## c)

 TRAMOM:GMC Notes, Number 3 (2012)

Cédrid M. Campos and David Iglesias

Reduction in Jet Bundle Theory

based on a course by Marco Castrillón

## About GMC Notes:

The GMC Notes are based on the material given in the courses of various activities organized by the GMC network. These notes are freely shared in a digital edition. For further details about the GMC Notes, please contact Ignazio Lacirasella (University of Bari, Italy) at lacirasella@dm.uniba.it.

The GMC Network is an international thematic project on Geometry, Mechanics and Control. The organization of this network is based in on-going collaborations that have already been materialized in publications and joint activities between the different research groups of the network. GMC Network is supported by MEC (Spain), grant MTM2010-12116-E. For more informations, please visit the web page http://gmcnetwork.org/.

# Reduction in Jet Bundle Theory <br> lectures by Marco Castrillón <br> notes by Cédric M. Campos and David Iglesias 

The present notes are delivered for the attendants of the $V$ Young Researchers Workshop on Geometry, Mechanics and Control, held in San Cristóbal de La Laguna, Tenerife (Spain), in December 2010.

Marco Castrillón is an Associate Professor at the Department of Geometry and Topology of the Universidad Complutense de Madrid (UCM).

# Reduction in Jet Bundle Theory 

lecture by Marco Castrillón<br>notes by Cédric M. Campos \& David Iglesias

June 21, 2011


#### Abstract

These notes follow the course given by M. Castrillón on covariant reduction of Field Theories when the configuration bundle is a principal bundle and the symmetry group is the structure group of the bundle. The preliminary notions needed to understand the geometry behind the constructuion are also given.


## 1 Bundles

In this first section, we introduce fiber bundles and associated notions, such as connections or sections. These are the objects in which we later develop our theory.

A fiber bundle is the generalization of the product of two manifolds, but in this case they are "glued" in a non trivial way. Roughly speaking, we could say that the space is locally the product of two manifolds. To be more precise,

Definition 1. A fiber bundle is a triple $(E, \pi, M)$ where $M$ and $E$ are smooth manifolds (of dimension $m$ and $m+n$, respectively) and $\pi: E \rightarrow M$ is a surjective submersion that satisfies the following condition: there is a smooth manifold $F$ (of dimension $n$ ) such that

$$
\forall x \in M \exists U \in \mathcal{N}(x) \exists \Psi \in \operatorname{Diff}\left(\pi^{-1}(U), U \times F\right):\left.\pi\right|_{\pi^{-1}(U)} \equiv p r_{1} \circ \Psi
$$

In such a case, we call:
i) $M$, the base space;
ii) $E$, the total space;
iii) $\pi$, the projection;
iv) $F$, the typical fiber;
v) $E_{x}:=\pi^{-1}(x)$, the fiber over $x \in M$;
vi) $E_{u}:=\pi^{-1}(\pi(u))$, the fiber through $u \in E$;
vii) and $\left\{\left(U_{\alpha}, \Psi_{\alpha}\right)\right\}_{\alpha \in A}$, a trivialization atlas.

Note 2. A fiber bundle $(E, \pi, M)$ it is also commonly denoted by the total space $E$ itself or by the projection $\pi$.
Note 3. The existence of the typical fiber $F$ could be stated locally, but the definition implies that a unique typical fiber (modulo diffeomorphisms) may be chosen.

Note 4. Any couple of local trivializations $\left(U_{\alpha}, \Psi_{\alpha}\right)$ and $\left(U_{\beta}, \Psi_{\beta}\right)$ induces, for each $x \in U_{\alpha} \cap U_{\beta}$, a diffeomorphism of the typical fiber $F$.

$$
\begin{aligned}
\left(U_{\alpha} \cap U_{\beta}\right) \times F & \longrightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times F \\
(x, y) & \longmapsto\left(x, \Psi_{\alpha \beta}(x, y)\right)
\end{aligned} \quad \Longrightarrow \Psi_{\alpha \beta}(x, \cdot) \in \operatorname{Diff}(F)
$$

The bundle structure is encoded in two different parts: One is the way in which the fibers are glued together, which can be trivial or not. The other is the particular structure of the fiber itself.
Example 5. The simplest gluing technique would be the Cartesian one. If $M$ and $F$ are manifolds then $\left(M \times F, p r_{1}, M\right)$ is a fiber bundle, called the trivial fiber bundle.
Example 6. Depending on the structure of the fiber manifold $F$, we may have for instance:
i) Vector bundles $(F=V)$, the fibers are endowed with a vector space structure: the tangent bundle $T M$, the cotangent bundle $T^{*} M$, the symmetric tensor product of the cotangent bundle $S^{2} T^{*} M$, etc.
ii) Affine bundles $(F=A)$, the fibers are endowed with an affine structure. A particular example of this situation is the first-jet bundle $J^{1} \pi$ of a given fiber bundle. We will develop this notion in Section §3.

