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Reduction in Jet Bundle Theory

lecture by Marco Castrillón
notes by Cédric M. Campos & David Iglesias

June 21, 2011

Abstract

These notes follow the course given by M. Castrillón on covariant reduction of
Field Theories when the configuration bundle is a principal bundle and the sym-
metry group is the structure group of the bundle. The preliminary notions needed
to understand the geometry behind the constructuion are also given.

1 Bundles
In this first section, we introduce fiber bundles and associated notions, such as
connections or sections. These are the objects in which we later develop our theory.

A fiber bundle is the generalization of the product of two manifolds, but in this
case they are “glued” in a non trivial way. Roughly speaking, we could say that the
space is locally the product of two manifolds. To be more precise,

Definition 1. A fiber bundle is a triple (E, π,M) where M and E are smooth
manifolds (of dimension m and m+ n, respectively) and π : E →M is a surjective
submersion that satisfies the following condition: there is a smooth manifold F (of
dimension n) such that

∀x ∈M ∃U ∈ N (x) ∃Ψ ∈ Diff(π−1(U), U × F ) : π|π−1(U) ≡ pr1 ◦Ψ .

In such a case, we call:

i) M , the base space;

ii) E, the total space;

iii) π, the projection;

iv) F , the typical fiber ;

v) Ex := π−1(x), the fiber over x ∈M ;

vi) Eu := π−1(π(u)), the fiber through u ∈ E;

vii) and {(Uα,Ψα)}α∈A, a trivialization atlas.

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit http:
//creativecommons.org/licenses/by-nc-sa/3.0/
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Note 2. A fiber bundle (E, π,M) it is also commonly denoted by the total space E
itself or by the projection π.

Note 3. The existence of the typical fiber F could be stated locally, but the defini-
tion implies that a unique typical fiber (modulo diffeomorphisms) may be chosen.

Note 4. Any couple of local trivializations (Uα,Ψα) and (Uβ,Ψβ) induces, for each
x ∈ Uα ∩ Uβ, a diffeomorphism of the typical fiber F .

(Uα ∩ Uβ)× F −→ (Uα ∩ Uβ)× F
(x, y) 7−→ (x,Ψαβ(x, y))

=⇒ Ψαβ(x, ·) ∈ Diff(F )

The bundle structure is encoded in two different parts: One is the way in which
the fibers are glued together, which can be trivial or not. The other is the particular
structure of the fiber itself.

Example 5. The simplest gluing technique would be the Cartesian one. IfM and F
are manifolds then (M ×F, pr1,M) is a fiber bundle, called the trivial fiber bundle.

Example 6. Depending on the structure of the fiber manifold F , we may have for
instance:

i) Vector bundles (F = V ), the fibers are endowed with a vector space structure:
the tangent bundle TM , the cotangent bundle T ∗M , the symmetric tensor
product of the cotangent bundle S2T ∗M , etc.

ii) Affine bundles (F = A), the fibers are endowed with an affine structure. A
particular example of this situation is the first-jet bundle J1π of a given fiber
bundle. We will develop this notion in Section §3.

Example 7. Let (E, π,M) be a fiber bundle. Then, the set

Vert(π) := {X ∈ TE : Tπ(X) = 0}

of vertical vectors with respect to π, together with the restriction of the canonical
projection τE |Vert(π) : Vert(π) → E, is called the vertical bundle of π. It can be
proved that it is in fact a vector bundle over E.

A particular class of fiber bundles, which is interesting for our purposes, is the
family of principal bundles. In this case, the fiber manifold is a Lie group.

Definition 8. A principal bundle is a fivefold (G,Φ, P, π,M) such that

i) G is a Lie group;

ii) (P, π,M) is a fiber bundle with typical fiber G;

iii) Φ: G× P → P is a free1 Lie group action of G on P ; and

iv) M = P/G and π is the quotient projection.

Note 9. One can check that condition i) to iv) above give as a consequence the
existence of a trivialization atlas {(Uα,Ψα)}α∈A of P , such that Ψα = π × ψα,
where ψα(Φ(g, p)) = Φ(g, ψα(p)), p ∈ π−1(U), g ∈ G, α ∈ A.
Note 10. The notation G : P →M is also used and, when the action is a right action
(resp. left action), then we note Φ(p, g) = Rg(p) = pg (resp. Φ(p, g) = Lg(p) = gp).
Finally, the induced action will be noted by the same symbol, that is: Φ(p, g) instead
of TpΦ( · , g) and, similarly, Rg (resp. Lg) instead of TRg (resp. TLg). In what
follows and if nothing else is stated, every action is assumed to be on the right.

