Lg-projectable to themselves by hypothesis.

Before seeing the next results, let us define another type of vector fields on a Lie group.

Definition 3.9. The left extension of any ξ ∈ TeG is a vector field Xξ given by

Xξ(g) = TeLg(ξ) ∀g ∈ G

It is easy to show that the left extension of ξ is a left invariant vector field. Indeed,

ThLg(Xξ(h)) = ThLg ◦ TeLh(ξ) = Te(Lg ◦ Lh)(ξ) = TeLgh(ξ) = Xξ(gh)

Finally, we are going to provide TeG with a structure of Lie algebra. In order to do it, first we will show
that TeG is isomorphic to XL(G) and then we will use the Lie algebra structure of XL(G) to endow TeG
with such a structure.

Proposition 3.10. XL(G) ∼= TeG. In particular, XL(G) is a real vector space of finite dimension.

Proof. It is enough to define

ρ1 : XL(G) → TeG
X → X(e)

ρ2 : TeG → XL(G)
ξ → Xξ

It is clear that ρ1 and ρ2 are linear maps and ρ1 ◦ ρ2 = IdTeG and ρ2 ◦ ρ1 = IdXL(G).

Remark 3.11. Let us recall the following property of real vector spaces: ”If V is a real vector space, then
TxV ∼= V ∀x ∈ V ”. It is important to keep it in mind because it will be largely used along the project.

Once we have that XL(G) ∼= TeG, we define a bracket on TeG as follows

[ξ, η] = [Xξ, Xη](e) ∀ξ, η ∈ TeG. (3.3)

It is immediate to prove that such a bracket defines a Lie algebra structure on TeG. On the other hand,
since

ρ1(X[ξ,η]) = [ξ, η] = [Xξ, Xη](e) = ρ1([Xξ, Xη])

we have
X[ξ,η] = [Xξ, Xη]. (3.4)

Definition 3.12. The vector space TeG endowed with the Lie algebra structure defined above is called the
Lie algebra of G.

We will use g to refer to TeG or equivalently to XL(G) with their Lie algebra structure defined previously.

3.1.2 Homomhorpisms of Lie groups and Lie algebras

In this section we present some basic results about the homomorphisms between Lie groups and Lie algebras.
They will be extensively used along this chapter because they allow us to relate different Lie groups (or Lie
algebras) and to regard some of them in a more suitable way. As well, the definitions and the results that we
will give are the basic background that we need in order to define and give the properties of the exponential
map in the next section.
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Definition 3.13. Let (G, ·) and (H,+) be two Lie groups and f : G→ H be a smooth map. f is said to be
a Lie group homomorphism if it is a group homomorphism, that is,

f(g · h) = f(g) + f(h) ∀g, h ∈ G

Moreover, if f is a bijective then f is said to be a Lie group isomorphism.

Example 3.14. R − {0} with the standard multiplication of real numbers is a Lie group. Furthermore,
since |AB| = |A| · |B| for A,B ∈ GL(n,R) the map det : GL(n,R)→ R−{0} is a Lie group homomorphism.

Definition 3.15. Let (g, [ , ]) and (h, [ , ]′) be two Lie algebras and f : g→ h be a linear map. f is said to
be a Lie algebra homomorphism if

f([ξ, η]) = [f(ξ), f(η)]′ ∀ξ, η ∈ g

Moreover, if f is bijective then f is said to be Lie algebra isomorphism

Example 3.16. Denote by gl(n,R) the Lie algebra of GL(n,R). Then, gl(n,R) might be identified with
gl(n,R), [ , ]), where [ , ] is the bracket defined in Example 3.5. In fact, there exists a Lie algebra isomorphism
between gl(n,R) and gl(n,R). Let us prove it.

Let xij be the generalized coordinates of gl(n,R) which are given by xij(akl) = aij . Consider the map

α : Te(gl(n,R)) −→ gl(n,R)
v → α(v)ij = (v(xij))

and using that XL(GL(n,R)) = gl(n,R) ∼= Te(GL(n,R)) = Te(gl(n,R)) define β as

β : gl(n,R) −→ gl(n,R)
X → β(X) = α(X(e))

It is easy to prove that β is a vector space isomorphism. Therefore, the only fact that is left is to prove that
β([X,Y ]) = [β(X), β(Y )] for any X,Y ∈ XL(GL(n,R)) = gl(n,R).

Let A,B ∈ GL(n,R) be matrices and X,Y ∈ gl(n,R) be left invariant vector fields. First of all notice
that,

(xij ◦ LA)(B) = xij(AB) =
∑
k

xik(A)xkj(B)

Now, taking into account that X is a left invariant vector field we have

(X(xij))(A) = TeLA(X(e))(xij) = X(e)(xij ◦ LA)

= X(e)

(∑
k

xik(A)xkj

)
=
∑
k

xik(A)X(e)(xkj)

=
∑
k

xik(A)α(X(e))kj =
∑
k

xik(A)β(X)kj

which means that
X(xij) =

∑
k

β(X)kjxik.
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Finally, we obtain

β([X,Y ])ij = α([X,Y ](e))ij = [X,Y ](e)(xij)

= X(e)(Y (xij))− Y (e)(X(xij))

= X(e)

(∑
k

β(Y )kjxik

)
− Y (e)

(∑
k

β(X)kjxik

)
=
∑
k

(X(e)(xik)β(Y )kj − Y (e)(xik)β(X)kj)

=
∑
k

(β(X)ikβ(Y )kj − β(Y )ikβ(X)kj)

= [β(X), β(Y )]ij

At last, we give an interesting result that allows us to define a Lie algebra homomorphism between the
associated Lie algebras of two Lie groups provided that we have a Lie group homomorphism between them.
It is important to bear in mind its proof because it will be used further on.

Proposition 3.17. Let (G, ·) and (H,+) be two Lie groups with identity element e and e′ respectively. If
f : G→ H is a Lie group homomorphism, then

Tef : TeG→ Te′H

is a Lie algebra homomorphism.

Proof. If Tgf(Xξ(g)) = XTef(ξ)(f(g)) for all ξ ∈ TeG and for all g ∈ G, then

Tef [ξ, η] = Tef ([Xξ, Xη](e)) = [XTef(ξ), XTef(η)](e
′) = [Tef(ξ), Tef(η)]′ ∀ξ, η ∈ TeG

Consequently, it is enough to prove that the previous equality holds. In fact, given any g, h ∈ G, we have
that (f ◦ Lh)(g) = f(hg) = f(h)f(g) = (Lf(h) ◦ f)(g). Thus,

Tgf(Xξ(g)) = Tgf(TeLg(ξ)) = Te′Lf(g)(Tef(ξ)) = XTef(ξ)(f(g)).

3.1.3 Exponential map

We will introduce the exponential map, give some of its properties and study some important particular
examples. It is important to point out that those concepts will be widely used throughout the rest of the
chapter.

Let us give a first definition which will help us to characterize the integral curves of left invariant vector
fields starting at e.

Definition 3.18. A one-parameter subgroup of a Lie group (G, ·) is a Lie group homomorphism γ : (R,+)→
(G, ·).

Notice that since γ is a Lie group homomorphism we have γ(0) = e. Following this definition, the next
result gives the existing relationship between such homomorphisms and the mentioned integral curves.

Proposition 3.19. There exists a bijective correspondence between the one-parameter subgroups of G and
the integral curves of the left invariant vector fields of G starting at e.
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Proof. Assume that γξ is a one-parameter subgroup of G such that ξ = T0γξ(
d
dt |s=0

) ∈ TeG and Xξ is the

corresponding left extension. We have that γξ ◦Lt = Lγξ(t) ◦ γξ , where Lt : R→ R is the left translation by
t in the additive group (R,+) (see the proof of Proposition 3.17). Thus, it follows that

Ttγξ

(
d

dt |t

)
= Ttγξ

(
T0Lt

(
d

ds |s=0

))
= T0(γξ ◦ Lt)

(
d

ds |s=0

)
= TeLγξ(t)

(
T0γξ

(
d

ds |s=0

))
= TeLγξ(t)(ξ)

= Xξ(γξ(t))

Conversely, let Xξ be a left invariant vector field and γξ be its integral curve starting at e, i.e, γξ(0) = e.
We have to prove that γξ is a one-parameter subgroup. Let U be an open set of G and I = (−ε, ε) be an
open interval in R and consider the local one-parameter group φXξ : U × I → G associated with Xξ. Clearly,
we have that γξ(t) = φXξ(e, t).
Given any g ∈ G, define the curve σg : I → G as σg(t) = g · γξ(t). We claim that σg is the integral curve of
Xξ starting at g. Indeed,

Ttσg

(
d

dt |t

)
= Tt(Lg ◦ γξ)

(
d

dt |t

)
= Tγξ(t)Lg

(
Ttγξ

(
d

dt |t

))
= Tγξ(t)Lg(Xξ(γξ(t))) = Xξ(g · γξ(t))
= Xξ(σg(t)).

Therefore, σg(t) = φXξ(g, t) for (g, t) ∈ U × I. Thus, if t1 and t2 are small enough,

γξ(t1 + t2) = φXξ(e, t1 + t2)

= ((φXξ)t2 ◦ (φXξ)t1)(e) = (φXξ)t2(γξ(t1))

= (φXξ)(γξ(t1), t2) = σγξ(t1)(t2)

= γξ(t1) · γξ(t2).

It proves that γξ is a local Lie homomorphism. However, using the same fact, it can be extended to the real
line defining

γξ(t) =

(
γξ

(
t

n

))n
for n such that t

n ∈ I.

Remark 3.20. Let ξ be an element of g and Xξ be the corresponding left invariant vector field on G. Then
Xξ is complete and its global flow is given by

φXξ(g, t) = g · γξ(t)

Once we have studied the integral curves of the left invariant vector fields let us move on to the exponential
map.

Definition 3.21. The exponential map expG : g→ G is defined by

expG(ξ) = γξ(1)

Proposition 3.22. i. expG is smooth.

ii. expG(tξ) = γξ(t).



CHAPTER 3. LIE GROUPS 31

iii. There exists an open neighbourhood U of 0 in g and an open neighbourhood V of e in G such that
expG : U → V is a diffeomorphism.

Proof. i. Define a vector field Z on G× g as follows:

Z : G× g → T (G× g)
(g, ξ) → (Xξ(g), 0)

Its integral curve through (g, ξ) is given by t→ (g · γξ(t), ξ). Thus its flow is

F : R× (G× g) → G× g
(t, (g, ξ)) → (g · γξ(t), ξ)

Finally, if π : G× g→ G denotes the projection onto G and (C1, Ce, Id) : g→ R× (G× g) is the map
given by ξ → (1, (e, ξ)), we have that

expG = π ◦ F ◦ (C1, Ce, Id).

Since π, (C1, Ce, Id) are smooth and F is also smooth due to the fact that it is a flow, we conclude
that expG is smooth.

ii. By i. it is enough to prove that γξ(t) = γtξ(1) = expG(tξ). We will show that γtξ(s) = γξ(st) for all
s ∈ R and choosing s = 1 we will get the result.

First of all, using the fact that γtξ and γξ are one-parameter subgroups, it is clear that γtξ(0) = γξ(0) =
e. Then, the curves s → γtξ(s) and s → γξ(st) satisfy the same initial condition. Moreover, given
g ∈ G,

Xtξ(g) = TeLg(tξ) = tTeLg(ξ) = tXξ(g)

Therefore,
dγtξ(s)

ds
= Xtξ(γtξ(s)) = tXξ(γtξ(s)).

On the other hand,
dγξ(st)

ds
= t

dγξ
ds

(st) = tXξ(γξ(st)).

Therefore, s → γtξ(s) and s → γξ(st) are integral curves of the same left invariant vector field tXξ =
Xtξ. This implies that γtξ(s) = γξ(st) for all s ∈ R.

iii. It is sufficient to prove that T0expG : T0g → TeG is a linear isomorphism. Indeed, if it is true, using
the inverse function theorem we obtain the result.

Using that T0g ∼= g and TeG ∼= g we might regard T0expG as a map g → g. Now, if ξ ∈ g then the
corresponding vector X ∈ T0g is given by

X = ρ′ξ(0)

where ρξ : R→ g is the curve defined by ρξ(t) = tξ. Thus,

T0expG(X) = T0expG(ρ′ξ(0)) = (expG ◦ ρξ)′(0).

By ii, expG ◦ ρξ = γξ, so
T0expG(X) = γ′ξ(0) = ξ

From Proposition 3.22 and the previous proposition it follows that all one-parameter subgroups of G are
of the form t→ expG(tξ), with ξ ∈ g.
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Example 3.23. Let (V,+) be a vector space with the addition as the group operation. From Remark 3.11
its Lie algebra can be identified with V and, easily one has that exp : V → V is the identity.

Example 3.24. If G is the general linear group GL(n,R), the exponential map is the usual exponential
map for matrices

exp(A) = γA(1) =

∞∑
i=0

Ai

i!
for A ∈ gl(n,R) (3.5)

Let us see it. Consider the map

γA : R → GL(n,R)

t →
∑∞
i=0

ti

i!A
i

Clearly γA(0) = Id. Define the curve

σIA : R → gl(n,R)
s → I + sA

and remark that

γA(t) · σIA : (−ε, ε) → GL(n,R)
s → γA(t) + sγA(t)A

Then,

TILγA(t)(A) = TILγA(t)(σ
′
IA(0)) = (LγA(t) ◦ σIA)′(0)

= (γA(t) · σIA)′(0) = γA(t) ·A

Finally we have that

γ′A(t) =

n∑
i=0

ti−1

(i− 1)!
Ai = γA(t) ·A = TILγA(t)(A) = XA(γA(t))

which proves that γA is a one-parameter subgroup. Thus the exponential map is given by (3.5)

At last, we prove a last result which gives an useful formula for the exponential map.

Proposition 3.25. Let f : G → H be a Lie group homomorphism. If e ∈ G denotes the identity element,
then

f(expG(ξ)) = expH(Tef(ξ)) ∀ξ ∈ g

Proof. As we know (see the proof of the Proposition 3.17)

Tgf(Xξ(g)) = XTef(ξ)(f(g)) ∀g ∈ G.

Using this fact it is easy to check that if γξ is the one-parameter subgroup associated with ξ, then f ◦ γξ is
the one parameter subgroup associated with Tef(ξ). Hence,

expH(Tef(ξ)) = γTef(ξ)(1) = (f ◦ γξ)(1) = f(expG(ξ)).
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3.1.4 Lie subgroups

Most of the Lie groups that one can find are, in fact, Lie subgroups of GL(n,R). That is why in this section
we give the formal definition of a Lie subgroup and enunciate the Cartan theorem which allows us to identify
such subgroups. Nevertheless, the theory that we are working up is focused on the Lie algebras of Lie groups,
so we need to study the relationship between the Lie algebra of a Lie group and the Lie algebra of a Lie
subgroup.

Definition 3.26. A Lie subgroup H of a Lie group G is subgroup of G such that the inclusion map i : G→ H
is an immersion.

Theorem 3.27 (Cartan). Any closed subgroup of a Lie group G is a Lie subgroup.

Proof. See, for instance, [AbMa], [War].

Now, our interest is to relate the Lie algebra of G with the Lie algebra of a Lie subgroup H. The next
proposition gives this result, but we need a previous lemma in order to prove it.

Lemma 3.28. Let ϕ : N →M be a smooth map and φ : P →M be an integral submanifold of an involutive
distribution D in M such that ϕ(N) ⊂ φ(P ). Let ϕ0 : N → P be the unique map such that φ◦ϕ0 = ϕ. Then
ϕ0 is smooth.

Proof. See for instance [War].

Proposition 3.29. Let i : H → G be a Lie subgroup of G. Then h is a Lie subalgebra of g and

h = {ξ ∈ g | expG(tξ) ∈ i(H) ∀t ∈ R}

Proof. Let e be the identity element of G. Since i is an immersion, from Proposition 3.17 we have that
Tei : TeH ∼= h → TeG ∼= g is a Lie algebra monomorphism. Therefore, Tei(h) is a Lie subalgebra of g
isomorphic to the Lie algebra h.
Let us prove the double inclusion:
⊆c Fix ξ = Tei(η) ∈ Tei(h) ∼= h with η ∈ h. We have

expG(tξ) = expG(tTei(η)) = expG(Tei(tη)) = i(expH(tη)) ∈ i(H) ∀t ∈ R

⊇c Suppose that expG(tξ) ∈ i(H) ∀t ∈ R. Then, expG(tξ) = (i ◦ φ)(t) with φ(t) ∈ H.
Now, consider the distribution D on G whose characteristic space at the point g ∈ G is,

D(g) = {Xξ(g)|ξ ∈ h}

From (3.4) we conlcude that D is involutive. Besides, taking into account that (H, i) is an integral subman-
ifold of D we can use the previous lemma and we conclude that φ is smooth. Moreover, since i is a group
homomorphism and expG(tξ) = (i ◦ φ)(t), we have that φ is a one-parameter subgroup. It means that there
exists η ∈ h such that

φ(t) = γη(t) = expH(tη) ∀t ∈ R

Thus,
expG(tξ) = i(expH(tη)) = expG(Tei(tη))

Consequently, ξ = Tei(η), i.e, ξ ∈ Tei(h) ∼= h.

Let us use all those results to study the particular Lie groups we are interested in.
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Lie subgroups of GL(n,R)

As we know, the map det : GL(n,R)→ R−{0} is a Lie group homomorphism (see Example 3.14). Moreover
we have the following result.

Proposition 3.30. The tangent map to det : GL(n,R)→ R− {0} at A ∈ GL(n,R) is given by

TAdet : TA(GL(n,R)) ∼= gl(n,R) → T|A|R− {0} ∼= R
B → |A|tr(A−1B)

where det(A) = |A| and tr(A) denotes the trace of A.