Example 7. Let $(E, \pi, M)$ be a fiber bundle. Then, the set

$$
\operatorname{Vert}(\pi):=\{X \in T E: T \pi(X)=0\}
$$

of vertical vectors with respect to $\pi$, together with the restriction of the canonical projection $\tau_{E \mid \operatorname{Vert}(\pi)}: \operatorname{Vert}(\pi) \rightarrow E$, is called the vertical bundle of $\pi$. It can be proved that it is in fact a vector bundle over $E$.

A particular class of fiber bundles, which is interesting for our purposes, is the family of principal bundles. In this case, the fiber manifold is a Lie group.

Definition 8. A principal bundle is a fivefold $(G, \Phi, P, \pi, M)$ such that
i) $G$ is a Lie group;
ii) $(P, \pi, M)$ is a fiber bundle with typical fiber $G$;
iii) $\Phi: G \times P \rightarrow P$ is a free ${ }^{1}$ Lie group action of $G$ on $P$; and
iv) $M=P / G$ and $\pi$ is the quotient projection.

Note 9. One can check that condition i) to iv) above give as a consequence the existence of a trivialization atlas $\left\{\left(U_{\alpha}, \Psi_{\alpha}\right)\right\}_{\alpha \in A}$ of $P$, such that $\Psi_{\alpha}=\pi \times \psi_{\alpha}$, where $\psi_{\alpha}(\Phi(g, p))=\Phi\left(g, \psi_{\alpha}(p)\right), p \in \pi^{-1}(U), g \in G, \alpha \in A$.
Note 10. The notation $G: P \rightarrow M$ is also used and, when the action is a right action (resp. left action), then we note $\Phi(p, g)=R_{g}(p)=p g\left(\right.$ resp. $\left.\Phi(p, g)=L_{g}(p)=g p\right)$. Finally, the induced action will be noted by the same symbol, that is: $\Phi(p, g)$ instead of $T_{p} \Phi(\cdot, g)$ and, similarly, $R_{g}$ (resp. $L_{g}$ ) instead of $T R_{g}$ (resp. $T L_{g}$ ). In what follows and if nothing else is stated, every action is assumed to be on the right.

[^0]Note 11. Given a principal bundle $\pi: P \rightarrow M$ with structure group $G$ and a point $u \in P_{x}$, then $\pi^{-1}(x)$ is just the orbit of $u$, i.e.

$$
\pi^{-1}(x)=\{u g \mid g \in G\}=\operatorname{Orb}(u)
$$

Therefore, we clearly have that the fibers are diffeomorphic to $G$.
Example 12. Given a manifold $M$ of dimension $m$ and a point $x \in M$, a linear frame $u$ at $x$ is an ordered basis $v_{1}, \ldots, v_{m}$ of the tangent space $T_{x} M$. The frame bundle $\mathcal{F} M$ is the set formed by all linear frames $u$ at all points of $M$. Given local coordinates $\left(x^{1}, \ldots, x^{m}\right)$ on a neighborhood $U$, we have that each element of any frame $u=\left\{v_{1}, \ldots, v_{m}\right\}$ can be written as $v_{i}=\sum_{j} A_{i}^{j} \partial / \partial x^{j}$. Thus, $\mathcal{F} M$ is locally of the form $U \times \mathrm{Gl}\left(\mathbb{R}^{m}\right)$, where $\mathrm{Gl}\left(\mathbb{R}^{m}\right)$ is the general linear group, with coordinates $\left(x^{i}, A_{i}^{j}\right)$. These induce a manifold structure on $\mathcal{F} M$ and a surjective submersion $\mathcal{F} M \rightarrow M$ given by $u \longmapsto x$, where $u$ is a linear frame at $x$. In addition, $\mathcal{F} M \rightarrow M$ is a principal bundle with structure group $\mathrm{Gl}\left(\mathbb{R}^{m}\right)$, where given a linear frame $u$ and $A \in \mathrm{Gl}\left(\mathbb{R}^{m}\right)$, the linear frame $u A=\left\{w_{1}, \ldots, w_{n}\right\}$ is just $w_{i}=\sum_{j} A_{i}^{j} v_{j}$.

Given two manifolds $M$ and $F$, a function between them $f: M \rightarrow F$ can be reinterpreted considering its graph, that is, the map $s_{f}: M \rightarrow M \times F, x \longmapsto$ $(x, f(x))$. The map $s_{f}$ satisfy that $p r_{1} \circ s_{f}=\operatorname{id}_{M}$. Generalizing to the context of general fiber bundles, we have the notion of sections.

Definition 13. Given a fiber bundle $\pi: E \rightarrow M$, a (local) section of $\pi$ is a function $s: M \rightarrow E$ such that $\pi \circ s=\operatorname{id}_{M}$. The set of sections of $\pi$ is denoted $\operatorname{Sec}(\pi)$. The set of local sections around a point $x \in M$ is denoted $\operatorname{Sec}_{x}(\pi)$.