1A Lie group action Φ: G× P → P is free if the only element g ∈ G with fixed points is the identity.
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Note 11. Given a principal bundle π : P →M with structure group G and a point
u ∈ Px, then π−1(x) is just the orbit of u, i.e.

π−1(x) = {ug | g ∈ G} = Orb(u).

Therefore, we clearly have that the fibers are diffeomorphic to G.

Example 12. Given a manifold M of dimension m and a point x ∈ M , a linear
frame u at x is an ordered basis v1, . . . , vm of the tangent space TxM . The frame
bundle FM is the set formed by all linear frames u at all points of M . Given local
coordinates (x1, . . . , xm) on a neighborhood U , we have that each element of any
frame u = {v1, . . . , vm} can be written as vi =

∑
j A

j
i∂/∂x

j . Thus, FM is locally of
the form U ×Gl(Rm), where Gl(Rm) is the general linear group, with coordinates
(xi, Aji ). These induce a manifold structure on FM and a surjective submersion
FM →M given by u 7−→ x, where u is a linear frame at x. In addition, FM →M
is a principal bundle with structure group Gl(Rm), where given a linear frame u
and A ∈ Gl(Rm), the linear frame uA = {w1, . . . , wn} is just wi =

∑
j A

j
ivj .

Given two manifolds M and F , a function between them f : M → F can be
reinterpreted considering its graph, that is, the map sf : M → M × F , x 7−→
(x, f(x)). The map sf satisfy that pr1 ◦ sf = idM . Generalizing to the context of
general fiber bundles, we have the notion of sections.

Definition 13. Given a fiber bundle π : E →M , a (local) section of π is a function
s : M → E such that π ◦ s = idM . The set of sections of π is denoted Sec(π). The
set of local sections around a point x ∈M is denoted Secx(π).

Example 14. As we have just mentioned, sections of the trivial fiber bundle (M ×
F, pr1,M) are just the graph of functions from M to F . Other examples are the
following ones.

i) Sections of τM : TM →M are vector fields, Sec(τM ) = X(M).

ii) Sections of πM : T ∗M →M are differential forms, Sec(πM ) = Ω(M).

iii) Sections of S2T ∗M → M are semi-Riemannian metrics (admitting singulari-
ties).

iv) Sections of FM are parallelizations.

There are situations in which the existence of global sections implies conditions
on the fiber bundle. In this direction we have:

Proposition 15. A principal bundle π : P → M with structure group G admits a
global section if and only if the bundle P is trivializable, that is, P ∼= M ×G.

It is obvious that the bundle M × G admits the global section s : m ∈ M 7→
(m, e) ∈ M × G, where e is the unit element of G. Conversely, if s : M → P is
a global section, one can construct the diffeomorphism Ψs : (m, g) ∈ M × G 7→
Rg(s(m)) ∈ P , which is clearly smooth. Moreover, from the fact that the action is
free, one can deduce that it is injective and, using that Orb(p) = π−1(π(p)), given
two elements p, q of a fiber π−1(m) there exists a unique g ∈ G such that pg = q,
then Ψs is also surjective.

Definition 16. A morphism of fiber bundles πi : Ei → Mi, i = 1, 2, is a map
Ψ: E1 → E2 that maps fibers into fibers, i.e. it induces a map ψ : M1 → M2 such
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that the following diagram commutes:

E1

π1

��

Ψ // E2

π2

��
M1

ψ // M2

that is π2 ◦Ψ = ψ ◦ (π1). Furthermore,

i) if πi : Ei →Mi, i = 1, 2, are vector (resp. affine) bundles, Ψ is a linear (resp.
affine) morphism if it is pointwise linear (resp. affine);

ii) if πi : Pi → Mi, i = 1, 2, are principal bundles with structure groups Gi,
i = 1, 2, Ψ is a principal bundle morphism if Ψ is pointwise a group ho-
momorphism, i.e. Ψ(y · g) = Ψ(y) · γ(g) where γ : G1 → G2 is a Lie group
homomorphism;

iii) if in addition Ψ: P → P is a principal bundle automorphism over the identity,
that is Ψ◦Rg = Rg ◦Ψ and ψ = idM , then Ψ is called a gauge transformation.

The previous notions of principal bundle automorphisms and gauge transforma-
tions can be recast from the infinitesimal point of view.