Proof. Given B ∈ gl(n,R) ∼= TA(GL(n,R)) define the curve

σAB : R → gl(n,R)
t → A+ tB

Remark that since the determinant map is continuous, there exists an interval I ⊂ R such that σAB(I) ⊂
GL(n,R). Then, using the following equalities

|A+ tB| = |A||I + tA−1B| |I + tB| = 1 + tr(C)t+ · · ·+ tn|C|

we conclude that,

TAdet(B) = TAdet(σ
′
AB(0)) = (det ◦ σAB)′(0)

=
d

dt |t=0
(|A||I + tA−1B|)

= |A| d
dt |t=0

(1 + tr(A−1B)t+ · · ·+ tn|A−1B|)

= |A|tr(A−1B)

Special linear group SL(n,R) SL(n,R) is defined as

SL(n,R) = det−1(1) = {B ∈ gl(n,R)| |B| = 1} (3.6)

Thus, SL(n,R) is a closed subgroup of GL(n,R) and by the Cartan theorem we can conclude that it is a
Lie subgroup of GL(n,R).

From Proposition 3.30 it follows that the Lie algebra gl(n,R) of SL(n,R) is given by

sl(n,R) = TI(SL(n,R)) = {B ∈ gl(n,R)| tr(B) = 0} (3.7)

Orthogonal group O(n) A matrix A ∈ gl(n,R) is called orthogonal if < Ax,Ay >=< x, y >, for all
x, y ∈ Rn where < , > denotes the standard scalar product on Rn. Equivalently, A is orthogonal if
< Ax, y >=< x,Aty >, being At the transposed matrix. It leads to AtA = I, which implies that the
determinant of an orthogonal matrix A is ±1. Indeed,

1 = |I| = |AtA| = |A|2

Hence, A ∈ GL(n,R).
Now, let us see that the set of the orthogonal matrices, O(n), has group structure and therefore it is a
subgroup of GL(n,R).

i. Obviously I ∈ O(n).
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ii. A,B ∈ O(n) ⇒ < ABx,ABy >=< Bx,By >=< x, y > for all x, y ∈ Rn ⇒ AB ∈ O(n)

iii. If A ∈ O(n) and x, y ∈ Rn we may define x′ = A−1x and y′ = A−1y. Then, < x, y >=< Ax′, Ay′ >=<
x′, y′ >=< A−1x,A−1y > which implies that A−1 ∈ O(n).

Next, we will prove that O(n) is a Lie subgroup of GL(n,R). Define φ as

φ : GL(n,R) → S(n)
A → AAt

where S(n) is the vector space of the symmetric matrices of order n. Clearly φ is smooth and the tangent
map in A ∈ GL(n,R) is given by

TAφ : TA(GL(n,R)) ∼= gl(n,R) → TAAt(S(n)) ∼= S(n)
B = σ′AB(0) → (φ ◦ σAB)′(0)

where σAB is the curve defined previously in the proof of Proposition 3.30. In fact,

(φ ◦ σAB)(t) = AAt + t(ABt +BAt) + t2BBt

which yields to

TAφ(B) =
d

dt |t=0
(AAt + t(ABt +BAt) + t2BBt) = ABt +BAt

Now, for A ∈ O(n) and C ∈ S(n) ∼= TAAtS(n), if we put B = CA
2 we have

TAφ(B) = A At
Ct

2
+
C

2
AAt = I

Ct

2
+
C

2
I =

C

2
+
C

2
= C

which proves that TAφ is a linear epimorphism. Moreover, O(n) = φ−1(I) is a closed subgroup of GL(n,R).
Thus we conclude that O(n) is a Lie subgroup of GL(n,R) and, in addition, the Lie algebra of O(n) is

o(n) =
{
A ∈ gl(n,R)|A = −At

}
(3.8)

Special orthogonal group SO(n) Define SO(n) as

SO(n) = {A ∈ O(n)| |A| = 1} (3.9)

In fact, SO(n) = det−1(1) where det : O(n)→ {−1, 1} is a Lie group homomorphism. It proves that SO(n)
is a closed subgroup of O(n), i.e, a Lie subgroup. On the other hand we have

SO(n) = O(n) ∩ SL(n,R)

which tells us that SO(n) is an open subset of O(n) and that their Lie algebras coincide, that is, so(n) = o(n).
In particular, we are going to see that the Lie algebra so(3) can be identified with the Lie algebra (R3,×)

via the hat map1 defined as

ˆ: R3 −→ so(3)

v = (v1, v2, v3) → v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (3.10)

Remark that

v̂ · w =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 w1

w2

w3

 = v × w

1Recall the section 1.2 where we have introduced the hat map for the rigid body.
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which, using the Jacobi identity for the cross product in R3 gives

[û, v̂] · w = (ûv̂ − v̂û) · w = û · (v × w)− v̂ · (u× w)

= u× (v × w)− v × (u× w) = (u× v)× w
= û× v · w

Thus,
û× v = [û, v̂] (3.11)

and the hat map is a Lie algebra isomorphism.

Remark 3.31. We recall that in section 1.2 (Chapter 1), we have shown that the position x(t) at the time
t of a particle with label X of a rigid body is given by

x(t) = R(t)X

where R(t) is a rotation matrix which preserves the orientation, that is R(t) ∈ SO(3). It means that SO(3)
is the configuration manifold of that mechanical system. On the other hand, if (ϕ, θ, ψ) are the Euler angles
on SO(3), we have that (ϕ, θ, ψ) are generalized coordinates for the rigid body. Consequentely, we deduce
that the configuration manifold for the rigid body is a Lie group of dimension 3. This fact will allow us to
work over its associated Lie algebra where we have properties helping us to reduce the number of ODE’s
that describe the system.

3.2 Actions of Lie groups

After studying the main properties of Lie groups and their Lie algebras we are ready to begin working with
actions of Lie groups on manifolds. In this section we introduce the main notions and results that we will
need further.

Let us start with the definition of action of a Lie group on a manifold and the first examples.

Definition 3.32. Let M be a smooth manifold and G be a Lie group. A (left) action of G on M is a smooth
map φ : G×M →M such that

i. φ(e, q) = q for all q ∈M .

ii. φ(g, φ(h, q)) = φ(g · h, q), for all g, h ∈ G and q ∈M .

Notice that if φ : G ×M → M is an action and g ∈ G, then φ induces a smooth map φg : M → M for all
g ∈ G given by φg(q) = φ(g, q) for all q ∈M . Moreover, this map verifies:

i. φe = Id|M

ii. φg ◦ φh = φgh

iii. (φg)
−1 = φg−1

Thus, φg is a diffeomorphism and the action can be also seen as an homomorphism of G into the group of
diffeomorphisms of M . In particular, if M is a vector space and φg is linear for all g ∈ G, the action is called
a representation of G on M .

Example 3.33. i. The flow F : R×M →M of a complete vector field X ∈ X (M) is an action of (R,+)
on M .

ii. Given a Lie subgroup H of a Lie group G, consider the map

ϕ : H ×G → G
(h, g) → h · g

It is easy to prove that ϕ is an action of H on G.
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iii. There is an stantard action of the linear general group GL(n,R) on Rn given by (A, v) → Av for
A ∈ GL(n,R) and v ∈ Rn

Before going further, we introduce the tangent and cotangent lift of an action because we will need them
in the incoming chapters.

Definition 3.34. Let φ : G×M →M be an action.

i. The tangent lift of φ is the action φT given by

φT : G× TM → TM
(g, vq) → Tqφg(vq)

for vq ∈ TqM .

ii. The cotangent lift of φ is the action φT
∗

given by

φT
∗

: G× T ∗M → T ∗M
(g, αq) → T ∗q φg−1(αq)

for αq ∈ T ∗qM .

It is easy to check that they are actions. For instance, we give the prove for the cotangent lift2.

i. Since φ is an action it is clear that φT
∗
(e, α) = α.

ii. For any X ∈ Tφhg(q)M we have

φT
∗
(h, φT

∗
(g, αq))(X) = φT

∗
(h, T ∗q φg−1(αq))(X) = T ∗φg(q)φh−1(T ∗q φg−1(αq))(X)

= T ∗q φg−1(αq)
(
Tφh◦φg(q)φh−1(X)

)
= αq

(
Tφg(q)φg−1

(
Tφh◦φg(q)φh−1(X)

))
= αq

(
Tφhg(q)(φg−1 ◦ φh−1)(X)

)
= αq

(
Tφhg(q)φ(hg)−1(X)

)
= T ∗q φ(hg)−1(αq)(X) = φT

∗
(h · g, αq)(X)

Consequently, φT
∗
(h, φT

∗
(g, αq)) = φT

∗
(h · g, αq)

Example 3.35. Assume that V is a vector space of finite dimension and φ : G × V → V is an action of
a Lie group G such that φg is a linear isomorphism for every g ∈ G. We will see that in such a case, the
tangent lift of φ under the identification TV ∼= V × V is given by

φT : G× (V × V ) → V × V
(g, (u, v)) → (φg(v), φg(v))

First, if u, v ∈ V define a curve on V as follows

αuv : R → V
t → v + tu

Then one has that the isomorphism TV ∼= V × V is given by,

ψ : (V × V ) → TV
(u, v) → ψv(u) = α′uv(0)

2Recall the definition of the cotangent lift of a map from section 2.1.1



CHAPTER 3. LIE GROUPS 38

On the other hand, bearing in mind that φg is linear, one gets

φg(αuv) = φg(v) + tφg(u) = αφg(u)φg(v)(t)

which yields to
Tvφg(ψv(u)) = Tvφg(α

′
uv(0)) = α′φg(u)φg(v)(0) = ψφg(v)(φg(u))

that is, the following diagram is commutative,

V
φg−→ V

ψv

y yψφg(v)
TvV

Tvφg−→ Tφg(v)V

Thus, we have that the diagram

V × V (φg,φg)−→ V × V
ψ

y yψ
TV

Tφg−→ TV

is commutative and the result is proved.

Now, we introduce the definition of the orbit of a point with respect to an action.

Definition 3.36. Let φ : G ×M → M be an action of a Lie group G on a manifold M , and q ∈ M be a
point. The orbit of q is defined by

G · q = {φg(q) | g ∈ G}

Example 3.37. Remark that the usual action of SO(3) on R3, (A, v) → Av, verifies that ||Av|| = ||v||.
Therefore, the orbit of a vector v 6= 0 will be the sphere of radius ||v||.

One can define an equivalence relation in terms of the orbits. Indeed, two elements will be in the same class
if they belong to the same orbit, that is,

x, y ∈M x ∼ y ⇔ ∃g ∈ G such that φg(x) = y

Thus [q] = G · q and the equivalence class of q is just the orbit of q. If we denote by M/G the quotient which
is induced by this equivalence relation we have the following results.

Theorem 3.38. Let φ : G ×M → M be an action of a Lie group G on a manifold M and consider the
subset R of M ×M defined by

R = {(q, φg(q)) ∈M ×M | (g, q) ∈ G×M}

Then, R is a closed submanifold of M ×M if and only if the quotient space M/G is a smooth manifold such
that the canonical projection π : M →M/G is a submersion.

Proof. See [AbMa].

Proposition 3.39. Let M and N be two manifolds, G be a Lie group acting on M such that the space of
orbits M/G is a quotient manifold and π : M →M/G be the canonical projection. A map φ : M/G→ N is
smooth, if and only if, φ ◦ π : M → N is smooth.

Proof. ⇒c It is obvious since φ and π are both smooth.
⇐c Let q be a point on M . Due to π : M → M/G is a submersion, there exists an open set U ⊂ M/G,
π(q) = [q] ∈ U and a local smooth section s : U →M such that s([q]) = q. As φ|U = (φ ◦ π) ◦ s we conclude
that φ|U is smooth.
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Now, we come to the isotropy group.

Definition 3.40. Let φ : G×M →M be an action of a Lie group G on a manifold M , and q be a point of
M . The isotropy group of φ on q is given by

Gq = {g ∈ G|φg(q) = q}

Using Cartan theorem we can prove that the isotropy group is a Lie subgroup of G.

Proposition 3.41. Let φ : G ×M → M be an action of G on M and q be a point of M . The isotropy
subgroup of φ on q, Gq, is a closed Lie subgroup of G.

Proof. On the one hand we have that Gq is a subgroup of G. Indeed, e ∈ Gq and

i. g, h ∈ Gq ⇒ φgh(q) = φg ◦ φh(q) = q

ii. g ∈ Gq ⇒ φg−1(q) = φg−1 ◦ φg(q) = φe(q) = q

Let us see that it is closed. Consider the following map

φq : G −→ M
g → φg(q) = φ(g, q)

and remark that Gq = (φq)
−1(q). Thus Gq is a closed subgroup and by the Cartan theorem one has that

the isotropy subgroup is a Lie subgroup of G.

Using theorem 3.38, it follows the next result.

Lemma 3.42. Let H be a closed subgroup of a Lie group G acting on H by left translations. Then, G/H
is a manifold and π : G→ G/H is a submersion.

Remark 3.43. Note that G/H = {gH | g ∈ G} and, however, the space of orbits of the action H on G by
left translations is {Hg | g ∈ G} = H/G. Anyway, there exists a one-to-one correspondance between G/H
and H/G. So G/H is a quotient manifold if and only if H/G is a quotient manifold.

Now, it makes sense to define the manifold G/Gq = {[g] | g ∈ G} where [g] = {g · h | h ∈ Gq} = g · Gq.
Besides, with the notation above, for h ∈ Gq one has that φq(g · h) = φg·h(q) = φg ◦ φh(q) = φg(q) = φq(g).
Thus, it allows us to introduce the well-defined map

φ̃q : G/Gq → M
[g] → φ(g, q)

(3.12)

and we have following theorem.

Theorem 3.44. If φ : G×M →M is an action of a Lie group G on a manifold M , and q is a point of M ,
then, φ̃q : G/Gq →M is an injective immersion and φ̃q(G/Gq) = G · q.

Proof. Let π : G→ G/Gq be the canonical projection and consider the following commutative triangle

G
φq−→ M

↓π ↗φ̃q

G/Gq

By the Proposition 3.39, we conclude that φ̃q is smooth.

Now, let us see the injectivity. Suppose that φ̃q([g]) = φ̃q([h]) for g, h ∈ G. Then,

φq(g) = φq(h)⇒ φg(q) = φh(q)⇒ φg−1h(q) = q ⇒ hg−1 ∈ Gq ⇒ [g] = [h]

Finally, we are going to prove that φ̃q is an immersion but we need two previous steps:
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i. We show that gq = Ker(Teφq), where gq = TeGq is the Lie algebra of Gq.

⊆c If ξ ∈ gq we have that (Teφq)(ξ) = 0 since φq |Gq : Gq → M is the constant map. Therefore,

ξ ∈ Ker(Teφq).
⊇c Given ξ ∈ Ker(Teφq) consider the curve

αqξ : R −→ M
t → φq(expG(tξ)) = φq(γξ(t))

and note that if g ∈ G

φq ◦ LexpG(tξ)(g) = φ(expG(tξ) · g, q) = φexpG(tξ) ◦ φq(g)⇒ φq ◦ LexpG(tξ) = φexpG(tξ) ◦ φq

Using it, we deduce that

α′qξ(t) = (Tγξ(t)φq)(γ
′
ξ(t)) = (Tγξ(t)φq)(Xξ(γξ(t)))

= (Tγξ(t)φq)(TeLγξ(t)(ξ))

= (TexpG(tξ)φq)(TeLexpG(tξ)(ξ))

= (TqφexpG(tξ))(Teφq(ξ))

= 0

Therefore, αqξ(t) = αqξ(0) = φq(e) = q, which means that expG(tξ) ∈ Gq for all t. Consequently, by
Proposition 3.29, we have that ξ ∈ gq.

ii. Let us prove that T[g] (G/Gq) ∼= TgG
(TeLg)(gq)

. From the previous lemma 3.42 we have that π : G→ G/Gq
is an exhaustive submersion. Thus, if π(g) = [g] for g ∈ G,

T[g] (G/Gq) ∼=
TgG

Ker(Tgπ)

Now remark that π−1(π(g)) = Lg(Gq) which using the regular value theorem leads to

Ker(Tgπ) = Tg(π
−1(π(g))) = (TeLg)(TeGq) = (TeLg)(gq)

Hence,

T[g] (G/Gq) ∼=
TgG

(TeLg)(gq)

Using i. and ii. we prove that φ̃q is an immersion. Suppose that X[g] ∈ T[g] (G/Gq) and (T[g]φ̃q)(X[g]) = 0.
Since π is a submersion there exists Xg ∈ TgG such that (Tgπ)(Xg) = X[g]. Thus, it follows that,

0 = (T[g]φ̃q)((Tgπ)(Xg)) = (Tgφq)(Xg).

Now, define ξ ∈ g to be such that Xg = (TeLg)(ξ) and notice that

0 = (Tgφq)((TeLg)(ξ)) = Te(φg ◦ φq)(ξ) = (Tqφg)((Teφq)(ξ)).

Since φg is a diffeomorphism, Tqφg is an isomorphism and (Teφq)(ξ) = 0. Thus, ξ ∈ gq = Ker(Teφq) and
Xg ∈ (TeLg)(gq) = Ker(Tgπ), which yields to X[g] = (Tgπ)(Xg) = 0.
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3.2.1 Infinitesimal generators

We are going to associate to any action φ : G ×M → M and any ξ ∈ g a vector field on M . These vector
fields will have some important properties that will help us over the project. In particular, they are the
last tool that we need in order to determine the tangent space to the orbits. Formally, they are defined as
follows.

Let φ : G ×M → M be an action of a Lie group G on a manifold M and ξ be an element of g. Define
the map

φξ : R×M → M
(t, q) → φ(expG(tξ), q)

φξ is an action of R on M .