Example 14. As we have just mentioned, sections of the trivial fiber bundle ( $M \times$ $\left.F, p r_{1}, M\right)$ are just the graph of functions from $M$ to $F$. Other examples are the following ones.
i) Sections of $\tau_{M}: T M \rightarrow M$ are vector fields, $\operatorname{Sec}\left(\tau_{M}\right)=\mathfrak{X}(M)$.
ii) Sections of $\pi_{M}: T^{*} M \rightarrow M$ are differential forms, $\operatorname{Sec}\left(\pi_{M}\right)=\Omega(M)$.
iii) Sections of $S^{2} T^{*} M \rightarrow M$ are semi-Riemannian metrics (admitting singularities).
iv) Sections of $\mathcal{F} M$ are parallelizations.

There are situations in which the existence of global sections implies conditions on the fiber bundle. In this direction we have:

Proposition 15. A principal bundle $\pi: P \rightarrow M$ with structure group $G$ admits a global section if and only if the bundle $P$ is trivializable, that is, $P \cong M \times G$.

It is obvious that the bundle $M \times G$ admits the global section $s: m \in M \mapsto$ $(m, \mathrm{e}) \in M \times G$, where e is the unit element of $G$. Conversely, if $s: M \rightarrow P$ is a global section, one can construct the diffeomorphism $\Psi_{s}:(m, g) \in M \times G \mapsto$ $R_{g}(s(m)) \in P$, which is clearly smooth. Moreover, from the fact that the action is free, one can deduce that it is injective and, using that $\operatorname{Orb}(p)=\pi^{-1}(\pi(p))$, given two elements $p, q$ of a fiber $\pi^{-1}(m)$ there exists a unique $g \in G$ such that $p g=q$, then $\Psi_{s}$ is also surjective.

Definition 16. A morphism of fiber bundles $\pi_{i}: E_{i} \rightarrow M_{i}, i=1,2$, is a map $\Psi: E_{1} \rightarrow E_{2}$ that maps fibers into fibers, i.e. it induces a map $\psi: M_{1} \rightarrow M_{2}$ such
that the following diagram commutes:

that is $\pi_{2} \circ \Psi=\psi \circ\left(\pi_{1}\right)$. Furthermore,
i) if $\pi_{i}: E_{i} \rightarrow M_{i}, i=1,2$, are vector (resp. affine) bundles, $\Psi$ is a linear (resp. affine) morphism if it is pointwise linear (resp. affine);
ii) if $\pi_{i}: P_{i} \rightarrow M_{i}, i=1,2$, are principal bundles with structure groups $G_{i}$, $i=1,2, \Psi$ is a principal bundle morphism if $\Psi$ is pointwise a group homomorphism, i.e. $\Psi(y \cdot g)=\Psi(y) \cdot \gamma(g)$ where $\gamma: G_{1} \rightarrow G_{2}$ is a Lie group homomorphism;
iii) if in addition $\Psi: P \rightarrow P$ is a principal bundle automorphism over the identity, that is $\Psi \circ R_{g}=R_{g} \circ \Psi$ and $\psi=\operatorname{id}_{M}$, then $\Psi$ is called a gauge transformation.

The previous notions of principal bundle automorphisms and gauge transformations can be recast from the infinitesimal point of view.
Definition 17. Let $\pi: P \rightarrow M$ be a principal fiber bundle with structure group $G$.
i) A vector field $X \in \mathfrak{X}(P)$ is said to be invariant when it is invariant under the action of $G$ on $P$, i.e. $R_{g}(X)=X$.
ii) A vector field $X \in \mathfrak{X}(P)$ of a principal fiber bundle $P$ is said to be vertical if $T \pi(X)=0$

Note 18. It is clear that if $X$ is an invariant vector field then its flow $\left\{\Phi_{t}\right\}$ commutes with the action, that is, $\Phi_{t} \circ R_{g}=R_{g} \circ \Phi_{t}$. Moreover, if $X$ is $\pi$-vertical, the "induced flow" on the base is the identity map of $M$. Therefore, invariant vertical vector fields $X \in \mathfrak{X}(P)$ of a principal fiber bundle $P$ are called infinitesimal gauge transformations since their flow are precisely 1-parameter groups of gauge transformations.

Consider a principal fiber bundle $G: P \rightarrow M$ and assume that $G$ acts on some manifold $F$ on the left. Then we may define a right action on the product $P \times F$ given by

$$
\begin{aligned}
& g \in G: P \times F \longrightarrow P \times F \\
&(y, f) \longmapsto \\
&\left(R_{g}(y), L_{g^{-1}}(f)\right)=\left(y \cdot g, g^{-1} \cdot f\right)
\end{aligned}
$$

This action on the product space $P \times F$ allows us to construct a new fiber bundle over $M$ with typical fiber $F$.

Definition 19. The fiber bundle associated to $G: P \rightarrow M$, is the bundle over $M$ given by $P \times_{G} F:=(P \times F) / G$ whose projection is $\pi_{P \times{ }_{G} F}\left([(y, f)]_{G}\right):=\pi(y)$.