Definition 17. Let π : P → M be a principal fiber bundle with structure group
G.

i) A vector field X ∈ X(P ) is said to be invariant when it is invariant under the
action of G on P , i.e. Rg(X) = X.

ii) A vector field X ∈ X(P ) of a principal fiber bundle P is said to be vertical if
Tπ(X) = 0

Note 18. It is clear that if X is an invariant vector field then its flow {Φt} com-
mutes with the action, that is, Φt ◦ Rg = Rg ◦ Φt. Moreover, if X is π-vertical,
the “induced flow” on the base is the identity map of M . Therefore, invariant ver-
tical vector fields X ∈ X(P ) of a principal fiber bundle P are called infinitesimal
gauge transformations since their flow are precisely 1-parameter groups of gauge
transformations.

Consider a principal fiber bundle G : P →M and assume that G acts on some
manifold F on the left. Then we may define a right action on the product P × F
given by

g ∈ G : P × F −→ P × F
(y, f) 7−→ (Rg(y), Lg−1(f)) = (y · g, g−1 · f)

This action on the product space P×F allows us to construct a new fiber bundle
over M with typical fiber F .

Definition 19. The fiber bundle associated to G : P → M , is the bundle over M
given by P ×G F := (P × F )/G whose projection is πP×GF ([(y, f)]G) := π(y).

Example 20. Suppose thatM has dimension m and set P = FM , the frame bundle
of M introduced in Example 12. If we consider the standard left action of the
structure group G = Gl(Rm) on F = Rm, then the associated bundle P ×G F is
just the tangent bundle TM . Given a class [(u, (λ1, . . . , λm))]G the corresponding
tangent vector is

∑
i λ

ivi, where {v1, . . . , vm} are the elements of the linear frame
u.
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Example 21. Given an arbitrary principal fiber bundle G : P → M , consider the
adjoint action of G on its lie algebra g, given by Adg := Te(Lg ◦ Rg−1). Then, the
associated bundle adP := P ×G g is a vector bundle with typical fiber g and it is
called the adjoint bundle of P. Moreover, the fibers naturally carry a Lie algebra
structure, inherited from the Lie bracket [·, ·]g on g:[

[(y1, ξ1)]G, [(y1, ξ2)]G
]
adP

:= [(y1,−[ξ1, ξ2]g)]G ,

making the adjoint bundle into a bundle of Lie algebras over M .

There is a relation between sections of the adjoint bundle and infinitesimal gauge
transformations in the sense of Definition 17.

Proposition 22. Let G : P → M be an arbitrary principal fiber bundle. Then,
there is a bijection between sections of the adjoint bundle adP := P ×G g and
infinitesimal gauge transformations.

In order to prove it, we just have to realize that given [(y, ξ)]G then one can
associate the tangent vector Xy ∈ TyP by the formula Xy = ξP (y), where ξP is the
infinitesimal vector field associated to ξ ∈ g. The equivariance comes from the fact
that [(y, ξ)]G = [(y · g,Adg−1 ξ)]G, ∀g ∈ G.

2 Connections
Given an Rk-valued function f : M → Rk on a manifold M , one can consider the
notion of derivative (or, more generally, directional derivative along a tangent vector
v ∈ TM). Now, given a fiber bundle π : E → M , a section s ∈ Sec(π) and a curve
γ on M with tangent vector X = γ̇(0), it is not possible to define the analogous
operator DXs as

DXs = lim
h→0

s(γ(h))− s(γ(0))
h

because there is no way to go from the fiber Es(γ(h)) to Es(γ(0)). In order to do so,
we introduce the notion of connection. An extended treatise on this subject is the
classical book by Kobayashi and Nomizu [3]

Definition 23. An Ehresmann connection on a bundle π : E →M is a π-horizontal
distribution, i.e. a distribution Hor: y ∈ E 7−→ Hor(y) ≤ TyE complementary to
the vertical bundle:

Hor(y)⊕Verty(π) = TyE ∀y ∈ E ,

where Vert(π) = ker(π).

In adapted coordinates (xi, uα),

Hor(E) =
〈{

∂

∂xi
+Hαi

∂

∂uα

}〉
and Vert(π) =

〈{
∂

∂uα

}〉
,

where the functions Hαi (xi, uα) are the so-called Christoffel symbols of Hor(E).