Definition 3.45. The vector field ξM on X (M) whose flow is given by φξ is called infinitesimal generator
of the action corresponding to ξ, that is,

ξM (q) =
d

dt |t=0
φξq(expG(tξ))

Notice that

ξM (q) = T0φ
ξ
q

(
d

dt |t=0

)
= T0(φq ◦ γξ)

(
d

dt |t=0

)
= Teφq

(
T0γξ

(
d

dt |t=0

))
= Teφq(ξ) (3.13)

Using it we get the result that we are looking for.

Proposition 3.46. The tangent space to an orbit G · q at q is given by

Tq(G · q) = {ξM (q) | ξ ∈ g}

Proof. From theorem 3.44 we deduce that T[g]φ̃q : T[g]G/Gq → Tφ̃g(q)G · q is an isomorphism for all g ∈ G.

Taking g = e and using the previous equality we get

Tq(G · q) = Teφ̃q(T[e]G/Gq) = {Teφq(ξ) | ξ ∈ g} = {ξM (q) | ξ ∈ g} .

Next, we will present an interesting example.

Example 3.47. Let G be a Lie group, ξ ∈ g, and consider the action φ of G on itself by left translations.
Then,

φξ : R×G → G
(t, h) → expG(tξ) · h

that is, φξh = Rh ◦ expG(tξ). Hence, given g ∈ G

ξG(g) = Teφg(ξ) = TeRg(ξ)

which means that the infinitesimal generator of our action associated with ξ is the right invariant vector
field whose value in the identity element is ξ.

Now, let us introduce a particular class of smooth maps and discuss how they transform the infinitesimal
generators.

Definition 3.48. Let M and N be two smooth manifolds and φ : G×M →M (respectively, ϕ : G×N → N)
be an action of a Lie group G on M (respectively, N). A smooth map f : M → N is said to be equivariant
with respect to these actions if

f ◦ φg = ϕg ◦ f ∀g ∈ G
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Proposition 3.49. Let f : M → N be a smooth map and G be a Lie group. If φ : G×M →M (respectively,
ϕ : G×N → N) is an action of G on M (respectively, N) and f is equivariant with respect to these actions
then,

Tqf(ξM (q)) = ξN (f(q)) ξ ∈ g and q ∈M

Proof. Given g ∈ G and taking into account the hypothesis of equivariance one has

ϕf(q)(g) = ϕg(f(q)) = (ϕg ◦ f)(q) = (f ◦ φg)(q) = (f ◦ φq)(g)

Using this fact and (3.13) we get

ξN (f(q)) = Teϕf(q)(ξ) = Te(f ◦ φq)(ξ) = Tqf(ξM (q)).

Finally, we enunciate an important result that relates the elements of g with their associated infinitesimal
generators. However, we still do not have the necessary tools in order to give a proof. We will come back to
it in the next section.

Proposition 3.50. Let φ be an action of a Lie group G on a manifold M . The map ξ ∈ g→ ξM ∈ X (M)
is a Lie algebra anti-homomorphism, that is

[ξ, η]M = −[ξM , ηM ] ∀ξ, η ∈ g

3.2.2 Adjoint and coadjoint action

As we have already pointed out, we are going to study two specific and important actions. In particular,
they will help us to prove at the end of the section, the remaining Proposition 3.50. First, we will introduce
the adjoint action of a Lie group on its Lie algebra g and we will describe the corresponding infinitesimal
generators. Then, the coadjoint action will be defined in terms of the adjoint action.

We start by introducing the notion of the inner automorphism associated with an element of G.

Definition 3.51. Let G be a Lie group and g ∈ G. The inner automorphism associated with g is defined by

Ig : G → G
h → g · h · g−1

Remark that Ig is a Lie group homomorphism,

Ig(h · h′) = (g · h · g−1) · (g · h′ · g−1) = Ig(h) · Ig(h′).

Moreover, since Ig = Rg−1 ◦ Lg, Ig is diffeomorphism and the following definition makes sense.

Definition 3.52. Let G be a Lie group, the adjoint action of G on g is defined by

Ad : G× g → g
(g, η) → Adg(η) = TeIg(η)

Remark that from the Proposition 3.25 one has that for any g ∈ G and ξ ∈ g,

expG(Adgξ) = g · (expGξ) · g−1 (3.14)

Now, let us see that given ξ ∈ g, the infinitesimal generator ξg of the adjoint action corresponding to ξ
is given by ξg(η) = [ξ, η]. We will use the two following facts:
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i. Let X,Y ∈ X (M) be two vector fields, φt the one-parameter subgroup associated to X and q a point
of M . Then the following equality holds:

[X,Y ](q) = lim
t→0

Tφt(q)φ−t(Yφt(q))− Y (q)

t

ii. The flow of the vector field Xξ ∈ XL(G) is given by ϕ(t, g) = g · γξ(t) = Rγξ(t)(g).

Thus,

[ξ, η] = [Xξ, Xη](e)

= lim
t→0

Tγξ(t)Rγξ(−t)(Xη(γξ(t)))−Xη(e)

t

= lim
t→0

Tγξ(t)Rγξ(−t)(TeLγξ(t)(η))− η
t

= lim
t→0

Te(Rγξ(t)−1 ◦ Lγξ(t))(η)− η
t

= lim
t→0

TeIγξ(t)(η)− η
t

On the other hand, the one-parameter subgroup associated to ξg is given by

Adξ : R× g −→ g
(t, η) → AdexpG(tξ)(η) = Adγξ(t)(η)

Therefore,

ξg(η) = (Adξη)′(0) = lim
t→0

Adξη(t)−Adξη(0)

t
= lim
t→0

TeIγξ(t)(η)− η
t

which proves that ξg(η) = [ξ, η].

Before moving on to the definition of the coadjoint action let us see an interesting example.

Example 3.53. We have seen in section 3.1.4 that we can identify the Lie algebra so(3) of SO(3) with R3.
Now, we will prove that under this identification the adjoint action of SO(3) is the usual action of SO(3) on
R3, that is

φ : SO(3)× R3 → R3

(A, x) → Ax

The adjoint action for SO(3) is given by

Ad : SO(3)× so(3) → so(3)

(A, ξ̂) → TeIA(ξ̂)

where IA(B) = ABA−1. Taking a curve σIξ̂ : R→ SO(3) such that σIξ̂(0) = I and σ′
Iξ̂

(0) = ξ̂ we have that

AdAξ̂ = TeIA(ξ̂) =
d

dt |t=0
IA(σIξ̂(t)) =

d

dt |t=0
AσIξ̂(t)A

−1 = Aξ̂A−1

Therefore, if w ∈ R3

(AdAξ̂)(w) = (Aξ̂A−1)(w) = A(ξ ×A−1w) = Aξ × w = Âξw
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and we get Âξ = AdAξ̂. Finally, if we identify so(3) with R3 we have the result

Ad : SO(3)× R3 → R3

(A, ξ) → AdAξ = Aξ

Moreover, under the same identification, the infinitesimal generator ξ̂R3 of the adjoint action Ad : SO(3)×
so(3)→ so(3) corresponding to ξ̂ is given by

ξ̂R3(x) =
d

dt |t=0
γξ̂(t)x = ξ̂x = ξ × x (3.15)

for x ∈ R3.

Now, we have the necessary elements to introduce the coadjoint action and to determine its associated
infinitesimal generator.

Definition 3.54. Let G be a Lie group and Ad : G× g→ g be the adjoint action of G on its Lie algebra g.
The coadjoint action of G on g∗ is defined by

Ad∗ : G× g∗ → g∗

(g, α) → Ad∗g−1(α)

where (Ad∗g−1(α))(ξ) = α(Adg−1ξ) for ξ ∈ g.

Let us show that the infinitesimal generator ξg∗ of the coadjoint action associated with ξ ∈ g is given by
ξg∗(α)(η) = −α[ξ, η] for α ∈ g∗ and η ∈ g.

Let Ad∗ξ : R× g→ g be the flow of ξg∗ . Then,

ξg∗(α)(η) = (Ad∗ξα)′(0)(η)

=

(
lim
t→0

Ad∗ξα(t)−Ad∗ξα(0)

t

)
(η)

= lim
t→0

(Ad∗γξ(−t)(α))(η)− α(η)

t

= α

(
lim
t→0

Adγξ(−t)(η)− η
t

)
Taking s = −t and using the proved results for the adjoint action we deduce that,

ξg∗(α)(η) = −α
(

lim
s→0

Adγξ(s)(η)− η
s

)
= −α[ξ, η]

Example 3.55. We proved that the adjoint action of SO(3) is the standard action of SO(3) on R3. Likewise,
we are going to show that the same happens with the coadjoint action.

First, remark that the dual space so∗(3) might be identified with R3 via the breve map as follows,

˘: R3 → so∗(3)

Π = (Π1,Π2,Π2) → Π̆

where if ξ̂ ∈ so(3), Π̆(ξ̂) = Π · ξ = Π1ξ1 + Π2ξ2 + Π3ξ3.
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The coadjoint action of SO(3) is given by

Ad∗ : SO(3)× so∗(3) → so∗(3)

(A, Π̆) → Ad∗A−1(Π̆)

Hence, if ξ̂ ∈ so(3),

Ad∗(A, Π̆)(ξ̂) = Π̆(AdA−1(ξ̂)) = Π̆(A−1ξ̂) = Π ·A−1ξ̂ = AΠ · ξ̂ = ĂΠ(ξ̂)

which means that Ad∗A−1Π̆ = ĂΠ. Thus, identifying so∗(3) ∼= R3 we conclude that,

Ad∗A−1 : SO(3)× R3 → R3

(A,Π) → Ad∗A−1Π = AΠ

Finally, we will prove the propostion 3.50. For this purpose, we will use the following result.

Lemma 3.56. Let φ : G×M →M be an action of a Lie group G on a manifold M and q be a point of M .
If ξ ∈ g, then

(Adgξ)M (q) = Tφg−1(q)
φg(ξM (φg−1(q)))

Proof. Denote by φAdgξ : R×M →M the one-parameter subgroup associated to (Adgξ)M . Thus, for q ∈M
and t ∈ R,

φAdgξ(t, q) = φq(expG(tAdg(ξ))) = φq(expG(Adg(tξ))) = φq(g · expG(tξ) · g−1)

= φ(g · expG(tξ), φg−1(q)) = φφg−1(q)
(g · expG(tξ)) = (φg ◦ φφg−1(q)

)(expG(tξ))

= (φg ◦ φξφg−1(q)
)(t)

where the equality (3.14) has been used. Now,

(Adgξ)M (q) = T0φ
Adgξ
q

(
d

dt |t=0

)
= T0(φg ◦ φξφg−1(q)

)

(
d

dt |t=0

)
= Tφg−1(q)

φg(ξM (φg−1(q))).

Finally, we come to the proof.

Proof of Proposition 3.50. Replacing g = expG(tη) in the previous lemma we get

(AdexpG(tη)ξ)M (q) = TφexpG(−tη)φexpG(tη)(ξM (φexpG(−tη)(q)))

Then,

−[ηM , ξM ](q) = [−ηM , ξM ](q)

= lim
t→0

TφexpG(−tη)φexpG(tη)(ξM (φexpG(−tη)(q)))− ξM (q)

t

= lim
t→0

(AdexpG(tη)ξ)M (q)− ξM (q)

t

= lim
t→0

(
(AdexpG(tη)ξ)− ξ

t

)
M

(q)

= [η, ξ]M (q)



Chapter 4

Momentum map

Given an action φ : G ×M → M of a Lie group G on a symplectic manifold M , under certain conditions
one can associate to it a map J : M → g∗ verifying some properties. Such maps are known as momentum
maps. For Hamiltoninan functions which are invariant under the action, momentum maps allow us to obtain
constants of the motion for the corresponding Hamiltoninan system. Furthermore, assuming some extra
hypothesis it can be shown that momentum maps are equivariant with respect to the original action and the
coadjoint action of the Lie group G. As regards the end of the project, we anticipate that such maps will be
fundamental to prove the Lie-Poisson reduction theorem.

We begin the chapter with the formal definition of symplectic actions and momentum map and give
some examples. Then, we focus on the momentum maps associated with symplectic actions and we study
its properties. Finally, we introduce a particular case of such maps, but very useful for our current concern.
At the end we show how one can get momentum maps from the cotangent lift of an action and we have a
quick overview over some significant examples.

4.1 Definitions and examples

First of all, we introduce the notion of a momentum map.

Definition 4.1. Let (M,ω) be a connected symplectic manifold, G be a Lie group and g its Lie algebra. A
momentum map for an action φ : G×M →M is a real function J : M → g∗ such that for every ξ ∈ g, ξM
is the Hamiltonian vector field of the map Jξ defined as

Jξ : M → R
q → J(q)(ξ)

that is,
XJξ = ξM

In other words, we have that J : M → g∗ is a momentum map if for all ξ ∈ g the following equation holds,

dJξ = iξMω

In such conditions we have the following definition.

Definition 4.2. (M,ω, φ, J) is known as a Hamiltonian G-space

Now, introduce the notion of a symplectic action because our interest is to obtain momentum maps
associated with them.

Definition 4.3. Let (M,ω) be a connected symplectic manifold and G be a Lie group. A symplectic action
is an action φ : G×M →M of G on M such that φg : M →M is a symplectic map, for all g ∈ G.

46
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Remark 4.4. Although the chapter will focus on the study of momentum maps associated with symplectic
actions, it is not true that any symplectic action has a momentum map associated with it. In fact, if
φ : G×M →M is a symplectic action and ξ ∈ g, we have that the flow of ξM preserves the symplectic form.
Therefore, the infinitesimal generators of a symplectic action are always locally Hamiltonian. Nevertheless,
we can not ensure that they are globally Hamiltonian and consequently the symplectic action may not admit
a momentum map.

Example 4.5. Following the previous remark, let us find a momentum map for a symplectic action φ :
G×M →M whose infinitesimal generators ξM are globally Hamiltonian.
Let {ξ1, . . . , ξn} be a basis of g and Ji the Hamiltonian functions of the vector fields ξiM . Given any
ξ = λ1ξ1 + . . . + λnξn in g, λi ∈ R, define the function Jξ =

∑n
i=1 λ

iJξi : M → R. Notice that Jξi = Ji.
Thus,

dJξ =

n∑
i=1

λid(Jξi) =

n∑
i=1

λiiξiMω = i(
∑n
i=1 λ

iξi)M
ω = iξMω

Example 4.6. Denote by φT the tangent lift of the usual action of SO(3) on R3 under the identification
TR3 ∼= R3 × R3. From Example 3.35 it is given by φTA(q, v) = (Aq,Av). Given a vector v ∈ R3, let < v, >
denote the corresponding covector under the identification of R3 with R3∗ via the standard scalar product
< , >. Thus, if (Aq,w) ∈ TAqR3 is a vector, the cotangent lift φT

∗
verifies

φT
∗
(A, (q, v))(Aq,w) = T ∗q φA−1(q, v)(Aq,w) = (q, v) (TAqφA−1(Aq,w))

= (q, v)
(
φTA−1(Aq,w)

)
= (q, v)(q,A−1w)

=< v,A−1w >=< Av,w >

= (Aq,Av)(Aq,w)

Then, under the given identification between vectors and covectors, φT
∗

is given by

φT
∗
(A, (q, v)) = (Aq,Av)

From the definition of the cotangent lift and Proposition 2.13 it is clear that φT
∗

is a symplectic action.
Let us show that φT

∗
admits a momentum map J : T ∗R3 → so(3) and that it coincides with the angular

momentum. Given ξ̂ ∈ so(3),

ξ̂T∗R3(q, v) =
d

dt |t=0

(
φT
∗

(q,v)

)ξ̂
(γξ̂(t)) = (ξ̂q, ξ̂v) = (ξ × q, ξ × v)

where the identification of so(3) with R3 has been used1.

The momentum map we are looking for has to verify XJξ = ξ̂T∗R3 . Hence, from the local expression of the
Hamiltonian vector fields (2.25) it is equivalent to

∂Jξ
∂vi

= (ξ × q)i
∂Jξ
∂qi

= −(ξ × v)i for i = 1, 2, 3

Therefore,
Jξ(q, v) = (ξ × q) · v = (q × v) · ξ

and J = (q × v) is the angular momentum.

It is worth mentioning that further on we will see that the cotangent lift is always a symplectic action
and admits a momentum map. This example will be a particular case of such a result. We will come back
to it later from another perspective.

Finally, we specialize the definition of an equivariant momentum map2. As we will see, this property is
satisfied by the particular momentum maps in which we will focus on.

1See the hat map in section 3.1.4
2See section 3.2.1
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Definition 4.7. Let (M,ω, φ, J) be a Hamiltonian G-space. J is said to be Ad∗-equivariant if

J ◦ φg = Ad∗g−1 ◦ J ∀g ∈ G

Example 4.8. Remember that the coadjoint action of SO(3) is given by α→ Aα. As well, in last example
we have proved that the momentum map for the usual action of SO(3) on R3 is given by J(q, v) = q × v.
Then, since

(Aq)× (Av) = A(q × v)

the angular momentum J is Ad∗-equivariant.

4.2 Properties of the momentum map

We will center our interest on the momentum maps associated with symplectic actions. That is why we will
devote this section to study their main properties.

Proposition 4.9. If J and J ′ are two momentum maps for the same symplectic action φ : G ×M → M ,
then there exists µ ∈ g∗ such that J − J ′ = µ.

Proof. If ξ ∈ g
dJξ = iξMω = dJ ′ξ ⇒ d(Jξ − J ′ξ) = 0

Since M is connected, Jξ − J ′ξ = C(ξ), where C(ξ) is a constant. Thus the 1-form µ that we are looking for
is given by

µ : g → R
ξ → C(ξ)

Next, we will see that for a G-invariant Hamiltonian system the presence of a momentum map allows us
to obtain constants of motion for the system.