Example 20. Suppose that $M$ has dimension $m$ and set $P=\mathcal{F} M$, the frame bundle of $M$ introduced in Example 12. If we consider the standard left action of the structure group $G=\mathrm{Gl}\left(\mathbb{R}^{m}\right)$ on $F=\mathbb{R}^{m}$, then the associated bundle $P \times_{G} F$ is just the tangent bundle $T M$. Given a class $\left[\left(u,\left(\lambda^{1}, \ldots, \lambda^{m}\right)\right)\right]_{G}$ the corresponding tangent vector is $\sum_{i} \lambda^{i} v_{i}$, where $\left\{v_{1}, \ldots, v_{m}\right\}$ are the elements of the linear frame $u$.

Example 21. Given an arbitrary principal fiber bundle $G: P \rightarrow M$, consider the adjoint action of $G$ on its lie algebra $\mathfrak{g}$, given by $\operatorname{Ad}_{g}:=T_{\mathrm{e}}\left(L_{g} \circ R_{g^{-1}}\right)$. Then, the associated bundle ad $P:=P \times_{G} \mathfrak{g}$ is a vector bundle with typical fiber $\mathfrak{g}$ and it is called the adjoint bundle of P. Moreover, the fibers naturally carry a Lie algebra structure, inherited from the Lie bracket $[\cdot, \cdot]_{\mathfrak{g}}$ on $\mathfrak{g}$ :

$$
\left[\left[\left(y_{1}, \xi_{1}\right)\right]_{G},\left[\left(y_{1}, \xi_{2}\right)\right]_{G}\right]_{\mathrm{ad} P}:=\left[\left(y_{1},-\left[\xi_{1}, \xi_{2}\right]_{\mathfrak{g}}\right)\right]_{G},
$$

making the adjoint bundle into a bundle of Lie algebras over $M$.
There is a relation between sections of the adjoint bundle and infinitesimal gauge transformations in the sense of Definition 17.

Proposition 22. Let $G: P \rightarrow M$ be an arbitrary principal fiber bundle. Then, there is a bijection between sections of the adjoint bundle ad $P:=P \times_{G} \mathfrak{g}$ and infinitesimal gauge transformations.

In order to prove it, we just have to realize that given $[(y, \xi)]_{G}$ then one can associate the tangent vector $X_{y} \in T_{y} P$ by the formula $X_{y}=\xi_{P}(y)$, where $\xi_{P}$ is the infinitesimal vector field associated to $\xi \in \mathfrak{g}$. The equivariance comes from the fact that $[(y, \xi)]_{G}=\left[\left(y \cdot g, \operatorname{Ad}_{g^{-1}} \xi\right)\right]_{G}, \forall g \in G$.

## 2 Connections

Given an $\mathbb{R}^{k}$-valued function $f: M \rightarrow \mathbb{R}^{k}$ on a manifold $M$, one can consider the notion of derivative (or, more generally, directional derivative along a tangent vector $v \in T M)$. Now, given a fiber bundle $\pi: E \rightarrow M$, a section $s \in \operatorname{Sec}(\pi)$ and a curve $\gamma$ on $M$ with tangent vector $X=\dot{\gamma}(0)$, it is not possible to define the analogous operator $D_{X} s$ as

$$
D_{X} s=\lim _{h \rightarrow 0} \frac{s(\gamma(h))-s(\gamma(0))}{h}
$$

because there is no way to go from the fiber $E_{s(\gamma(h))}$ to $E_{s(\gamma(0))}$. In order to do so, we introduce the notion of connection. An extended treatise on this subject is the classical book by Kobayashi and Nomizu [3]

Definition 23. An Ehresmann connection on a bundle $\pi: E \rightarrow M$ is a $\pi$-horizontal distribution, i.e. a distribution Hor: $y \in E \longmapsto \operatorname{Hor}(y) \leq T_{y} E$ complementary to the vertical bundle:

$$
\operatorname{Hor}(y) \oplus \operatorname{Vert}_{y}(\pi)=T_{y} E \quad \forall y \in E,
$$

where $\operatorname{Vert}(\pi)=\operatorname{ker}(\pi)$.
In adapted coordinates $\left(x^{i}, u^{\alpha}\right)$,

$$
\operatorname{Hor}(E)=\left\langle\left\{\frac{\partial}{\partial x^{i}}+\mathcal{H}_{i}^{\alpha} \frac{\partial}{\partial u^{\alpha}}\right\}\right\rangle \quad \text { and } \quad \operatorname{Vert}(\pi)=\left\langle\left\{\frac{\partial}{\partial u^{\alpha}}\right\}\right\rangle,
$$

where the functions $\mathcal{H}_{i}^{\alpha}\left(x^{i}, u^{\alpha}\right)$ are the so-called Christoffel symbols of $\operatorname{Hor}(E)$.
Definition 24. A principal connection on a principal bundle $G: P \rightarrow M$ is a connection $\mathcal{H}$ invariant under the group action, i.e. $R_{g}(\mathcal{H}(y))=\mathcal{H}\left(R_{g}(y)\right)$.