Definition 24. A principal connection on a principal bundle G : P → M is a
connection H invariant under the group action, i.e. Rg(H(y)) = H(Rg(y)).
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Let ξ ∈ g and consider the infinitesimal vector field ξP on P , whose flow {φt} is
just Rexp(tξ). Since π ◦Rg = π, then ξP is a vertical vector field, i.e. ξP ∈ Vert(π).
Thus, we can define a 1-form on P with values on the Lie algebra g as follows. Given
any X ∈ TyP , we decompose it in its vertical and horizontal parts, X = Xv +Xh.
Then, ω(X) := ξ such that ξP (y) = Xv. Clearly, a vector X is horizontal if and
only if ω(X) = 0. Reciprocally, given a vector valued 1-form ω : TP → g, one can
define a horizontal distribution by

Hor(y) = {X ∈ TyP |ω(X) = 0}.

We denote this horizontal distribution by Hor(ω). Summing up,

Proposition 25. A principal connection H on a principal bundle G : P → M is
equivalent to an equivariant vector-valued 1-form ω : TP → g (ω ◦Rg = Adg−1 ◦ ω)
such that ω(ξP ) = ξ for any ξ ∈ g. The 1-form ω is called the connection 1-form
or the canonical structure form associated to H. Moreover, H = Hor(ω).

There is an object which can be canonically associated to any connection.

Definition 26. Given a principal connection H on a principal bundle G : P →M ,
its curvature is the 2-form

Ω(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )] ,

where ω is the canonical structure form associated to H.

The curvature allows us to characterize the integrability of the horizontal dis-
tribution. More precisely,

Theorem 27. The distribution associated with a principal connection is integrable
if and only if it is flat, that is, if and only if its curvature vanishes identically,
Ω = 0.

A principal connection H in a principal bundle G : P →M may be transferred
to its associated bundles. Let F be a manifold such that G acts on it on the
left. Given a fixed point ξ0 ∈ E = (P × F )/G, let (p0, f0) ∈ P × F be any class
representative of ξ0, that is ξ0 = [p0, f0]G. We define the horizontal subspace of TE
at ξ0 by

Horξ0(E) := (Tp0Ψ)(H(p0)) ,

where Ψ: p ∈ P 7→ [p, f0] ∈ E. It can be shown that, since H is invariant, Horξ0(E)
does not depend on the class representative of ξ0 and, therefore, it defines a con-
nection Hor(E) on E →M .

G : P −→M E = P×F
G −→M

principal
connection connection

///o/o/o/o/o

///o/o/o/o/o

OO OO

G acts on F
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The covariant derivative. Consider the particular case where the associated
bundle E of a principal bundle P is a vector bundle, that is, when the typical fiber
F is a vector space. Let H be a fixed principal connection in P and lets denote
by Hor(E) the associated G-invariant Ehresmann connection in E. Given a vector
field X ∈ X(M), its horizontal lift Xh ∈ X(E) induces a flow τ̄t : E → E which is
an automorphism over the flow τt : M → M of X. We then define the covariant
derivative of a section s : M → E along X at x0 ∈M by the expression:

∇X(x0)s := lim
t→0

τ̄−t(s(xt))− s(x0)
t

,

where xt := τt(x0). In adapted coordinates,

∇Xs = Xi

(
∂sα

∂xi
−Hαi ◦ s

)
eα ,

where X = Xi∂/∂xi, s(x) = sα(x)eα(x), {eα(x)} is a smooth local basis around
x0 ∈M , and Hαi are the Christoffel symbols of Hor(E).

From the coordinate expression, it is clear that the covariant derivative ∇ is
tensorial with respect to the vector field X. Therefore, it may be seen as a map
∇ : Sec(E)→ Sec(T ∗M ⊗M E). Moreover, there is a unique natural extension of ∇
to an (exterior) covariant derivative ∇ : Ωr

M (E) → Ωr+1
M (E), for any r ≥ 0, where

Ωr
M (E) := Sec(ΛrM ⊗M E).

Example 28. If P = FM is the frame bundle of M , E = TM is the tangent bundle
ofM andHkij are the Christoffel symbols of a linear connection inM , i.e. a principal
connection H in FM . Then, the Christoffel symbols of the associated connection
Hor(TM) are Hki (xi, vi) = −Hkij(xi)vj (the Christoffel symbols are linear with
respect to the fiber coordinates) and the covariant derivative we have just defined
coincides with the usual covariant derivative associated to a linear connection:

∇XY = Xi

(
∂Y k

∂xi
+HkijY j

)
∂

∂xk
.