Lemma 4.10. Let M be a smooth manifold, X be a vector field on M whose flow is ϕt and F : M → R be
a smooth map. Then,

F ◦ ϕt = F ⇔ X(F ) = 0

Theorem 4.11. Let (M,ω, φ, J) be a Hamiltonian G-space. Suppose that the Hamiltonian function of the
system H : M → R is invariant under the action φ, i.e, H = H ◦ φg for any g ∈ G. Then, J is a constant
of motion for H, that is,

J ◦ ϕt = J

where ϕt is the flow of the Hamiltonian vector field XH .

Proof. By the previous lemma it is enough to verify that XH(Jξ) = 0. Indeed, if this equality is satisfied
the lemma states that given ξ ∈ g

Jξ ◦ ϕt(q) = Jξ(q) ∀q ∈M
which implies that,

J(ϕt(q))(ξ) = J(q)(ξ) ∀q ∈M ⇒ J ◦ ϕt = J

Let us check that XH(Jξ) = 0. One the one hand we have,

XH(Jξ) = dJξ(XH) = iξMω(XH) = −iXHω(ξM ) = −dH(ξM ) = −ξM (H).

On the other hand we have seen in the previous chapter that the flow of ξM is given by φξx = φγξ(t)(x).
Then, since the Hamiltonian is invariant under the action, using again the lemma, we conclude that

0 = −ξM (H) = XH(Jξ)
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4.3 Momentum maps on the cotangent bundle

Let us end this chapter by giving a rule to obtain symplectic actions that admit a momentum map. It will
allow us to introduce several examples, within which we find the previous Example 4.6. We will achieve it
by means of the cotangent lift of a given action.

Theorem 4.12. Let (M,ω) be a symplectic manifold such that the symplectic form ω = −dθ is exact.
Suppose that φ is an action of Lie group G on M such that φ∗gθ = θ for any g ∈ G. Then the map
J : M → g∗ given by

J(q)(ξ) = iξM θ(q)

is an Ad∗-equivariant momentum map.

Proof. Remark that (φγξ(t))
∗θ = θ for t ∈ R and ξ ∈ g. Thus, due to the fact that φγξ(t) is the flow of ξM

we have that LξM θ = 0 which means

d(iξM θ) = iξMω ⇒ dJξ = iξMω

and J is a momentum map.
Now let us prove that J is Ad∗-equivariant by showing that J(φg(q)) = Ad∗g−1J(q) for every q ∈ M . It is
equivalent to

J(φg(q)) = Ad∗g−1J(q) ⇔ Jξ(φg(q)) = J(q)(Adg−1ξ) ⇔ iξM θ(φg(q)) = i(Adg−1ξ)M θ(q)

for ξ ∈ g. The last equality holds since using lemma 3.56

i(Adg−1ξ)M θ(q) = θ(q)((Adg−1ξ)M (q)) = θ(q)
(
Tφg(q)φg−1(ξM (φg(q)))

)
= (φg−1)∗θ(φg(q))(ξM (φg(q))) = θ(φg(q))ξM (φg(q))

= iξM θ(φg(q))

Once the theorem is proved we are ready to study the cotangent lift of any action and show its properties.

Corollary 4.13. Let M be a smooth manifold and φ : G×M →M be an action. Then,

i. φT
∗

: M × T ∗M → T ∗M is a symplectic action.

ii. The map J : T ∗M → g∗ defined by

J(αq)(ξ) = Jξ(αq) = αq(ξM (q)) for αq ∈ T ∗qM and ξ ∈ g

is an Ad∗-equivariant momentum map.

Proof. i. Recall the Definition 3.34 of the cotangent lift of an action and the Proposition 2.13. Then, it
is clear that φT

∗
is a symplectic action.

ii. If πM : T ∗M → M denotes the canonical projection, remark that πM is equivariant with respect to
the actions φT

∗
and φ. Indeed, if αq ∈ T ∗qM and g ∈ G,

πM (φT
∗

g (αq)) = πM (T ∗q φg−1(αq)) = φg(q) = φq(πQ(αq))

From Proposition 3.49 we have that TαqπM (ξT∗M (αq)) = ξM (πM (αq)), so if λM denotes the Liouville
1-form we have

iξT∗MλM (αq) = λM (αq)(ξT∗M (αq)) = αq
(
TαqπM (ξT∗M (αq))

)
= αq(ξM (πM (αq))) = αq(ξM (q))

= Jξ(αq)

Thus, using the previous theorem we can conclude that J is Ad∗-equivariant momentum map.
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Remark 4.14. Note that the momentum map calculated in the Example 4.6 coincides with the momentum
map of Corollary 4.13 assuming that φ is the usual action of SO(3) on R3. Indeed,

Jξ(q, v) =< v, ξ̂R3(q)) >= v(ξ × q) = (q × v)ξ ⇒ J(q, v) = q × v

As well, we have already proved in Example 4.8 that it is Ad∗-equivariant without using the previous result.

Under the same conditions as in Corollary 4.13, assume that X is a vector field on M . Then, we can
define a real function on T ∗M as follows,

P (X) : T ∗M → R
αq → αq(X(q))

Note that if ξ ∈ g we have that
Jξ = P (ξM )

Definition 4.15. The map P (X) is called the momentum corresponding to X.

Take local charts (U,ϕ ≡ (q1, . . . , qn)) in M and (π−1
M (U), ϕ ≡ (q1, . . . , qn, p1, . . . , pn)) in T ∗M . Assume

that the vector field X in these charts is given by

X =

n∑
i=1

Xi ∂

∂qi

Thus, if αq ∈ T ∗qM ,

P (X)(αq) = αq(X(q)) = αq

(
n∑
i=1

Xi(πM (αq))
∂

∂qi |πM (αq)

)
=

n∑
i=1

piX
i(πM (αq))

Finally, we give some interesting examples of momentum maps associated to lifted actions.

Example 4.16. Consider the action φ : Rn ×Rn → Rn given by φ(t, q) = t+ q. It is easy to see that given
ξ ∈ T0Rn ∼= Rn the infinitesimal generator is ξRn(q) = ξ for any q ∈ Rn. Using the previous corollary, the
cotangent lift of that action is symplectic and an Ad∗-equivariant map is given by

Jξ(q
i, vi) =

n∑
i=1

vidq
i(ξ)

Thus, J =
∑n
i=1 vidq

i and the momentum map coincides with the linear momentum.

Example 4.17. Let φ : GL(n,R) × Rn → Rn be the action defined as φ(A, q) = Aq. Given A ∈ gl(n,R)
its associated infinitesimal generator is ARn(q) = Aq for any q ∈ Rn. Again, the cotangent lift of the action
leads to a symplectic action whose associated Ad∗-equivariant momentum map is

JA(qi, vi) =

(
n∑
i=1

vidq
i

)
(Aq)

Example 4.18. Consider the left action of a Lie group G on itself (see Example 3.47) and its cotangent
lift. It is a symplectic action and its momentum map satisfies

Jξ(αg) = αg(TeRgξ) = ((TeRg)
∗(αg))(ξ)

for g ∈ G, αg ∈ T ∗gG and ξ ∈ g. Thus, the momentum map is J(αg) = (TeRg)
∗αg

As one can note, the previous result gives us a powerful tool to compute certain momentum maps.
Furthermore, the corollary guarantees that the obtained momentum map is Ad∗-equivariant. Remark 4.14
is a good example of how this theorem makes the computations of the momentum map easier.



Chapter 5

Poisson manifolds

Poisson manifolds is the last topic that we need in order to enunciate and prove the Lie-Poisson reduction
theorem. We have already worked on them since, as we shall see, symplectic manifolds are a particular type of
Poisson manifolds. Not any Poisson manifold is sympletic, although they always admit a symplectic foliation
that will be a key issue for our next discussions. Specifically, we will need Poisson manifolds associated with
linear Poisson structures because the dual space of a real Lie algebra of finite dimension has such a structure.
In addition, this particular type of Poisson manifolds verifies very interesting properties.

We introduce Poisson manifolds from the Poisson bracket, or equivalently, the Poisson 2-vector. Then,
we study the particular case of symplectic manifolds and the linear Poisson structures on a real vector space
of finite dimension which are known as Lie-Poisson structures. Later, we see some important results on
Poisson morphisms and apply them to study Poisson vector fields. Finally, we prove that every Poisson
manifold has a symplectic foliation associated with it and we describe the leaves of the foliation in the case
of a Lie-Poisson structure.

5.1 Generalities on Poisson structures

There are two ways of describing the Poisson manifolds. From the dynamic point of view a Poisson manifold
can be described from a bracket of functions verifying certain conditions. Otherwise, from the geometric
point of view, Poisson manifolds are characterized from a 2-vector whose Schouten-Nijenhuis bracket with
itself is zero. Here we begin with the dynamic definition and after that we prove that the other one is
equivalent.

5.1.1 Poisson brackets

Definition 5.1. A smooth manifold M is said to be a Poisson manifold if there exists an operation { , } :
F(M)×F(M)→ F(M) such that

i. (F(M), { , }) is a Lie algebra, that is, { , } is R-bilinear, skew-symmetric and satisfies the Jacobi
identity.

ii. { , } verifies the Leibniz rule, that is, {f, gh} = {f, g}h+ g {f, h} for all functions f, g, h ∈ F(M).

{ , } is known as the Poisson bracket

Example 5.2. Any smooth manifold is a Poisson manifold with the trivial Poisson bracket {f, g} = 0 for
every f, g ∈ F(M).

Example 5.3. If M = R2 we have the canonical Poisson bracket defined as

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
(5.1)
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In Chapter 2 we introduced the Hamiltonian vector fields on a symplectic manifold. However, it is
not necessary a symplectic manifold to define Hamiltonian vector fields but a Poisson manifold. For every
g ∈ F(M) consider the map,

Xg : F(M) → F(M)
f → Xg(f) = {f, g} (5.2)

For every q ∈ M , by the properties of the Poisson bracket, we have that Xg(q) is R-linear and satisfies the
Leibniz rule. Therefore, Xg(q) ∈ TqM is a derivation and Xg defines a vector field on M .

Definition 5.4. Let (M, { , }) be a Poisson manifold and f ∈ F(M) be a function. The vector field Xf

defined above is known as the Hamiltonian vector field of the function f .

Further on we will prove that if M is a symplectic manifold, it is also a Poisson manifold and the
Hamiltonian vector fields defined by the symplectic form coincide with the Hamiltonian vector fields defined
by the Poisson bracket.

Using the properties that the Hamiltonian vector fields inherit from the Poisson bracket we have the
following result.

Theorem 5.5. Let (M, { , }) be a Poisson manifold and Xf be a Hamiltonian vector field. If g and h are
first integrals of Xf , i.e, Xf (g) = Xf (h) = 0, then {g, h} is also a first integral of Xf .

Proof. We have to prove that Xf ({g, h}) = 0, which is nothing else that the Jacobi identity,

Xf ({g, h}) = {{g, h} f} = −{{f, g}h} − {{h, f} g} = {Xf (g), h} − {Xf (h), g} = 0

Furthermore, we have a Lie algebra anti-morphism between the smooth functions on M and the vector
fields on M .

Proposition 5.6. Let (M, { , }) be a Poisson manifold and Xf be the Hamiltonian vector field of the
function f ∈ F(M) . There exists a Lie algebra anti-morphism ϕ between the smooth functions on M and
the vector fields on M defined by

ϕ : (F(M), { , }) → (X (M), [ , ])
f → Xf

In particular,
[Xf , Xg] = −X{f,g}

Proof. For any f, g, h ∈ F(M) we have the following equality

[Xf , Xg](h) = Xf (Xg(h))−Xg(Xf (h)) = {{h, g} f} − {{h, f} g} = {{f, g}h} = −X{f,g}(h)

Thus, [Xf , Xg] = −X{f,g}.

5.1.2 Poisson 2-vector

From the properties that the Poisson bracket satisfies, it is clear that it is a biderivation1. Thus, it defines
a 2-vector w : Ω1(M)× Ω1(M)→ F(M) which is characterized by the condition

{f, g} = w(df, dg) (5.3)

Definition 5.7. Let (M, { , }) be a Poisson manifold. The 2-vector induced by { , } is known as the Poisson
structure of M .

1See Appendix A for a further explanation on these topics.
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If (U,ϕ = (q1, . . . , qm)) is a local chart on M , the local expression of the Poisson structure is

w =
∑
i<j

wij
∂

∂qi
∧ ∂

∂qj
=

1

2

∑
i,j

wij
∂

∂qi
∧ ∂

∂qj
(5.4)

where wij = w(dqi, dqj) =
{
qi, qj

}
for all i, j = 1, . . . ,m. Therefore,

{f, g} = w(df, dg) =
∑
i,j

wij
∂f

∂qi
∂g

∂qj
(5.5)

It is not true that any 2-vector defines a Poisson structure. Indeed, if w is a Poisson structure, then the
bracket defined by the previous equality (5.3) satisfies the Jacobi identity. Some calculations show that the
induced bracket by a 2-vector w verifies the Jacobi identity if, and only if,∑

h

(
whi

∂wjk
∂qh

+ whj
∂wki
∂qh

+ whk
∂wij
∂qh

)
= 0 ∀i, j, k (5.6)

Our purpose now is to determine when a 2-vector is a Poisson structure without checking that the equality
(5.6) is satisfied. We will achieve it by using the Schouten-Nijenhuis bracket, that is, a R-bilinear extension
of the Lie derivative to an operation [ , ] : X p(M)×X q(M)→ X p+q−1(M). Here X r(M) denotes the space
of r-vectors on M (see Appendix A). Such an operation has the following properties:

i. For all P ∈ X p(M) and Q ∈ X q(M), [P,Q] = (−1)pq[Q,P ].

ii. For all P ∈ X p(M), R ∈ X r(M) and Q ∈ X q(M), [P,Q ∧R] = [P,Q] ∧R+ (−1)pq+qQ ∧ [P,R].

iii. For all P ∈ X p(M), R ∈ X r(M) and Q ∈ X q(M),
(−1)p(r−1)[P, [Q,R]] + (−1)q(p−1)[Q, [R,P ]] + (−1)r(q−1)[R, [P,Q]] = 0. (Graded Jacobi identity)

When p = q = 2, using the previous properties it can be shown that the local expression of the bracket of
two 2-vectors w =

∑
i<j wij

∂
∂qi ∧

∂
∂qj and w′ =

∑
h<k w

′
hk

∂
∂qh
∧ ∂
∂qk

is given by

[w,w′] =
∑
i<j<k

∑
h

(
whi

∂w′jk
∂qh

+ whj
∂w′ki
∂qh

+ whk
∂w′ij
∂qh

+ w′hi
∂wjk
∂qh

+ w′hj
∂wki
∂qh

+ w′hk
∂wij
∂qh

)
∂

∂qi
∧ ∂

∂qj
∧ ∂

∂qk

(5.7)
Therefore, letting w′ = w a sufficient condition for 2-vector to be a Poisson structure is to

[w,w] = 0 (5.8)

More details on these topics may be found in Appendix A.

Given a 2-vector w, it has associated an homomorphism #w : T ∗M → TM that maps any covector
αq ∈ T ∗qM to a vector #w(αq) ∈ TqM such that for any βq ∈ T ∗qM

βq(#w(αq)) = w(αq, βq)

In the same charts as before, if we denote by #w(q) the restriction of #w to T ∗qM and αq =
∑m
i=1 αidq

i
|q ∈

T ∗qM one has

#w(q)

(
m∑
i=1

αidq
i
|q

)
=

m∑
i,j=1

wijαi
∂

∂qj |q

Then, #w(q) is linear.
By abuse of notation, we denote also by #w the induced map between 1-forms and vector fields. If

α ∈ Ω1(M) is a 1-form, the corresponding vector field #w(α) ∈ X (M) is defined by #w(α)(q) = #w(α(q)),
for q ∈M . Remark that for any f, g ∈ F(M) we have

dg(#w(df))(q) = dg(q)(#w(df(q))) = w(df(q), dg(q)) = −Xf (g)(q) (5.9)

Thus, #w(df) = −Xf .
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5.1.3 Symplectic manifolds and Poisson structures

If (M,ω) is a symplectic manifold, we can define a Poisson bracket on M by

{f, g} = ω(Xf , Xg) = iXfω(Xg) = df(Xg) = Xg(f) (5.10)

where Xf and Xg are the Hamiltonian vector fields of the functions f, g ∈ F(M) with respect to the
symplectic form ω. It is obvious that the bracket { , } is R-bilinear and that satisfies the Leibniz rule. Let
us prove the Jacobi identity. Using that the symplectic form is closed, given three vector fields Xf , Xg, Xh ∈
X (M) we have

0 = dω(Xf , Xg, Xh)

= Xf (ω(Xg, Xh)) +Xg(ω(Xh, Xf )) +Xh(ω(Xf , Xg))

− ω([Xf , Xg], Xh)− ω([Xg, Xh], Xf )− ω([Xh, Xf ], Xg)

= Xf ({g, h}) +Xg({h, f}) +Xh({f, g}) + [Xf , Xg](h) + [Xg, Xh](f) + [Xh, Xf ](g)

= {{g, h} , f}+ {{h, f} , g}+ {{f, g} , h}
Xf (Xg(h))−Xg(Xf (h)) +Xg(Xh(f))−Xh(Xg(f)) +Xh(Xf (g))−Xf (Xh(g))

= − ({{g, h} , f}+ {{h, f} , g}+ {{f, g} , h})

Furthermore, from the definition of the vector bundle isomorphism bω associated with the symplectic
form ω, and the homomorphism #w associated with the Poisson structure w induced by the symplectic
structure (5.10), it is easy to show that,

#w = −b−1
ω (5.11)

It means that the homomorphism #w associated to a Poisson structure defined from a symplectic form is
an isomorphism. In particular, the Hamiltonian vector fields associated to the symplectic form ω coincide,
with the Hamiltonian vector fields defined by the Poisson bracket { , }. In fact,

Xf = −#w(df) = b−1
ω (df) = Xf for any f ∈ F(M)

A more exhaustive explanation of these topics is found in Appendix A.