The covariant derivative. Consider the particular case where the associated bundle $E$ of a principal bundle $P$ is a vector bundle, that is, when the typical fiber $F$ is a vector space. Let $\mathcal{H}$ be a fixed principal connection in $P$ and lets denote by $\operatorname{Hor}(E)$ the associated $G$-invariant Ehresmann connection in $E$. Given a vector field $X \in \mathfrak{X}(M)$, its horizontal lift $X^{\mathrm{h}} \in \mathfrak{X}(E)$ induces a flow $\bar{\tau}_{t}: E \rightarrow E$ which is an automorphism over the flow $\tau_{t}: M \rightarrow M$ of $X$. We then define the covariant derivative of a section $s: M \rightarrow E$ along $X$ at $x_{0} \in M$ by the expression:

$$
\nabla_{X\left(x_{0}\right)} s:=\lim _{t \rightarrow 0} \frac{\bar{\tau}_{-t}\left(s\left(x_{t}\right)\right)-s\left(x_{0}\right)}{t}
$$

where $x_{t}:=\tau_{t}\left(x_{0}\right)$. In adapted coordinates,

$$
\nabla_{X} s=X^{i}\left(\frac{\partial s^{\alpha}}{\partial x^{i}}-\mathcal{H}_{i}^{\alpha} \circ s\right) e_{\alpha}
$$

where $X=X^{i} \partial / \partial x^{i}, s(x)=s^{\alpha}(x) e_{\alpha}(x),\left\{e_{\alpha}(x)\right\}$ is a smooth local basis around $x_{0} \in M$, and $\mathcal{H}_{i}^{\alpha}$ are the Christoffel symbols of $\operatorname{Hor}(E)$.

From the coordinate expression, it is clear that the covariant derivative $\nabla$ is tensorial with respect to the vector field $X$. Therefore, it may be seen as a map $\nabla: \operatorname{Sec}(E) \rightarrow \operatorname{Sec}\left(T^{*} M \otimes_{M} E\right)$. Moreover, there is a unique natural extension of $\nabla$ to an (exterior) covariant derivative $\nabla: \Omega_{M}^{r}(E) \rightarrow \Omega_{M}^{r+1}(E)$, for any $r \geq 0$, where $\Omega_{M}^{r}(E):=\operatorname{Sec}\left(\Lambda^{r} M \otimes_{M} E\right)$.
Example 28. If $P=\mathcal{F} M$ is the frame bundle of $M, E=T M$ is the tangent bundle of $M$ and $\mathcal{H}_{i j}^{k}$ are the Christoffel symbols of a linear connection in $M$, i.e. a principal connection $\mathcal{H}$ in $\mathcal{F} M$. Then, the Christoffel symbols of the associated connection $\operatorname{Hor}(T M)$ are $\mathcal{H}_{i}^{k}\left(x^{i}, v^{i}\right)=-\mathcal{H}_{i j}^{k}\left(x^{i}\right) v^{j}$ (the Christoffel symbols are linear with respect to the fiber coordinates) and the covariant derivative we have just defined coincides with the usual covariant derivative associated to a linear connection:

$$
\nabla_{X} Y=X^{i}\left(\frac{\partial Y^{k}}{\partial x^{i}}+\mathcal{H}_{i j}^{k} Y^{j}\right) \frac{\partial}{\partial x^{k}}
$$

The divergence operator. The usual divergence operator on the vector fields $X$ of a manifold $M$ is defined as the operator

$$
\begin{aligned}
\operatorname{div}_{\eta}: \mathfrak{X}(M) & \longrightarrow \mathcal{C}^{\infty}(M) \\
X & \longmapsto \operatorname{div}_{\eta} X \quad \text { s.t. } \mathrm{d}\left(i_{X} \eta\right)=\operatorname{div}_{\eta} X \cdot \eta,
\end{aligned}
$$

where $\eta$ is a fixed volume form over $M$. Besides of being $\mathbb{R}$-linear, this operator satisfies the Leibniz rule:

$$
\operatorname{div}_{\eta}(f \cdot X)=\langle\mathrm{d} f, X\rangle+f \cdot \operatorname{div}_{\eta} X, \quad f \in \mathcal{C}^{\infty}(M), X \in \mathfrak{X}(M)
$$

Similarly, one may define a divergence operator on the sections of $T M \otimes_{M} \mathrm{ad}^{*} P$ when a connection $\mathcal{H}$ in $P$ has been given (in addition to a volume form $\eta$ on $M$ ). This divergence operator is the map ${ }^{2}$

$$
\begin{aligned}
\operatorname{div}_{\eta}^{\mathcal{H}}: \mathfrak{X}\left(M ; \operatorname{ad}^{*} P\right) & \longrightarrow \mathcal{C}^{\infty}\left(M ; \operatorname{ad}^{*} P\right) \\
\mathcal{X} & \longmapsto \operatorname{div}_{\eta}^{\mathcal{H}} \mathcal{X} \quad \text { s.t. } \nabla^{\mathcal{H}}\left(i_{\mathcal{X}} \eta\right)=\eta \otimes \operatorname{div}_{\eta}^{\mathcal{H}} \mathcal{X} .
\end{aligned}
$$

[^1]De nition 37. Let $(E, \pi, M)$ be a ber bundle. Given a vector eld on the total space, $X \in \mathfrak{X}(E)$, we denes its 1st-jet prolongation to $J^{1} \pi$ as the vector eld $X^{(1)} \in \mathfrak{X}\left(J^{1} \pi\right)$ locally given by the expression

$$
X^{(1)}=X \frac{\partial}{\partial x}+X \frac{\partial}{\partial u}+\left(\frac{\partial X}{\partial x}-u \frac{\partial X}{\partial x}\right) \frac{\partial}{\partial u},
$$

where $X=X \partial / \partial x+X \partial / \partial u$.
Note 38. It is easy to show that, if $X$ is $\pi$-projectable (or in particular vertical) and $\Phi$ is its ow, which is a family of bundle automorphisms, then the ow of $X^{(1)}$ is just the 1st-jet prolongation $j^{1} \Phi$.

Jet bundles and principal bundles. Now, let $G: P \rightarrow M$ be a principal ber bundle. The action of $G$ on $P$ induces an action of $G$ on $J^{1} \pi$ : For each $g \in G$, $R$ is an automorphism of $P$ over the identity. We dene the (left) action of $g \in G$ on $J^{1} \pi$ as the rst prolongation of $R$ and, by abuse of notation, we denote it with the same symbol, that is

$$
R\left(j^{1} s\right):=j^{1}(R \circ s), s \in \operatorname{Sec}(\pi) .
$$

The quotient of $J^{1} \pi$ by this induced action will be of particular interest. In fact, we have that

Proposition 39. The set $\operatorname{Conn}(P):=J^{1} \pi / G$ is an a ne bundle over $M=P / G$, called the bundle of connections Moreover, it is modeled over the vector bundle $T^{*} M \otimes \quad$ ad $P \rightarrow M$.

Note 40. Fixed a connection $\mathcal{H}$ on the bundle $P$, let $\sigma_{\mathcal{H}}: M \rightarrow \operatorname{Conn}(P)$ be the associated section of the connection bundle. Recall thatonn $(P)$ is an ane bundle over $M$, therefore $\sigma_{\mathcal{H}}$ allows us to identify it with the vector bundle it is modeled over, that is, with $T^{*} M \otimes \operatorname{ad} P$. The identication works as follows: To each $\sigma \in$ Conn ( $P$ ) corresponds the unique element $\otimes \xi \in T^{*} M \otimes$ ad $P$ such that $\sigma=\sigma_{\mathcal{H}}(x)+\alpha \otimes \xi$, i.e. the element $\overrightarrow{\sigma_{\mathcal{H}}(x)} \sigma=\alpha \otimes \xi$.
Note 41. Let $\Phi: P \rightarrow P$ be a principal bundle automorphism (or a gauge transformation). Since $\Phi \circ R=R \circ \Phi$, its rst prolongation $j^{1} \Phi$ passes to the quotient inducing an automorphism $\Phi: \operatorname{Conn}(P) \rightarrow \operatorname{Conn}(P)$ (over the same base dieomorphism).

This can be reproduced innitesimally. If $X \in \mathfrak{X}(P)$ is an projectable invariant vector eld (or an innitesimal gauge transformation), then its $\{\Phi\} \in \mathbb{R}$ is a 1 parameter group of principal bundle automorphisms. Therefore, the induced family $\{\Phi\} \in \mathbb{R}$ in $\operatorname{Conn}(P)$ denes a vector eld $X \in \mathfrak{X}(\operatorname{Conn}(P))$, which projects over the same vector on $M$.

Corollary 42. Let $G: P \rightarrow M$ be a principal ber bundle. The set of equivariant jet elds, that is the set of sections $\sigma \in \operatorname{Sec}\left(\pi_{10}\right)$ such that $R \circ \sigma=\sigma \circ R$ for any $g \in G$, and the set of principal connections in $\pi: P \rightarrow M$ are in bijective correspondence.

Note 43. By passing to the quotient, to give a section of $J^{1} \pi / G \rightarrow M$ would be equivalent to give an equivariant section of $J^{1} \pi \rightarrow P$ and, thus, a principal connection.

Note 47. It is important to point out that the Euler-Lagrange equations are of second order. In fact, they are dened in the 2nd-jet manifold $J^{2} \pi$, which is dened similarly to the 1st-jet manifold $J^{1} \pi$ and which is an ane subbundle of the iterated 1 st-jet manifold $J^{1} \pi_{1}$. Even though it would be interesting to dene and study with detail these objects, it is not the purpose of these notes. The reader should refer to [4] for further details.