Let M be a smooth manifold and ωM be the canonical symplectic structure of the cotangent bundle. Set a
chart (U,ϕ = (q1, . . . , qm)) on M and the corresponding induced chart (π−1

Q (U), ϕ ≡ (q1, . . . , qn, p1, . . . , pn))
on T ∗M . As we have already seen in Chapter 2, the Hamiltonian vector fields are locally given by

Xf =
∑n
i=1

(
∂f
∂pi

∂
∂qi −

∂f
∂qi

∂
∂pi

)
. Thus, the local expression of the Poisson bracket induced by the canonical

symplectic structure is

{f, g} = Xg(f) =

n∑
i=1

(
∂g

∂pi

∂f

∂qi
− ∂g

∂qi
∂f

∂pi

)
(5.12)

It is worth mentioning, that if (M,ω) is a symplectic manifold of dimension 2n, then there exist local
coordinates (q1, . . . , qn, p1, . . . , pn) on M such that the local expression of ω is

ω =

n∑
i=1

dqi ∧ dpi (5.13)

This is the well known Darboux theorem (see [AbMa]). The local coordinates in which the symplectic form
takes its canonical form (5.13) are known canonical coordinates. It means that in a canonical coordinate
system, any Poisson bracket induced by a symplectic structure is locally given by the above expression (5.12).

In the results that follow we study which properties verifies the Poisson bracket when it is defined from
a symplectic structure.
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Proposition 5.8. If { , } is the Poisson structure associated with the symplectic manifold (M,ω), it is
non-degenerate, i.e, for q ∈M we have that

{f, g} (q) = 0 ∀g ∈ F(M) ⇔ df(q) = 0

Proof. ⇒c For any v ∈ TqM , consider the 1-form α ∈ T ∗qM given by α = bω(q)(v). Let g ∈ F(M) be such
that α = dg(q). Then,

df(q)(v) = df(q)
(
b−1
ω(q)(α)

)
= df(q)

(
b−1
ω(q)(dg(q))

)
= df(q) (Xg(q)) = Xg(f)(q) = {f, g} (q) = 0

⇐c For any g ∈ F(M),
{f, g} (q) = Xg(f)(q) = df(q)(Xg(q)) = 0

Proposition 5.9. If (M, { , }) is a Poisson manifold and { , } is non-degenerate, M is a symplectic man-
ifold.

Proof. Consider the following map,

b−1
q : T ∗qM → TqM

α → Xf (q)
if α = df(q)

Remark that if df(q) = 0, then Xf (q) = 0. Thus, if α = df(q) = dg(q), one has that d(f − g)(q) = 0 which
implies Xf−g(q) = { , f − g} (q) = 0. Therefore, from de R-bilinearity of the Poisson bracket,

Xf (q) = { , f} (q) = { , g} (q) = Xg(q)

and b−1
q is well defined. Moreover, since the bracket is non-degenerate,

ker b−1
q =

{
α ∈ T ∗qM | Xf (q) = 0

}
=
{
df(q) ∈ T ∗qM | Xf (q) = 0

}
=
{
df(q) ∈ T ∗qM | df(q) = 0

}
= 0

and b−1
q is an isomorphism.

Now, define a 2-form w on M as follows. For q ∈M , put

bw(q) = bq : TqM → T ∗qM

It is obvious that ω is a 2-form, that is, ω is R-bilinear and skew-symmetric. Using Proposition 5.6 we show
that it is closed as follows,

dω(Xf , Xg, Xh) = Xf (ω(Xg, Xh)) +Xg(ω(Xh, Xf ))−Xh(ω(Xf , Xg))

− ω([Xf , Xg], Xh)− ω([Xg, Xh], Xf )− ω([Xh, Xf ], Xg)

= Xf ({g, h}) +Xg({h, f}) +Xh({f, g})
− ω(−X{f,g}, Xh)− ω(−X{g,h}, Xf )− ω(−X{h,f}, Xg)

= 2 ({{g, h} f}+ {{h, f} g}+ {{f, g}h}) = 0

for any Xf , Xg, Xh ∈ X (M). Finally, we have to show that ω is non-degenerate. In order to do that, it
will be enough to prove that bω(q) : TqM → T ∗qM is a linear isomorphism. But this condition holds since
bw(q) = bq. Thus ω is a symplectic form and (M,ω) is a symplectic manifold.

Notice that the Poisson bracket defined by the symplectic structure associated with the non-degenerate
Poisson structure, coincides with the original Poisson bracket { , }. Indeed, for any two vector fields Xf , Xg ∈
X (M),

ω(Xf , Xg) = iXfω(Xg) = df(Xg) = Xg(f) = {f, g}
The two previous definitions leads us to the following corollary.

Corollary 5.10. Let (M, { , }) be a Poisson manifold. The Poisson bracket { , } is non-degenerate if, and
only if, (M, { , }) is a symplectic manifold.

As we pointed out before, we have that symplectic manifolds are privileged Poisson manifolds.
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5.1.4 Linear Poisson structures

Now, we are going to study a particular type of Poisson manifolds. They have associated a special Poisson
structure that yields to many interesting properties. In addition, as we will see throughout the section, the
dual space of a Lie algebra admits such particular structure that we will need further on.

Definition 5.11. A linear Poisson structure is a Poisson structure on a real vector space V such that for
any couple of linear functions f and g defined on V , {f, g} also is a linear function.

From the local expression of the Poisson bracket (5.4) we deduce that the condition of being a linear
Poisson structure is equivalent to its local components are linear, i.e,

wij =
∑
k

ckijq
k ckij ∈ R ∀i, j, k (5.14)

Notice that if f, g are two linear functions on a vector space V , then f, g ∈ V ∗. Thus, if { , } is a linear
Poisson structure {f, g} ∈ V ∗. It allows us to define a Lie algebra structure over V ∗ as follows,

[ , ] : V ∗ × V ∗ → V ∗

(f, g) → {f, g}

Conversely, we have the next result.

Proposition 5.12. Any Lie algebra structure (V ∗, [ , ]) defined on the dual space of a vector space V ,
induces a linear Poisson structure on V .

Proof. If f ∈ F(V ) and α ∈ V , then df(α) ∈ T ∗αV ∼= V ∗. Thus, we may define the following bracket of real
functions on V

{f, g} (α) = α([df(α), dg(α)]) for f, g ∈ F(V ) (5.15)

It is easy to prove that { , } is skew-symmetric and satisfies the Leibniz rule. Therefore, { , } induces a
2-vector w on V . In fact, if

{
e1, . . . en

}
is a basis of V ∗ such that [ei, ej ] =

∑
k c

ij
k e

k, then

w =
1

2

∑
i,j,k

ci,jk
∂

∂vi
∧ ∂

∂vj

where
{
vi
}

are the coordinates on V which are induced by the basis
{
ei
}

. Now, using that [ , ] is a Lie
bracket on V we deduce that [w,w] = 0, which proves that w defines a linear Poisson structure on V .

Finally, the next corollary resumes what we have proved.

Corollary 5.13. There exists a natural bijection between the linear Poisson structures on a real vector space
V of finite dimension and Lie algebra structures on the dual space V ∗.

In the next definition we specialize the definition of linear Poisson structures to the Lie algebras associated
with Lie groups.

Definition 5.14. In the case of V ∗ being the Lie algebra g of a Lie group G, the linear Poisson structure
given by (5.15) is known as the Lie-Poisson structure of g∗.
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5.2 Poisson morphisms

As one can deduce from the first part of this chapter, the Hamiltonian vector fields play an important role
on the theory that we are working up. Right now, our goal is to study such vector fields in a deeper way.
For this purpose, we need some background about morphisms between Poisson manifolds.

Definition 5.15. Let (M, { , }) and (M ′, { , }′) be two Poisson manifolds and ϕ : M → M ′ be a smooth
map. If the pull-back ϕ∗ : F(M ′)→ F(M) is a Lie algebra homomorphism, i.e.,

{ϕ∗f, ϕ∗g} = ϕ∗ {f, g}′ for f, g ∈ F(M)

ϕ is said to be a Poisson morphism.

Proposition 5.16. Let (M, { , }) and (M ′, { , }′) be two Poisson manifolds and ϕ : M →M ′ be a smooth
map. If #w and #w′ denote the corresponding induced homomorphisms by { , } and { , }′, the following
statements are equivalent:

i. ϕ is a Poisson morphism.

ii. For every q ∈M , Tqϕ ◦#w ◦ T ∗ϕ(q)ϕ = #w′

iii. For any q ∈M and α′, β′ ∈ T ∗ϕ(q)M
′, the following equality holds,

w(q)(T ∗ϕ(q)ϕ(α′), T ∗ϕ(q)ϕ(β′)) = w′(ϕ(q))(α′, β′)

Proof. First of all remark that for every α′ ∈ T ∗ϕ(q)M
′ such that locally α′ = df(ϕ(q)) with f ∈ F(M ′) and

for every v ∈ TqM ′

T ∗ϕ(q)ϕ(α′)(v) = T ∗ϕ(q)ϕ(df(ϕ(q)))(v) = df(ϕ(q)) (Tqϕ(v)) = Tq(f ◦ ϕ)(v)

Since it holds for any vector v ∈ TqM we conclude that T ∗ϕ(q)ϕ(α′) = Tq(f ◦ ϕ). Now, assume that α′, β′ ∈
T ∗ϕ(q)M

′ are such that α′ = df(ϕ(q)) and β′ = dg(ϕ(q)) with f, g ∈ F(M ′).

i. ⇒ iii. c

w(q)(T ∗ϕ(q)ϕ(α′), T ∗ϕ(q)ϕ(β′)) = w(q)(Tq(f ◦ ϕ), Tq(g ◦ ϕ)) = w(q)(d(f ◦ ϕ)(q), d(g ◦ ϕ)(q))

= {f ◦ ϕ, g ◦ ϕ} (q) = {ϕ∗f, ϕ∗g} (q) = ϕ∗ {f, g}′ (q) = {f, g}ϕ(q)

= w′(ϕ(q))(df(q), dg(q)) = w′(ϕ(q))(α′, β′)

iii. ⇒ ii. c Let us show that the following diagram is commutative

T ∗ϕ(q)M
′ T∗ϕ(q)ϕ−→ T ∗qM

#w′

y y#w

Tϕ(q)M
′ Tqϕ←− TqM

To be precise, what we will show is that β′(Tqϕ ◦#w ◦ T ∗ϕ(q)ϕ(α′)) = β′(#w′(α
′)). Indeed,

β′(Tqϕ ◦#w ◦ T ∗ϕ(q)ϕ(α′)) = dg(ϕ(q))(Tqϕ ◦#w ◦ T ∗ϕ(q)ϕ(α′))

= Tq(g ◦ ϕ)(#w ◦ T ∗ϕ(q)ϕ(α′)) = w(q)(T ∗ϕ(q)ϕ(α′), Tq(g ◦ ϕ))

= w(q)(T ∗ϕ(q)ϕ(α′), T ∗ϕ(q)ϕ(β′)) = w′(ϕ(q))(α′, β′) = β′(#w′(α
′))

Now, the proofs iii. ⇒ i. and ii. ⇒ iii. are almost direct and are left as an exercise.
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Remark 5.17. Given a smooth map between two smooth manifolds F : M → M ′ and a point q ∈ M , F
induces a linear map

ΛkTqF : ΛkTqM → ΛkTF (q)M
′

Given wq ∈ ΛkTqM and α′1F (q), . . . , α
′k
F (q) ∈ T

∗
F (q)M

′, the image of wq by ΛkTqF is

(ΛkTqF (wq))(α
′1
F (q), . . . , α

′k
F (q)) = wq((T

∗
F (q)F )(α′1F (q)), . . . , (T

∗
F (q)F )(α′kF (q))).

Particularly, if F is a diffeomorphism, given a k-vector w on M , we can define a k-vector ΛkTFw on M ′ as
follows,

ΛkTFw(q′) = ΛkTF−1(q′)F (w(F−1(q′)) ∀q′ ∈M ′ (5.16)

Furthermore, it is obvious that the map ϕ of the previous proposition is a Poisson morphism if, and only if,

Λ2Tqϕ(w(q)) = w′(ϕ(q)) (5.17)

Finally, we come to the definition of Poisson isomorphisms and give two examples.

Definition 5.18. Let (M, { , }) and (M ′, { , }′) be two Poisson manifolds. A Poisson morphism ϕ : M →
M ′ is a Poisson isomorphism if it is a diffeomorphism.

Example 5.19. If ϕ : g → h is a Lie algebra homomorphism, ϕ∗ : h∗ → g∗ is a Poisson map when g∗ and
h∗ are endowed with the Lie-Poisson structure.

Example 5.20. Any symplectomorphism is a Poisson isomorphism. In particular, if ϕ : M → M is a
diffeomorphism, the cotangent lift T ∗ϕ : T ∗M → T ∗M is a Poisson isomorphism.

5.2.1 Infinitesimal automorphims and Hamiltonian vector fields

In order to study the Hamiltonian vector fields of a Poisson manifold, we will define a more general type of
vector fields that we will call Poisson vector fields. We will see that in particular, the Hamiltonian vector
fields are always Poisson.

Definition 5.21. Let (M, { , }) be a Poisson manifold and w be the corresponding Poisson 2-vector. A
vector field X ∈ X (M) is said to be a Poisson vector field if it is an infinitesimal automorphism of the
Poisson structure, that is,

LXw = 0

Remark that for any two functions f, g ∈ F(M) and any point q ∈M one has

LXw(df, dg)(q) = X(w(df, dg))(q)− w(LXdf, dg)(q)− w(df,LXdg)(q)

= X(w(df, dg))(q)− w(dX(f), dg)(q)− w(df, dX(g))(q)

= X {f, g} (q)− {X(f), g} (q)− {f,X(g)} (q)

Thus, X is a Poisson vector field if, and only if,

X {f, g} = {X(f), g}+ {f,X(g)} (5.18)

Moreover we have the next result.

Proposition 5.22. Let (M, { , }) be a Poisson manifold and X ∈ X (M) be a vector field. The following
statements are equivalent:

i. X is a Poisson vector field.

ii. The flow ϕt of X consits on Poisson isomorphisms.
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Proof. i. ⇒ ii. c Notice that for any α, β ∈ Ω1(M),

(LX(Λ2Tϕt0w))(α, β) = X(Λ2Tϕt0w(α, β))− (Λ2Tϕt0w)(LXα, β)− (Λ2Tϕt0w)(α,LXβ)

= X(w((Tϕt0)∗(α), (Tϕt0)∗(β)))− w((Tϕt0)∗(LXα), (Tϕt0)∗(β))

− w((Tϕt0)∗(α), (Tϕt0)∗(LXβ))

Thus, using that (Tϕt0)∗(LXγ) = LX((Tϕt0)∗(γ)) for any γ ∈ Ω1(M), it follows that

(LX(Λ2Tϕt0w))(α, β) = LXw((Tϕt0)∗(α), (Tϕt0)∗(β))

= (Λ2Tϕt0(LXw))(α, β)

Therefore, 0 = Λ2Tϕt0(LXw) = LXΛ2Tϕt0w and if q ∈M ,

0 = LXΛ2Tϕt0w(q) =
d

dt |t=0

(
Λ2Tϕt(q)ϕ−t

)
(Λ2Tϕt−t0 (q)ϕt0(w(ϕt−t0(q))))

=
d

dt |t=0

(
Λ2Tϕt−t0 (q)ϕt0−t

)
(w(ϕt−t0(q)))

=
d

dt |t=t0

(
Λ2Tϕt(q)ϕ−t

)
(w(ϕt(q)))

Then, (
Λ2Tϕt(q)ϕ−t

)
(w(ϕt(q))) =

(
Λ2Tϕ0(q)ϕ0

)
(w(ϕ0(q))) = w(q) ∀t, ∀q ∈M

which means that
Λ2Tqϕt(w(q)) = w(ϕ(q))

ii. ⇒ i. c Using (5.17) we have
Λ2Tϕt(q)ϕ−t(w(ϕt(q))) = w(q)

Hence,

LXw(q) =
d

dt |t=0
Tϕt(q)ϕ−t(w(ϕt(q))) =

d

dt |t=0
w(q) = 0

Now, let us focus on the Hamiltonian vector fields. If Xf is a Hamiltonian vector field, the equality (5.18)
is just the Jacobi identity,

Xf {h, g} = {{h, g} , f} = −{{f, h} , g} − {{g, f} , h} = {Xf (h), g}+ {h,Xf (g)}

Thus, any Hamiltonian vector field is a Poisson vector field. In particular, the flow of a Hamiltonian vector
field is made up of Poisson isomorphisms. Furthermore, we have the following result.