De nition 48. Given a Lagrangian function $L: J^{1} \pi \rightarrow \mathbb{R}$, a vertical vector eld $X \in \mathfrak{X}(E)$ is said to be a symmetry of $L$ if the Lagrangian is constant along $X^{(1)}$, that is if

$$
X^{(1)}(L)=0 \quad \text { or } \quad L \circ j^{1} \Phi=L,
$$

where $\Phi$ is the ow of $X$.
Theorem 49 (Noether). There is an $m$-form $\Theta$ in $J^{1} \pi$ such that if $X$ if a symmetry of $L$, then

$$
\mathrm{d}\left[\left(j^{1} s\right)^{*}\left(i^{(1)} \Theta\right)\right]=0,
$$

for any critical section $s \in \operatorname{Sec}(\pi)$ of $\mathcal{A}$.
Euler-Poincar reduction. We now consider the case of a eld theory where the conguration bundle space is a principal ber bundle $\pi: P \rightarrow M$ with structure group $G$. In such a case, symmetries of a LagrangialL: $J^{1} \pi \rightarrow M$ are assumed to be innitesimal gauge transformations. Therefore, $L$ will be invariant along any $\xi$, with $\xi \in \mathfrak{g}$ if and only if it is invariant under the induced action of the structure group $G$, sort of speaking $G$ is the group of symmetries of $L$ (assuming $G$ is connected).

$$
\xi^{(1)}(L)=0 \forall \xi \in \mathfrak{g} \quad \Rightarrow \quad L \circ j^{1} R=L \forall g \in G
$$

Therefore, if we assume that the group of symmetries of is the whole of the structure group $G$, we then may dene a function $l: \operatorname{Conn}(P)=J^{1} \pi / G \rightarrow \mathbb{R}$, which is called the reduced Lagrangian function.

The following theorem relates critical sections for $G$-invariant Lagrangian function $L$ and critical sections for the reduced Lagrangian functionl. Some of the technical aspects of the theorem's assertions are explained afterward.

Theorem 50 (Euler-Poincar reduction [2]), Let $L: J^{1} \pi \rightarrow \mathbb{R}$ be a G-invariant Lagrangian. Let $s: M \rightarrow P$ be a (local) section and $\sigma: M \rightarrow \operatorname{Conn}(P)$ be the induced reduced (local) section, $\sigma=\mu \circ j^{1} s$. Hence, the following points are equivalent:
i) $s_{0}$ is critical for any in nitesimal variation $\delta s$.
ii) $s_{0}$ satis es the Euler-Lagrange equations.
iii) $\sigma_{0}$ is critical for any in nitesimal variation $\delta \sigma=\nabla \eta, \eta \in \operatorname{Sec}(\operatorname{ad} P)$.
iv) $\sigma_{0}$ satis es the Euler-PoincarØequations:

$$
\operatorname{div} \circ\left[\frac{\delta l}{\delta \sigma} \circ \sigma_{0}\right]=0 .
$$

Note 51 . Thanks to the $G$-invariance of $L$, in order to compute its innites imal variation along a section, one only needs to consider innitesimal gauge trans formations $\xi \in \mathfrak{X}(E)$, with $\xi \in \mathfrak{g}$, inste ad of arbitrary vertical vector elds $X \in \mathfrak{X}(E)$. It turns out that, then, $T \mu\left(\xi^{(1)}\right) \in \mathfrak{X}(\operatorname{Conn}(P))$ is of the form $\nabla \eta$ for $\operatorname{some} \eta \in \operatorname{Sec}(\operatorname{ad} P)$,
where $\mu: P \rightarrow \operatorname{Conn}(P)$ is the canonical projection. That is, to consider variations $\delta\left(j^{1} s\right)$ for $L$ of the form $\xi^{(1)}$, where $\xi \in \mathscr{X}(E)$ is an innitesimal gauge transformation, is equivalent to consider variations $\delta \sigma$ for $l$ of the form $\nabla \eta$ for some $\eta \in \operatorname{Sec}(\operatorname{ad} P)$.

Note 52. The variation of the reduced Lagrangian $l$ with respect to the variation of a xed connection $\sigma \in \operatorname{Conn}(P)$ is dened as its ber derivative at $\sigma$. Recall that the connection bundle is an ane bundle modelled over the vector bundle $T^{*} M \otimes \quad \operatorname{ad} P$. The refore, $\delta l / \delta \sigma$ is the bered map

$$
\begin{aligned}
\frac{\delta l}{\delta \sigma}: \operatorname{Conn}(P) & \longrightarrow T M \otimes \quad \mathrm{ad}^{*} P \\
\sigma & \left.\longmapsto \frac{\delta l}{\delta \sigma}\right|_{x}
\end{aligned}
$$

where

$$
\begin{aligned}
\left.\frac{\delta l}{\delta \sigma}\right|_{x}: T^{*} M \otimes \operatorname{ad} P & \longrightarrow \mathbb{R} \\
A & \left.\longmapsto \frac{\mathrm{~d}}{\mathrm{~d} t}[l(\sigma+t \cdot A)]\right|_{=0}
\end{aligned}
$$