Proposition 5.23. Let (M, { , }) and (M ′, { , }′) be two Poisson manifolds and ϕ : M →M ′ be a smooth
map. The following conditions are equivalent:

i. ϕ is a Poisson morphism.

ii. For any f ′ ∈ F(M ′) and any q ∈M , Tqϕ(Xf ′◦ϕ(q)) = X ′f ′(ϕ(q))

Proof. We will prove that for any two functions f ′, g′ ∈ F(M ′) one has the following equivalence

{f ′ ◦ ϕ, g′ ◦ ϕ} = {f ′, g′}′ ◦ ϕ ⇔ Tqϕ(Xf ′◦ϕ(q)) = X ′f ′(ϕ(q)) for all q ∈M

Since the first statement implies that ϕ is a Poisson morphism, by Proposition 5.16, the result will be proved.
Here we write down the right implication, and rephrasing it, we obtain the left one,

Tqϕ(Xf ′◦ϕ(q))(g′) = Xf ′◦ϕ(g′ ◦ ϕ)(q) = {g′ ◦ ϕ, f ′ ◦ ϕ} (q) = {g′, f ′}′ ◦ ϕ(q) = X ′f ′(ϕ(q))
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5.3 Symplectic foliation of a Poisson manifold

This last section is devoted to prove that any Poisson manifold admits a completely integrable distribution
whose leaves are symplectic manifolds. As well, we will describe the symplectic leaves in the case of the
Poisson manifold being the dual space of the Lie algebra of a connected Lie group. Here, the Hamiltonian
vector fields and their properties are crucial in order to define the distribution.

Definition 5.24. Let (M, { , }) be a Poisson manifold, w be the corresponding Poisson structure and q ∈M
be a point. The image of #w(q) = Cq is called the characteristic space at point q.

Remark that the dimension of Cq coincides with the rank of #w at q. Thus, the dimension of the
characteristic space is always even. If rank #w(q) = dim M we say that # is non-degenerate at the point q.
As well, if the rank of #w(q) does not depend on the point we say that w is a regular Poisson structure.

Example 5.25. Earlier, we have proved that a Poisson manifold M is symplectic, if and only if, the Poisson
structure is non-degenerate. Hence, the symplectic manifolds have regular Poisson structures associated with
them.

Another way of describing the characteristic space is in terms of the Hamiltonian vector fields,

Cq = {Xf (q) | f ∈ F(M)} (5.19)

It is immediate that the two definitions are equivalent.
The characteristic space Cq of a Poisson manifold M , induces a generalized distribution. Indeed,

q ∈M −→ Cq ⊆ TqM (5.20)

is a generalized distribution since it is generated by the Hamiltonian vector fields. We call it the generalized
distribution of the Poisson manifold and we denote it by C. The next result proves that C is a generalized
foliation on M and that the leaf of C through each point of M admits a symplectic structure. In order
to prove this theorem, we will use some results on generalized distributions (for more information on these
topics see Appendix B).

Theorem 5.26. The characteristic distribution C of a Poisson manifold M is completely integrable and the
Poisson structure induces symplectic structures on its leaves.

Proof. First, we prove that C is invariant and by the generalized Frobenius theorem we will deduce that it
is completely integrable. Since Cq = 〈Xf (q) | f ∈ F(M)〉 it is enough to check that for any f, g ∈ F(M),

Tqϕ
Xf
t (Xg(q)) ∈ C(ϕ

Xf
t (q))

where ϕ
Xf
t denotes the flow of the Hamiltonian vector field Xf . By Proposition 5.22 we know that ϕ

Xf
t are

Poisson isomorphisms and by Proposition 5.23 we have that

Tqϕ
Xf
t (Xg(q)) = X

g◦(ϕ
Xf
t )−1

(ϕ
Xf
t (q)) ∈ C(ϕXft (q))

Thus, the characteristic distribution is completely integrable which implies that there exist a leaf through
each point of M . Let us prove that such leaves have a symplectic structure. Let L be a leaf, we prove that
{ , } induces a Poisson structure on L as follows,

{ , }L : F(L)×F(L) → F(L)

(f, g) → {f, g}L =
{
f̃ , g̃
}

where f̃ , g̃ ∈ F(M) are such that f̃|L = f and g̃|L = g. If q ∈ L we have,

{g, f}L (q) = Xf̃ (g̃)(q) = (T0ϕ
Xf̃
q )(g̃)
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where ϕ
Xf̃
q is the integral curve of the vector field Xf̃ with initial condition q ∈ L. In particular, if the

initial condition is in L, the whole integral curve remains on L and { , }L only depends on g. Likewise,
permuting f and g we obtain that { , }L only depends on f . Therefore, { , }L is well defined. Moreover,
easy calculations proves that { , }L is R-bilinear, skew-symmetric and satisfies the Jacobi identity and the
Leibniz rule. Thus, { , }L is a Poisson bracket on the leaf L. Finally, we will prove that such Poisson
structure is non-degenerate and by Corollary 5.10 we will conclude that L is symplectic. For this purpose,
first we prove that #wL(q) : T ∗q L→ TqL is an isomorphism (here, wL is the Poisson 2-vector on L). In fact,

TqL =
{
Xf̃ (q) |f̃ ∈ F(M)

}
= {Xf (q) |f ∈ F(L)} = #wL(q)(T

∗
q L)

proves that #wL(q) is exhaustive. Since dim T ∗q L = dim TqL, #wL(q) is an isomorphism. Hence, { , }L is
non-degenerate which proves that L is symplectic.

Definition 5.27. The leaves of the characteristic foliation are known as the symplectic leaves of the Poisson
manifold M .

Up to now, we have proved that the leaves of the foliation of a Poisson manifold are symplectic but we
do not specify the symplectic form. Using that #wL(q) is bijective, for any two vectors X,Y ∈ TqL we have
X = #wL(q)(α) and Y = #wL(q)(β) for some α, β ∈ T ∗q L. Then, we define the symplectic form ω in L as

ω(X,Y ) = β(X) = β(#wL(q)(α)) = wL(q)(α, β) (5.21)

Example 5.28. Consider the 2-vector w in R3 given by

w = x
∂

∂y
∧ ∂

∂z
+ y

∂

∂z
∧ ∂

∂x
+ z

∂

∂x
∧ ∂

∂y
(5.22)

Easily, using the Schouten-Niejenhuis bracket we have that w is a Poisson structure and (R3, w) is a Poisson
manifold. Remark that the Hamiltonian vector fields are given by

Xf =
∂f

∂x

(
z
∂

∂y
− y ∂

∂z

)
+
∂f

∂y

(
x
∂

∂z
− z ∂

∂x

)
+
∂f

∂z

(
y
∂

∂x
− x ∂

∂y

)
Therefore, the characteristic space is

C(x,y,z) =

〈
z
∂

∂y |(x,y,z)
− y ∂

∂z |(x,y,z)
, x

∂

∂z |(x,y,z)
− z ∂

∂x |(x,y,z)
, y

∂

∂x |(x,y,z)
− x ∂

∂y |(x,y,z)

〉
(5.23)

To simplify we note C(x,y,z) = 〈Xx(x, y, z), Xy(x, y, z), Xz(x, y, z)〉, whereXx, Xy andXz are the Hamiltonian
vector fields of x, y and z respectively. It can be shown that the symplectic leaves of that foliation are

L|(x0,y0,z0) =

{
S2
r0 if (x0, y0, z0) 6= (0, 0, 0)

(0, 0, 0) if (x0, y0, z0) = (0, 0, 0)

Here, S2
r0 denotes the sphere in R3 with center the origin and radius

√
r0, where r0 = x2

0 +y2
0 +z2

0 . A further
explanation about the computation of the leaves is found in Appendix B.

Since (R3, w) is a Poisson manifold, the leaves have symplectic structure. Let us find the induced
symplectic form. If u, v ∈ T(x,y,z)S

2
r0 are two vectors, they are expressed locally as u = u1Xx +u2Xy +u3Xz

and v = v1Xx+v2Xy+v3Xz. We know that #w : T ∗R3 → TR3 sends dx (dy, dz respectively) to Xx (Xy, Xz

respectively). Thus, if α = −u1dx−u2dy−u3dz and β = −v1dx−v2dy−v3dz, we have that #wS2
r0

(α) = u =
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u1Xx(x, y, z)+u2Xy(x, y, z)+u3Xz(x, y, z) and #wS2
r0

(β) = v = v1Xx(x, y, z)+v2Xy(x, y, z)+v3Xz(x, y, z).

Then, the symplectic form ω is given by

ω(u, v)(x, y, z) = β(u)(x, y, z) = −v1u1Xx(x)− v1u2Xy(x)− v1u3Xz(x)

− v2u1Xx(y)− v2u2Xy(y)− v2u3Xz(y)

− v3u1Xx(z)− v3u2Xy(z)− v3u3Xz(z)

= v1u2z − v1u3y − v2u1z + v2u3x+ v3u1y − v3u2x

= −x(v3u2 − v2u3)− y(v1u3 − v3u1)− z(v2u1 − v1u2)

Note that using the usual identification between T(x,y,z)R3 ∼= R3, the symplectic form on S2
r0 is given by,

ω(u, v)(x, y, z) = −(x, y, z) · (u× v)

5.3.1 Symplectic foliation of linear Poisson structures

This section is devoted to prove that the orbits of the coadjoint action of a connected Lie group G are
the leaves of the symplectic foliation of the Lie-Poisson structure of g∗. Remember that the infinitesimal
generator of the coadjoint action Ad∗ : G × g∗ → g∗ of a Lie group G associated to ξ ∈ g, is given by
ξg∗(α)(η) = −α[ξ, η] for α ∈ g∗ and η ∈ g. Given two linear functions η, ξ : g∗ → R, by duality, they can
be considered as elements of g. Then, recalling section 5.1.4 we have that the Lie-Poisson structure on g∗ is
given by {ξ, η} (α) = α([ξ, η]) for α ∈ g∗. Hence, if Xξ denotes the Hamiltonian vector field with respect to
the Lie-Poisson structure of g∗, we have

Xξ(η)(α) = {η, ξ} (α) = −α([ξ, η]) = ξg∗(η)(α)

Therefore, the Hamiltonian vector field coincides with the infinitesimal generator of the coadjoint action
associated to ξ, i.e,

Xξ = ξg∗ (5.24)

It leads us to the following result.

Proposition 5.29. The coadjoint action Ad∗ of a connected Lie group G is a Poisson morphism on g∗.

Proof. Given ξ ∈ g, by the previous equality 5.24, the flow ϕ
Xξ
t of the Hamiltonian vector field Xξ coincides,

with the flow Adγξ(t) of ξg∗ . In addition, we know Xξ is a Poisson vector field and by Proposition 5.22 we
know that their flow is made up of Poisson isomorphims.

In view of this result, it is natural to try describing the characteristic space in terms of the infinitesimal
generators. In fact, as Cα = {Xξ(α) | ξ ∈ F(g∗)} it will be enough to prove that,

Cα = {Xξ(α) | ξ : g∗ → R is linear} (5.25)

Specifically, we will see that given a function ξ ∈ F(g∗), the local expression of its Hamiltonian vector field
is Xξ =

∑
i,j

∂ξ
∂qiXqj where Xqi are the Hamiltonian vector fields of the coordinate functions qi. Indeed, if

wij denote the components of the Lie-Poisson structure,

Xξ = −
∑
i,j

wij
∂ξ

∂qi
∂

∂qj
= −

∑
i,j

∂ξ

∂qi

(
wij

∂

∂qj

)
=
∑
i,j

∂ξ

∂qi
Xqj

Now, if qi are the coordinates on g induced by the basis {ξi}, it follows that qi is a linear function on g∗.
Thus, Xqi = (ξi)g∗ . Therefore, the characteristic space could be rewritten as,

Cα = {ξg∗(α) | ξ ∈ g} (5.26)

It gives us the main tool to prove the result we referred at the beginning of this section.
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Theorem 5.30. The symplectic leaves of the Lie-Poisson structure on g∗ are the orbits of the coadjoint
action Ad∗ of a connected Lie group G whose Lie algebra is g.

Proof. Denote by G · η =
{
Ad∗g(η) | g ∈ G

}
the orbit of the coadjoint action. Recall from Chapter 3 that its

tangent space is given by,
Tα(G · η) = {ξg∗(α) | ξ ∈ g}

Therefore, Tα(G · η) = Cα, i.e, the tangent space to the orbit at α coincides with the characteristic space
at α. Then, since the orbit is connected, we conclude that it is the corresponding leaf of C through α.

Again, we described the symplectic foliation but we did not say anything about its symplectic structure.
If ωη denotes such a symplectic structure in the leaf G · η, then

ωη(α)(ξg∗(α), ζg∗(α)) = ωη(α)(Xξ(α), Xζ(α)) = −dζ(α)(ξg∗(α)) = −ξg∗(α)(ζ)

Example 5.31. Consider the coadjoint action of SO(3) on R3. Given ξ̂ ∈ g, we known that the infinitesimal

generator of the adjoint action under the identification so(3) ∼= R3 is ξ̂R3 . Thus, if η̂ ∈ g and ᾰ ∈ g∗, the
symplectic form of the leaves of the Lie-Poisson structure of so∗(3) under the identifications so(3) ∼= R3 via
the hat map and so∗(3) ∼= R3 via the breve map, is given by

ω(ᾰ)(ξ̂R3∗(ᾰ), η̂R3∗(ᾰ)) = −ξ̂R3∗(ᾰ)(η̂) = ᾰ([ξ̂, η̂]) = ᾰ(ξ̂ × η) = α · (ξ × η)

We have that the symplectic leaves of so∗(3) are the origin and the spheres centered on the origin. Indeed,
we proved that the coadjoint action of SO(3) under the previous identifications is the usual action of SO(3)
on R3. Moreover, we saw that the orbits of that action are the origin and the spheres centered in the origin.
The previous theorem 5.30 gives us the result.

Furthermore, notice that the symplectic form is, up to sign, the symplectic form of the Example 5.28.
In fact, the Lie-Poisson structure on the dual to the Lie algebra of a Lie group G can be also defined by
{f, g} (α) = −α([df(α), dg(α)]) for f, g ∈ F(g∗) (see Remark 6.2). In such case, the symplectic form of
so∗(3) coincides with the symplectic form of the Example 5.28 which means that the Lie-Poisson structure
of so∗(3) is given by (5.22) and its characteristic distribution is (5.23).



Chapter 6

Lie-Poisson reduction theorem

At this point in the project, we notice that among all objects we have studied there are two spaces that stand
out for their interesting properties. On the one hand, the cotangent bundle of any smooth manifold has a
symplectic structure and hence, is a Poisson manifold. On the other hand, we know that the dual space of
the Lie algebra of a Lie group always has associated a linear Poisson structure that we called the Lie Poisson
structure. However, at no point during the project we have linked neither the spaces nor their structures. In
fact, the Lie-Poisson reduction theorem is the culmination of the project and gives us such a result. Given a
Lie group G, the theorem will relate its cotangent bundle T ∗G with g∗ via a Poisson morphism. As a result
of this, the dynamics on T ∗G may be projected on g∗ and it is described with the half number of equations.

As one can expect, to prove this theorem we need most of the tools we have introduced. That is why we
give a quick overview to the whole project emphasizing the main results we will use. Once it is done, the
proof of the theorem is simple. Finally, we end by coming back one more time to the rigid body. Using the
examples we saw and the theorem, we will give its geometric description and we will see that it coincides
with the physical one. Then, we may conclude that our main objective is reached, and so on, the project is
completed.

6.1 Lie-Poisson reduction theorem

Let us summarize the most important results that we need:
Assume that M is a smooth manifold, G is a Lie group, g its Lie algebra and H is a Hamiltonian function.
Let (q1, . . . , qm) be the local coordinates on M and (q1, . . . , qm, p1, . . . pm) be the corresponding coordinates
on T ∗M .

1. From Chapter 2, the cotangent bundle T ∗M is endowed with the canonical symplectic structure ωM =∑n
i=1 dq

i ∧ dpi, so that, it is a symplectic manifold. Besides, we showed that the dynamical equations
for the Hamiltonian function H : T ∗M → R are just the Hamilton equations,

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
for i = 1, . . . ,m

2. In Chapter 3, we proved that if φ : G×M →M and ϕ : G×N → N are two actions, and f : M → N
is an equivariant function with respect to them, then

Tqf(ξM (q)) = ξN (f(q)) for ξ ∈ g and q ∈M

where ξM and ξN are the corresponding infinitesimal generators. As well, we showed that the infinites-
imal generator of the action of a Lie group on itself by left translations

L : G×G → G
(g, h) → Lg(h) = g · h

64
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associated with ξ ∈ g is the right invariant vector field, i.e, ξG(g) = TeRg(ξ), for all g ∈ G.

We also introduced the adjoint action of a Lie group on its Lie algebra and we gave the expression of the
infinitesimal generator associated with ξ ∈ g, that is, ξg(η) = [ξ, η] for ξ, η ∈ g. Then, we introduced
the coadjoint action and described its infinitesimal generators which are given by ξg∗(η)(α) = −α([ξ, η])
for ξ, η ∈ g and α ∈ g∗.

3. Chapter 4 was suitable to show that given an action φ : G ×M → M , its cotangent lift is always a
symplectic action that admits an Ad∗-equivariant momentum map J : T ∗M → g∗ given by,

J(αq)(ξ) = Jξ(αq) = αq(ξM (q)) for αq ∈ T ∗qM and ξ ∈ g

Thus, the Hamiltoninan vector XJξ is just the infinitesimal generator ξT∗M .

4. In Chapter 5, we saw that a Poisson structure w on M induces an homomorphism #w : T ∗M →
TM that is given by βq(#w(αq)) = w(αq, βq) for αq, βq ∈ T ∗qM . It allowed us to characterize the

Poisson morphisms. Indeed, ϕ : (M, { , }) → (M ′, { , }′) is a Poisson morphism, if, for every q ∈ M ,
Tqϕ ◦#w ◦ T ∗ϕ(q)ϕ = #w′ .