Note that - o $\sigma_{0} \in \mathfrak{X}\left(M ; \mathrm{ad}^{*} P\right)$ for a xed connection $\sigma_{0}: M \rightarrow \operatorname{Conn}(P)$.
Note 53. The Euler-Poincar equation is of rst-order.
Note 54. If $\sigma_{0}: M \rightarrow \operatorname{Conn}(P)$ is an arbitrary xed connection, then

$$
\operatorname{div}=\operatorname{div}{ }^{0}+\operatorname{ad}_{-0}^{*} .
$$

Hence, the Euler-Poincar equations may be rewritten in the form

$$
\operatorname{div} 0\left[\frac{\delta l}{\delta \sigma}\right]+\operatorname{ad}_{-0}\left[\frac{\delta l}{\delta \sigma}\right]=0
$$

Whenever $P$ is trivial, i.e. $P=M \times G$, the bundle of connections Conn $(P)$ has a canonical vector bundle structure and a distinguished connection may be chosen $\sigma_{0}=0$. Then, the Euler-Poincar equation simplies to

$$
\operatorname{div}\left[\frac{\delta l}{\delta \sigma}\right]+\operatorname{ad}^{*}\left[\frac{\delta l}{\delta \sigma}\right]=0
$$

where div is the usual divergence operator on $M$. If in addition we assume that $M=\mathbb{R}$, which corresponds to the case of Classical Mechanics, then we recover the classical Euler-Poincar equations of mechanics

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{\delta l}{\delta \sigma}\right]+\mathrm{ad}^{*}\left[\frac{\delta l}{\delta \sigma}\right]=0 .
$$

Corollary 55 (Reconstruction). The Euler-Lagrange equations of a $G$-invariant Lagrangian are equivalent to the Euler-PoincarØ equation plus the atness of its solutions (compatibility condition). More precisely, if $\sigma: M \rightarrow \operatorname{Conn}(P)$ is a at connection $(\operatorname{Curv}(\sigma)=0)$ that satis es the Euler-PoincarØequation, then its integral sections $s: M \rightarrow P\left(\mu\left(j^{1} s\right)=\sigma\right)$ satis es the Euler-Lagrange equations.

Proposition 56. Let $L: J^{1} \pi \rightarrow \mathbb{R}$ be a G-invariant Lagrangian. Let $s: M \rightarrow P$ be a (local) section and $\sigma: M \rightarrow \operatorname{Conn}(P)$ be the induced reduced (local) section, $\sigma=\mu \circ j^{1} s$. Hence, the following points are equivalent:
i) $s$ satis es the Noether conservation law for any $\xi \in \mathfrak{g}$ :

$$
\mathrm{d}\left[\left(j^{1} s\right)^{*}(i \underset{P}{(1)} \Theta)\right]=0
$$

ii) $\sigma$ satis es the Euler-PoincarØequations:

$$
\operatorname{div}\left[\frac{\delta l}{\delta \sigma}\right]=0
$$

## References

[1] E. Binz, J. niatycki, and H. Fischer , Geometry of classical elds, vol. 154 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1988. Notas de Matem tica [Mathematical Notes], 123.
[2] M. Castrilln Lpez, P. L. Garca PØrez, and T. S. Ratiu , EulerPoincarØreduction on principal bundles, Lett. Math. Phys., 58 (2001), pp. 167 180.
[3] S. Kobayashi and K. Nomizu , Foundations of di erential geometry. Vol. I, Wiley Classics Library, John Wiley \& Sons Inc., New York, 1996. Reprint of the 1963 original, A Wile y-Interscience Publication.
[4] D. J. Saunders , The geometry of jet bundles, vol. 142 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1989.

CØdric M. Campos: Departamento de M atemÆtica Fundamental, Universidad de La Laguna, San Cristbal de La Laguna, Tenerife, Spain E-mail address: cedricmc@ull. es
David Iglesias: Departamento de M atemÆtica Fundamental, Universidad de La Laguna, San Cristbal de La Laguna, Tenerife, Spain
E-mail address: di glesi a@ull. es


[^0]:    ${ }^{1}$ A Lie group action $\Phi: G \times P \rightarrow P$ is free if the only element $g \in G$ with fixed points is the identity.

[^1]:    ${ }^{2}$ We use here the notation $\mathcal{C}^{\infty}\left(M ; \operatorname{ad}^{*} P\right):=\operatorname{Sec}\left(\operatorname{ad}^{*} P\right), \mathfrak{X}\left(M ; \operatorname{ad}^{*} P\right):=\operatorname{Sec}\left(T M \otimes_{M} \operatorname{ad}^{*} P\right)$ and $\Omega\left(M ; \mathrm{ad}^{*} P\right):=\operatorname{Sec}\left(T^{*} M \otimes_{M} \operatorname{ad}^{*} P\right)$ since it is more suggestive.