In addition, we deduced that a symplectic manifold is always a Poisson manifold. In particular, we
proved that the cotangent bundle of any smooth manifold admits a canonical Poisson bracket which is
locally given by

{f, g} = Xg(f) =

n∑
i=1

(
∂g

∂pi

∂f

∂qi
− ∂g

∂qi
∂f

∂pi

)
On the other hand, we proved that g∗ admit a linear Poisson structure (the Lie-Poisson structure)
which is defined by

{f, g} (α) = α([df(α), dg(α)])

for f, g ∈ F(g∗) and α ∈ g∗. In addition, the Hamiltonian vector field Xg∗

ξ of the linear function
ξ : g∗ → R is just ξg∗ .

Now, let us apply all those results to prove the theorem.

Theorem 6.1 (Lie-Poisson reduction). Let G be a Lie group and g be its Lie algebra. For any ξ ∈ g, denote
by Xξ the corresponding right-invariant vector field. Let J : T ∗G→ g∗ be the map given by

J(αg)(ξ) = αg(Xξ(g)) for αg ∈ T ∗gG and ξ ∈ g (6.1)

then,

i. J is an exhaustive submersion.

ii. If on T ∗G (respectively g∗) we consider the Poisson structure induced by the canonical symplectic
structure (respectively, the Lie-Poisson structure), then J is a Poisson morphism.

iii. If h : g∗ → R and H = h ◦ J : T ∗G→ R are two Hamiltonian functions and γ : I → T ∗G is a solution
of the Hamilton equations for H, then J ◦ γ : I → g∗ is a solution of the Lie-Poisson equations for h.

Proof. i. It is sufficient to prove that J|T∗gG : T ∗gG → g∗ is a linear isomorphism. It is clear that J|T∗gG :
T ∗gG→ g∗ is a linear map. Furthermore, we have

ker J|T∗gG =
{
αg ∈ T ∗gG | J(αg)(ξ) = 0 ∀ξ ∈ g

}
=
{
αg ∈ T ∗gG | αg(Xξ(g)) = 0 ∀ξ ∈ g

}
=
{
αg ∈ T ∗gG |αg = 0

}
= 0

Moreover, dimT ∗gG = dim g = dim g∗ so that J|T∗gG is a linear isomorphism.
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ii. Consider the action of G on itself by left translations

L : G×G → G
(g, h) → Lg(h) = g · h

Given ξ ∈ g, the infinitesimal generator of L associated with ξ is,

ξG(g) = TeRg(ξ) = Xξ(g).

Thus, ξG = Xξ. By Corollary 4.13 we know that LT
∗

: G× T ∗G→ T ∗G is a symplectic action and admits

an Ad∗-equivariant momentum map J̃ : T ∗G→ g∗ given by

J̃(αg)(ξ) = αg(ξG(g)) = αq(Xξ(g)) for αg ∈ T ∗gG and ξ ∈ g

Hence, J̃ = J and J is Ad∗-equivariant. Note that any ξ ∈ g = (g∗)∗ can be interpreted as a linear function
ξ : g∗ → R. Therefore, if XT∗G

ξ◦J denotes the Hamiltonian vector field associated to ξ ◦ J with respect to the

Poisson stucture of T ∗G and Xg∗

ξ denotes the Hamiltonian vector field associated to ξ with respect to the
Lie-Poisson structure of g∗, we have

TαgJ(XT∗G
ξ◦J (αg)) = TαgJ(XT∗G

Jξ
(αg)) = TαgJ(ξT∗G(αg))

= ξg∗(J(αg)) = Xg∗

ξ (J(αg))

Let us use this fact to prove that for any αg ∈ T ∗gG, TαgJ ◦#T∗G ◦T ∗J(αg)J = #g∗ , i.e, the following diagram
is commutative,

T ∗J(αg)g
∗

T∗J(αg)
J

−→ T ∗αg (T ∗G)

#g∗

y y#T∗G

TJ(αg)g
∗ TαgJ←− Tαg (T ∗G)

Let ξ1, . . . , ξn be a basis of g. As before, ξ1, . . . , ξn may be considered by duality as linear functions on g∗.
Therefore, for any β ∈ g∗, {dξ1(β), . . . , dξn(β)} is a basis of T ∗βg

∗. Then, from the linearity of the involved
functions it is sufficient to prove that the result holds for the elements of the basis, dξ1(β), . . . , dξn(β). On
the one hand,

#g∗(dξi(J(αg))) = −Xg∗

ξi
(J(αg))

On the other hand, for any v ∈ Tαg (T ∗G)

T ∗J(αg)J(dξi(J(αg))(v) = dξi(J(αg)(TαgJ(v)) = Tαg (ξi ◦ J)(v)

So, T ∗J(αg)(dξi(J(αg)) = Tαg (ξi ◦ J). Then,

TαgJ◦#T∗G◦T ∗J(αg)J(dξi(J(αg)) = (TαgJ◦#T∗G)(Tαg (ξi◦J)) = (TαgJ◦#T∗G)(d(ξi◦J)(αg)) = −TαgJ(XT∗G
ξi◦J (αg))

Finally, as ξ1, . . . , ξn are linear functions we conclude that

TαgJ ◦#T∗G ◦ T ∗J(αg)J(dξi(J(αg))) = −TαgJ(XT∗G
ξi◦J (αg)) = −Xg∗

ξi
(J(αg)) = #g∗(dξi(J(αg)))

iii. Using that J is a Poisson morphism we get,

γ̇(t) = XT∗G
h◦J (γ(t)) ⇒ Tγ(t)J(γ̇(t)) = (Tγ(t)J)(XT∗G

h◦J (γ(t)) ⇔ (J ◦ γ)′(t) = Xg∗

h (J(γ(t)))

Thus, if γ : I → T ∗G is a solution of the Hamilton equations for H = h ◦ J , then γ ◦ J : I → g∗ is a solution
of the Lie-Poisson equations for h.
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Remark 6.2. Its is noteworthy that here we have proved the ”right” version of the Lie-Poisson reduction
theorem. The ”left” version is obtained when the momentum map J is defined in terms of the left-invariant
vector fields. Then, the theorem states that J is a Poisson morphism between T ∗G with the canonical
Poisson structure and g∗ with the minus Lie-Poisson structure, that is,

{f, g} (α) = −α([df(α), dg(α)]) for f, g ∈ F(g∗) (6.2)

The proof of this version is analogous to the one that we gave but considering right translations in stead of
the left ones.

6.2 Rigid body

We are going to obtain the dynamic equations of the rigid body in geometric terms and to prove that they
agree with the physical ones. Our first step must be identifying the configuration manifold.

Recall that a rigid body is any solid body in which the distance between any of two of its points remains
constant over time. As we showed, it means that the equation that describes the position of a given particle
X over time is x(t) = R(t)X, with R(t) ∈ SO(3). Therefore, we have that this condition implies that the
configuration space of the rigid body is SO(3) with the Euler angles (ϕ, θ, ψ) as generalized coordinates.

Then, we may consider the corresponding coordinates (ϕ, θ, ψ, pϕ, pθ, pψ) on T ∗SO(3) . Moreover, as
we have seen in Chapter 5, the Poisson structure on a cotangent bundle induced by the canonical symplectic
structure is given by (5.12). We will denote by { , }can such a structure.

On the other hand, the Lie algebra so(3) might be identified with (R3,×) via the hat map as we showed
in (3.10). Under such an identification, we proved in Example 3.53 that the infinitesimal generator of the

adjoint action of SO(3) associated with ξ̂ ∈ SO(3) is ξ̂R3(x) = ξ × x for x ∈ R3. As well, in Example 3.55
we saw that so∗(3) is identified with R3 via the breve map. Therefore, the infinitesimal generator of the
coadjoint action of SO(3) is given by

ξ̂R3∗(η̂)(Π̆) = −Π̆([ξ̂, η̂]) = −Π̆(ξ̂ × η) = −Π · (ξ × η)

Hence, the minus Lie-Poisson bracket of so∗(3) is{
ξ̂, η̂
}

(Π̆) = −Π · (ξ × η)

Remark that the above brackets { , }can and { , } coincide with the canonical bracket and the Lie-Poisson
bracket defined in Chapter 1 for the rigid body.

Now, we may prove that the momentum map J : T ∗SO(3)→ so∗(3) given by (6.1) is just the map J of
Theorem 1.1. Indeed, taking into account that the left-invariant vector fields of SO(3) obtained from the
canonical basis on R3 ∼= so(3) are

X1 = cosψ
∂

∂θ
+

sinψ

sin θ

∂

∂ϕ
− sinψ cos θ

sin θ

∂

∂ψ

X2 = − sinψ
∂

∂θ
+

cosψ

sin θ

∂

∂ϕ
− cosψ cos θ

sin θ

∂

∂ψ

X3 =
∂

∂ψ

one has that the corresponding momentum map is

J : T ∗SO(3) −→ so∗(3)
pϕ

∂
∂ϕ + pθ + ∂

∂θ + pψ
∂
∂ψ → 1

sin θ ((pϕ − pψ cos θ) sinψ + pθ sin θ cosψ) dΠ1

+ 1
sin θ ((pϕ − pψ cos θ) cosψ − pθ sin θ sinψ) dΠ2 + pψdΠ3
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where Π1,Π2,Π3 are the local coordinates on so∗(3). Clearly, J coincides with the momentum map of
Chapter 1. Therefore, using the left version of the Lie-Poisson reduction theorem, we deduce that such a
map is a Poisson morphism, i.e,

{f, g} ◦ J = {f ◦ J, g ◦ J}can
As well, if h : g∗ → R and H = h ◦ J are Hamiltonian functions and γ : I → T ∗G is a solution of the
Hamilton equations for H, then J ◦ γ : I → g∗ is a solution of the Lie-Poisson equations for h, which is
equivalent to the fact that

Π̇i = {Πi, h}

holds if,

ϕ̇ =
∂H

∂pϕ
, ṗϕ = −∂H

∂ϕ
,

θ̇ =
∂H

∂pθ
, ṗθ = −∂H

∂θ
,

ψ̇ =
∂H

∂pψ
, ṗψ = −∂H

∂ψ
.

Notice that above statements are nothing but Theorem 1.1 from Chapter 1. It proves the equivalence
between the geometric formulation and the physics one and leaves us with a powerful tool to keep working
on.



Appendix A

Schouten-Nijenhuis bracket

A.1 k-vectors and k-forms

Let M be a manifold of dimension m and k be an integer such that 2 ≤ k ≤ m. Consider the vector bundle

ΛkTM =
⋃
q∈M

ΛkTqM =
⋃
q∈M

{
ϕq : T ∗qM× k. . . ×T ∗qM → R | ϕq is R-multilinear and skew-symmetric

}
(A.1)

If (U,ϕ = (q1, . . . , qm)) is a local chart inM , { ∂
∂qi1 |q

∧. . .∧ ∂
∂qik |q

| 1 ≤ i1 < . . . < ik ≤ m} is a basis of ΛkTqM .

It implies that ΛkTM is a smooth manifold of dimension m +
(
m
k

)
. A smooth function P : M → ΛkTM

such that P (q) ∈ ΛkTqM for all q ∈M is said to be a k-vector. In local coordinates a k-vector is given by,

P =
∑

i1<...<ik

Pi1...ik
∂

∂qi1
∧ . . . ∧ ∂

∂qik
(A.2)

where Pi1...ik are local smooth functions. From now on, X k(M) will denote the space of k-vectors. Remark
that X 0(M) = F(M) and X 1(M) = X (M).

The sections of the dual bundle to ΛkT ∗M are known as k-forms. Likewise, a k-form is a smooth function
α : M → ΛkT ∗M such that α(q) ∈ ΛkT ∗qM for all q ∈M , where

ΛkT ∗M =
⋃
q∈M

ΛkT ∗qM =
⋃
q∈M

{
ϕq : TqM× k. . . ×TqM → R | ϕq is R-multilinear and skew-symmetric

}
(A.3)

In the previous chart, {dqi1|q ∧ . . . ∧ dq
ik
|q | 1 ≤ i1 < . . . < ik ≤ m} is a basis of ΛkT ∗qM , which means that

ΛkT ∗M is a smooth manifold of dimension m+
(
m
k

)
. If α is a k-form, it is locally expressed as

α =
∑

i1<...<ik

αi1...ikdq
i1 ∧ . . . ∧ qik

where αi1...ik are again local smooth functions. Then, the pairing α(P ) is a function given by

α(P ) =
∑

i1<...<ik

αi1...ikPi1...ik

Given a k-vector P , consider the map P : Ω1(M)× k. . . ×Ω1(M)→ F(M) defined as

P (α1, . . . , αk) : M → R
q → P (α1(q), . . . , αk(q))

69
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where αi ∈ Ω1(M). Thus, one may regard a k-vector on M as a F(M)-multilinear skew-symmetric map
P : Ω1(M)× k. . . ×Ω1(M) → F(M). Moreover, with this interpretation of the k-vector P , one can define a
R-multilinear skew-symmetric map P : F(M)× k. . . ×F(M)→ F(M) as follows

P (f1, . . . , fn) : M → R
q → P (df1(q), . . . , dfk(q))

(A.4)

where fi ∈ F(M). Remark that since d(fg) = fdg + gdf , the map P satisfies the Leibniz rule. Such a map
is said to be multiderivation. Conversely, a multiderivation P always define a k-vector by P (f1, . . . , fk) :=
P (df1, . . . , dfk)(q) (see [Duf] for a proof).

A.1.1 2-vectors

We specialize our discussions in the particular case when k = 2. According to the previous definitions, a 2-
vector is a F(M)-bilinear skew-symmetric map w : Ω1(M)×Ω1(M)→ F(M) or, equivalently, a biderivation
{ , } : F(M)×F(M)→ F(M) such that

w(df, dg) = {f, g} (A.5)

Any 2-vector define a smooth fiber map # : T ∗M → TM . Indeed, for every αq ∈ T ∗qM , #(αq) ∈ TqM is
defined as

βq(#(αq)) = w(q)(αq, βq) for βq ∈ T ∗qM (A.6)

Likewise, the map # might be seen as a morphism of F(M)-modules # : Ω1(M)→ X (M) defined as

#(α) : M → TM
q → #(α(q))

(A.7)

for α ∈ Ω1(M).
With this definition, # can be extended to a morphism of F(M)-modules, # : Ωk(M)→ X k(M). Given

α ∈ Ωk(M), #(α) ∈ X k(M) is such that

#(α) : Ω1(M)× k. . . ×Ω1(M) → F(M)
(α1, . . . , αk) → (−1)kα(#(α1), . . . ,#(αk))

(A.8)

It is easy to check that,

#(α1 ∧ . . . ∧ αk) = #(α1) ∧ . . . ∧#(αk) for αi ∈ Ω1(M) (A.9)

The rank of a 2-vector w in a point q ∈ M is defined to be the rank of the linear map #|T∗qM : T ∗qM →
TqM . Remark that w(q) : T ∗qM × T ∗qM → R might be seen as a 2-form on T ∗qM whose rank coincides with
the rank of #|T∗qM . Therefore we conclude that the rank of a 2-vector is always even.

The particular case of a symplectic manifold

Let (M,ω) be a symplectic manifold. One can define a 2-vector on M as follows,

{ , } : F(M)×F(M) → F(M)
(f, g) → {f, g} = ω(Xf , Xg)

(A.10)

where Xf and Xg are the Hamiltonian vector fields of the functions f and g. Moreover, we have that the
2-vector w satisfies w(df, dg) = {f, g} = ω(Xf , Xg) and we can define the morphism of F(M)-modules
# : Ω1(M)→ X (M) .
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Let bω be the corresponding isomorphism of F(M)-modules associated to the symplectic form ω,

bω : X (M) → Ω1(M)
X → iXω

(A.11)

We are going to show that
# = −b−1

ω . (A.12)

For every f, g ∈ F(M),

(#(df))(g) = dg(#(df)) = w(df, dg) = ω(Xf , Xg) = −ω(Xg, Xf ) = −iXgω(Xf ) = −Xf (g)

and #(df) = −Xf = −b−1
ω (df). Thus, for any α ∈ Ω1(M) such that α =

∑
i αidgi for αi, gi ∈ F(M),

#(α) =
∑
i

αi#(dgi) = −
∑
i

αib
−1
ω (dgi) = −b−1

ω (
∑
i

αidgi) = −b−1
ω (α)

Furthermore, if we consider the extension of # to Ω2(M) , i.e., # : Ω2(M)→ X 2(M) we have that

#(ω) = w (A.13)

Indeed, since #(ω) and w belong to X 2(M) it is enough to check that #(ω)(df, dg) = w(df, dg) for any
f, g ∈ F(M),

#(ω)(df, dg) = ω(#(df),#(dg)) = ω(Xf , Xg) = w(df, dg).

A.2 Lie derivative

As it is known, the Lie derivative of a 1-form α ∈ Ω1(M) with respect to a vector field X ∈ X (M) is the
1-form given by

LXα = iXdα+ diXα (A.14)

or, in other words,
(LXα)(Y ) = X(α(Y ))− α[X,Y ] for Y ∈ X (M) (A.15)

Now, let us introduce the Lie derivative of a k-vector P ∈ X k(M) with respect to a vector fieldX ∈ X (M).
LXP is the k-vector defined as

LXP = [X,P ] : Ω1(M)× k. . . ×Ω1(M) → F(M)
(α1, . . . , αk) → LXP (α1, . . . , αk)

(A.16)

where LXP (α1, . . . , αk) = X(P (α1, . . . , αk)) −
∑k
i=1 P (α1, . . . ,LXαi, . . . , αk). Taking into account that P

is a k-vector and that X is a vector field, it is almost direct to prove that LXP is skew-symmetric and
F(M)-multilinear. For instance, let us check that LXP is F(M)-multilinear. Let β, α1, . . . , αk ∈ Ω1(M) be
1-forms and f ∈ F(M) be a function, then
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LXP (β + fα1, . . . , αk) =X(P (β + fα1, . . . , αk))− P (LX(β + fα1), α2, . . . , αk)

−
k∑
i=2

P (β + fα1, . . . ,LXαi, . . . , αk)

= X(P (β, . . . , αk)) +X(fP (α1, . . . , αk))− P (LXβ, α2, . . . , αk)

− P (X(f)α1 + fLXα1, α2 . . . , αk)−
k∑
i=2

P (β, . . . ,LXαi, . . . , αk)

−
k∑
i=2

P (fα1, . . . ,LXαi, . . . , αk)

= X(P (β, . . . , αk)) + fX(P (α1, . . . , αk)) + P (α1, . . . , αk)X(f)

− P (LXβ, α2, . . . , αk)−X(f)P (α1, . . . , αk)− fP (LXα1, α2 . . . , αk)

−
k∑
i=2

P (β, . . . ,LXαi, . . . , αk)− f
k∑
i=2

P (α1, . . . ,LXαi, . . . , αk)

= LXP (β, . . . , αk) + fLXP (α1, . . . , αk)

It can be also checked that if X1, . . . Xk ∈ X (M) are vector fields, then

LX(X1 ∧ . . . ∧Xk) =

k∑
i=1

X1 ∧ . . . ∧ [X,Xi] ∧ . . . ∧Xk (A.17)

So far, we have given the algebraic approach to the Lie derivative of a multivector P with respect to X.
Next, we give the dynamic definition in terms of the flow φ of X

(LXP )(q) =
d

dt |t=0
(Tφt(q)φ−t)(P (φt(q))

A.2.1 Schouten-Nijenhuis bracket

Once we have had a quick overview on the Lie derivative of a k-vector and we have obtained the formula
(A.17), it is natural to extend it to an operation between q-vectors and p-vectors. In fact, there is a unique
R-bilinear extension of the Lie derivative to an operation

[ , ] : X p(M)×X q(M) → X p+q−1(M) (A.18)

satisfying the following properties:

i. For all P ∈ X p(M) and Q ∈ X q(M), [P,Q] = (−1)pq[Q,P ].

ii. For all P ∈ X p(M), R ∈ X r(M) and Q ∈ X q(M), [P,Q ∧R] = [P,Q] ∧R+ (−1)pq+qQ ∧ [P,R].

iii. For all P ∈ X p(M), R ∈ X r(M) and Q ∈ X q(M),
(−1)p(r−1)[P, [Q,R]] + (−1)q(p−1)[Q[R,P ]] + (−1)r(q−1)[R, [P,Q]]. (Graded Jacobi identity)

Such an operation is called the Schouten-Nijenhuis bracket.
In order to prove this result, first we will prove that the Schouten-Nijenhuis bracket is a local operation,

that is, [P,Q]|U only depends on P|U and Q|U . Due to the fact that [ , ] is skew-symmetric it will be enough
to prove that [P,Q1](x0) = [P,Q2](x0) if Q1|U = Q2|U in a neighbourhood U of x0.
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Consider a bump function f such that f = 1 in a compact neighbourhood of x0 contained in U and f = 0
outside U . Thus, from ii.

[P, fQi](x0) = [P, f ] ∧Qi(x0) + f(x0)[P,Qi](x0) = [P,Qi](x0) for i = 1, 2

Since fQ1 = fQ2, we conclude that [P,Q1](x0) = [P,Q2](x0). Now, using that the bracket has local
character we can work on a local chart.

Remark that for any p-vector P and any Q1, . . . , Qq ∈ X (M), from ii. we deduce that,

[Q1 ∧ . . . ∧Qq, P ] =

q∑
i=1

(−1)i+1Q1 ∧ . . . ∧ Q̂i ∧ . . . ∧Qq ∧ [Qi, P ]

and, for any P1, . . . , Pp ∈ X (M)

[P1∧ . . .∧Pp, Q1∧ . . .∧Qq] = (−1)p+1

p∑
i=0

q∑
j=0

(−1)j+i[Pi, Qj ]∧P1∧ . . .∧ P̂i∧ . . .∧Pp∧Q1∧ . . .∧ Q̂j ∧ . . .∧Qq

Moreover,

[P1 ∧ . . . ∧ Pp, fQ1 ∧ . . . ∧Qq] = [P1 ∧ . . . ∧ Pp, f ] ∧Q1 ∧ . . . ∧Qq + f [P1 ∧ . . . ∧ Pp, Q1 ∧ . . . ∧Qq]

=

p∑
i=1

(−1)i+1Pi(f)P1 ∧ . . . ∧ Pp ∧Q1 ∧ . . . ∧Qq + f [P1 ∧ . . . ∧ Pp, Q1 ∧ . . . ∧Qq]

Let (U,ϕ ≡ (x1, . . . , xn)) be a chart on M and (τ−1
M (U), ϕ ≡ (x1, . . . , xn, ẋ1, . . . , ẋn)) be the corresponding

chart on TM . Any p-vector will be given by P =
∑
i1<...<ip

Pi1...ip
∂

∂xi1
∧ . . . ∧ ∂

∂xip
and any q-vector by

Q =
∑
i1<...<iq

Qi1...iq
∂

∂xi1
∧ . . . ∧ ∂

∂xiq
. Then, from the previous equalities it is clear how the bracket

operates on any p-vector and q-vector. It proves the uniqueness in every local coordinate system. Thus, we
deduce the result. Note that the graded Jacobi identity for the Schouten-Nijenhuis bracket follows using the
fact that the standard Lie bracket of vector fields satisfies the Jacobi identity.

Let us study the particular case p = q = 2. Assume that,

P =
1

2

∑
i,j

Pij
∂

∂xi
∧ ∂

∂xj
Q =

1

2

∑
h,k

Qhk
∂

∂xh
∧ ∂

∂xk

Then,

[P,Q] =
1

4

∑
i,j,h,k

[Pij
∂

∂xi
∧ ∂

∂xj
, Qhk

∂

∂xh
∧ ∂

∂xk
]

=
1

4

∑
i,j,h,k

(
[Pij

∂

∂xi
∧ ∂

∂xj
, Qhk] ∧ ∂

∂xh
∧ ∂

∂xk
+Qhk[Pij

∂

∂xi
∧ ∂

∂xj
,
∂

∂xh
∧ ∂

∂xk
]

)

=
1

4

∑
i,j,h,k

(
[Qhk, Pij ]

∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xh
∧ ∂

∂xk
+ Pij [Qhk,

∂

∂xi
∧ ∂

∂xj
] ∧ ∂

∂xh
∧ ∂

∂xk

+Qhk[
∂

∂xh
∧ ∂

∂xk
, Pij ] ∧

∂

∂xi
∧ ∂

∂xj
+QhkPij [

∂

∂xh
∧ ∂

∂xk
,∧ ∂

∂xi
∧ ∂

∂xj
]

)
=

1

4

∑
i,j,h,k

(
Pij [Qhk,

∂

∂xi
]
∂

∂xj
∧ ∂

∂xh
∧ ∂

∂xk
− Pij [Qhk,

∂

∂xj
]
∂

∂xi
∧ ∂

∂xh
∧ ∂

∂xk

+Qhk[Pij ,
∂

∂xh
]
∂

∂xk
∧ ∂

∂xi
∧ ∂

∂xj
−Qhk[Pij ,

∂

∂xk
]
∂

∂xh
∧ ∂

∂xi
∧ ∂

∂xj

)
=

1

2

∑
i,j,h,k

(
Pij

∂Qhk
∂xi

∂

∂xj
∧ ∂

∂xh
∧ ∂

∂xk
+Qhk

∂Pij
∂xh

∂

∂xk
∧ ∂

∂xi
∧ ∂

∂xj

)
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Hence,

[P,Q] =
∑
i<j<k

∑
h

(
Phi

∂Qjk
∂xh

+ Phj
∂Qki
∂xh

+ Phk
∂Qij
∂xh

+Qhk
∂Pij
∂xh

+Qhj
∂Pki
∂xh

+Qhi
∂Pjk
∂xh

)
∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xk



Appendix B

Distributions

B.1 Regular distributions

Assume that M is a smooth manifold of dimension m. A regular distribution of dimension k on M is a map
q ∈M → D(q) ⊆ TqM verifying:

i. D(q) is a subvector space of TqM such that dim D(q) = k.

ii. For every q ∈ M there exists an open neighbourhood U of q, and k smooth vector fields X1, . . . Xk

defined on U such that
D(q) = 〈X1(q), . . . , Xk(q)〉

A vector field X ∈ X (M) is said to be tangent to D if X(q) ∈ D(q) for every q ∈M .
Given a distribution D and a submanifold i : N →M , N is said to be an integral submanifold of D if for

every q ∈ N
(Tqi)(TqN) ⊆ D(q)

If for any q ∈M there exists a local chart (U,ϕ ≡ (q1, . . . , qk, qk+1, . . . , qm)), with q ∈ U , such that

D(q) =

〈
∂

∂q1
|q
, . . . ,

∂

∂qk |q

〉
∀q ∈ U

then, D is said to be completely integrable. Furthermore, if D is completely integrable, then for any q ∈ M
there exists a maximal connected integral submanifold Lq such that q ∈ Lq. That is, Lq is an integral
submanifold and if there exists a connected manifold N such that it is an integral submanifold of D and
q ∈ N , then N ⊆ Lq. Indeed, taking the previous charts and assuming that ϕ(q) = (q0

1 , . . . , q
0
m), we have

that {
ϕ−1(q1, . . . qk, q0

k+1 . . . q
0
m) | (q1, . . . , q

k, q0
k+1 . . . q

0
m) ∈ ϕ(U)

}
is an integral submanifold of D which contains the point q. The maximal connected integral submanifold Lq
is the known as the leaf of D through q.

If for any two vector fields X,Y ∈ X (M) tangents to D, [X,Y ] is also tangent to D, the distribution
is said to be involutive. Thus, since [ ∂

∂qi ,
∂
∂qj ] = 0 it follows that any completely integrable distribution

is involutive. As well, the Frobenius theorem proves that the converse also holds, i.e, a distribution D is
involutive if and only if, it is completely integrable.

B.2 Generalized distributions

Let M be a smooth manifold of dimension m. A generalized distribution (locally finitely generated) on M is
a map q ∈M → D(q) ⊆ TqM verifying:

75
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i. D(q) is a subvector space of TqM .

ii. For every q ∈ M there exists an open neighbourhood U of q, and a finite set of smooth vector fields
X1, . . . Xk defined on U such that

D(q) = 〈X1(q), . . . , Xk(q)〉

Remark that the unique hypothesis that is missing with respect to the regular distributions is that we are
not imposing any condition to the dimension.

The definitions of integrable submanifold and involutive distribution are the same for a generalized dis-
tribution. However, since there is no constraint on the dimension we have to rephrase the definition of a
completely integrable distribution. In fact, given a generalized distribution D, it is said to be completely
integrable if for every q ∈M there exists maximal connected integral submanifold Lq of D such that q ∈ Lq.
Just as before, Lq is known as the leaf of D through q. While no constraints are imposed on the dimension,
the dimension of the leaves Lq may change depending on the point q. Again, we have that integrability
implies involutibility. Indeed, if X,Y ∈ X (M) are two vector fields tangent to a distribution D, and Lq is
the leaf of D through q, then, since TxLq = D(x) for all x ∈ Lq, X|Lq and Y|Lq are tangents to Lq. Therefore,

[X,Y ](q) = [X|Lq , Y|Lq ](q) ∈ TqLq = D(q)

Nonetheless, the reciprocal of the Frobenius theorem is not longer true and an involutive generalized
distribution D might not be completely integrable. Furthermore, in the case of D being a generalized
distribution a new definition arises. D is said to be invariant if for every vector field X tangent to D, the
following equality holds

Tqφt(D(q)) = D(φt(q)) for all t and q ∈M

where φ is the flow of X.
This new definition leads to the generalized Frobenius theorem which states that a generalized distribution

D is completely integrable if and only if, it is invariant. Thus, there exist leaves through every point of the
manifold M , if and only if, the distribution is invariant.

Let us give two examples that illustrate the previous ideas.

Counterexample

As we have pointed out, the regular Frobenius theorem might not be satisfied when dealing with general
distributions. In this counterexample we are giving a distribution which is involutive but not completely
integrable. The distribution is defined on R2 by

(x, y) ∈ R2 −→ D(x, y) =

〈
∂

∂x |(x,y)
, ϕ(x)

∂

∂y |(x,y)

〉
⊆ T(x,y)R2

where ϕ : R→ R is smooth and verifies

ϕ(x) =

{
ϕ(x) > 0 if x > 0

ϕ(x) = 0 if x ≤ 0

First of all notice that D does not have constant dimension since

i. ∀(x, y) ∈ R2 such that x > 0, dim D(x, y) = 2 and D(x, y) = T(x,y)R2

ii. ∀(x, y) ∈ R2 such that x ≤ 0, dim D(x, y) = 1 and D(x, y) =
〈
∂
∂x |(x,y)

〉
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So, D is a generalized distribution. Moreover, it is involutive. In fact,[
∂

∂x
, ϕ(x)

∂

∂y

]
(x, y) =

dϕ

dx |x

∂

∂y |(x,y)

=

{
d lnϕ
dx |xϕ(x) ∂∂y |(x,y)

if x > 0

0 if x ≤ 0

Now, we are going to compute the integral submanifolds in order to see that D is not completely integrable.
Let (x0, y0) be a point on R2 and suppose that L is a connected maximal integral submanifold of D through
(x0, y0). We distinguish cases:

1. x0 > 0. In such case, L verifies that T(x,y)L = D(x, y) for all (x, y) ∈ L and in particular T(x0,y0)L =
D(x0, y0). Thus, dim L = dim D(x0, y0) = 2 and L is an open subset of R2. Moreover, since L is
maximal and D(x, y) = T(x,y)R2 for any (x, y) with x > 0 we have that{

(x, y) ∈ R2 | x > 0
}
⊆ L

As well, the points of the axis OY can not belong to L because there dim D(0, y) = 1. Therefore,
using the hypothesis that L is connected we obtain

L =
{

(x, y) ∈ R2 | x > 0
}

2. x0 < 0. With the same argument as before we conclude that dim L = dim D(x0, y0) = 1 and

T(x,y)L =
〈
∂
∂x |(x,y)

〉
. It means that L must be a parallel line to the OX axis. On the other hand,

taking into account that dimD(x, y) = 2 for (x, y) ∈ R2 such that x > 0 we deduce that

L ⊆
{

(x, y) ∈ R2 | x ≤ 0
}

Finally, as L is a manifold without boundary, L can not intersect the OY axis and

L =
{

(x, y) ∈ R2 | x < 0
}

3. x0 = 0. Proceeding as in the previous case, we have that dim L = 1, T(x,y)L =
〈
∂
∂x |(x,y)

〉
and

consequently, L is a parallel line to the OX axis contained in the half plane x ≤ 0. Since the point
(0, y0) must belong to L, L has to be of the form

L =
{

(x, y0) ∈ R2 | x ≤ 0
}

which is not possible since the leaf of D through a point is a manifold without boundary.

So far, we have seen that D is not completely integrable, and by the generalized Frobenius theorem it implies
that D is not invariant. Let us check it.

First, compute the flows of the involved vector fields. Easily, φt(x, y) = (x + t, y) is the flow of ∂
∂x and

ψt(x, y) = (x, ϕ(x)t+ y) is the flow of ϕ(x) ∂∂y . Remark that,

T(x0,y0)φt0

(
ϕ(x0)

∂

∂y |(x0,y0)

)
= ϕ(x0)

∂

∂y |(x0+t0,y0)

If t0 = −x0 with x0 > 0, it is clear that T(x0,y0)φ−x0

(
ϕ(x0) ∂∂y |(x0,y0)

)
/∈ D(φ−x0(x0, y0)) = D(0, y0) and D

is not invariant.
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Example

Consider the distribution on R3 given by

D(x, y, z) =

〈
x
∂

∂z |(x,y,z)
− z ∂

∂x |(x,y,z)
, y

∂

∂x |(x,y,z)
− x ∂

∂y |(x,y,z)
, z

∂

∂y |(x,y,z)
− y ∂

∂z |(x,y,z)

〉
⊆ T(x,y,z)R3

It is clear that dim D(x0, y0, z0) = 2 for all (x0, y0, z0) ∈ R3 such that (x0, y0, z0) 6= 0 and dim D(0, 0, 0) = 0.
It means that the leaf of D through (0, 0, 0) is the point itself. Moreover, if we denote by X = x ∂

∂z − z
∂
∂x ,

Y = y ∂
∂x − x

∂
∂y and Z = z ∂

∂y − y
∂
∂z , one can see that

D(x, y, z) =


〈X,Y 〉 if z = 0, x 6= 0

〈Y, Z〉 if z = 0, x = 0

〈X,Y 〉 if z 6= 0

∀(x, y, z) 6= 0 (B.1)

Consider the map on R3 given by,

F : R3 → R
(x, y, z) → x2 + y2 + z2

and a point (x0, y0, z0) ∈ R3 − {0} such that r0 = x2
0 + y2

0 + z2
0 . Then, F−1(r0) = S2

r0 , where S2
r0 denotes

the sphere of radius
√
r0 centered in the origin. It is easy to see that T(x,y,z)S

2
r0 = ker T(x,y,z)F = D(x, y, z)

for (x, y, z) ∈ S2
r0 . Thus, if L denotes the leaf of D through (x0, y0, z0), we have that S2

r0 ⊆ L because L is
maximal.

On the other hand, using that T(x,y,z)F (v) = 0 for any v ∈ D(x, y, z) = T(x,y,z)L and the fact that L is
connected, we conclude that F|L is constant. Thus, F|L(x, y, z) = F (x0, y0, z0) = r0 for any (x, y, z) ∈ L and
L ⊆ S2

r0 . Therefore,

L = S2
r0

Since there exist a leaf through each point, D is completely integrable and invariant.
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