The divergence operator. The usual divergence operator on the vector fields
X of a manifold M is defined as the operator

divη : X(M) −→ C∞(M)
X 7−→ divηX s.t. d(iXη) = divηX · η ,

where η is a fixed volume form over M . Besides of being R-linear, this operator
satisfies the Leibniz rule:

divη(f ·X) = 〈 df,X〉+ f · divηX , f ∈ C∞(M), X ∈ X(M).

Similarly, one may define a divergence operator on the sections of TM ⊗M ad∗ P
when a connection H in P has been given (in addition to a volume form η on M).
This divergence operator is the map2

divHη : X(M ; ad∗ P ) −→ C∞(M ; ad∗ P )
X 7−→ divHη X s.t. ∇H(iX η) = η ⊗ divHη X .

2We use here the notation C∞(M ; ad∗ P ) := Sec(ad∗ P ), X(M ; ad∗ P ) := Sec(TM ⊗M ad∗ P ) and
Ω(M ; ad∗ P ) := Sec(T ∗M ⊗M ad∗ P ) since it is more suggestive.
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Note that iX η ∈ Ω(M ; ad∗ P ), hence ∇H(iX η) ∈ Ωm(M ; ad∗ P ) and divHη X is
well defined. As the usual divergence operator, this one is R-linear and satisfies a
Leibniz type rule too:

divη(〈ξ,X〉) = 〈∇Hξ,X〉+ 〈ξ,divHη X〉 , ξ ∈ C∞(M ; adP ), X ∈ X(M ; ad∗ P ).

3 Jet bundles
One of the models of Classical Field Theory is to think of a classical field as a section
of fiber bundle, where the base space represents the space-time and the total space
represents the configuration space. In order to work in an invariant and geometric
form with the derivatives of the fields, i.e. the sections of the fiber bundle, one goes
through the theory of jet bundles. The reader is referred to the books of Saunders
[4] and Binz et al. [1].

Two local sections s1, s2 ∈ Secx(π) of a bundle π : E → M are equivalent at
x ∈ M if s1(x) = s2(x) and Txs1 = Txs2. This defines an equivalence relation in
the set of local sections around x.

Definition 29. The 1st-jet of a (local) section s ∈ Secx(π) at x ∈ M is the
equivalence class of the previous relation to which s belongs and it is denoted j1

xs.
The collection of such equivalence classes over M is called the 1st-jet bundle of π
and denoted

J1π := {j1
xs : x ∈M, s ∈ Secx(π)} .

Proposition 30. The 1st-jet manifold J1π of a fiber bundle π : E → M may be
endowed with a smooth structure manifold. Moreover, adapted coordinates (xi, uα)
on E induce coordinates (xi, uα, uαi ) on J1π such that

xi(j1
xs) = xi(x) , uα(j1

xs) = uα(s(x)) and uαi (j1
xs) =

∂(uα ◦ s)
∂xi

∣∣∣
x
.

Given a couple of adapted coordinates on E, (xi, uα) and (yj , vβ), they induce
coordinates (xi, uα, uαi ) and (yj , vβ, vβj ) on J1π. The change of coordinates is then
given by the expression

vβj =
(
∂vβ

∂xi
+ uαi

∂vβ

∂uα

)
∂xi

∂yj
.

Corollary 31. The 1st-jet manifold J1π of a fiber bundle π : E → M is a fiber
bundle over M and an affine fiber bundle over E. The projections are given by

J1π
π1,0 //

π1 !!DD
DD

DD
DD

E

π

��
M

π1,0(j1
xs)=s(x) ( π1,0(xi, uα, uαi )=(xi, uα) )

π1(j1
xs)=x ( π1(xi, uα, uαi )=(xi) )

π1 and π1,0 are called respectively the source and the target projections.

Note 32. Whenever π : E → M is a vector bundle, so is π1 : J1π → M , even
though π1,0 : J1π → E remains affine. But, whenever π is trivial, that is whenever
E = M × F (and whatever the fiber structure be), then π1,0 : J1π → E may be
endowed with a vector bundle structure by using the constant sections of π : E =
M × F →M . More precisely, J1 pr1

∼= T ∗M × TF where pr1 : M × F →M is the
projection into the first component.
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Let us consider now sections of the jet bundle and its relation with connections.

Definition 33. The sections of the target projection π1,0 are called jet fields.

A jet field generalizes the concept of a vector field. Instead of depending on a
single parameter, like does the flow of a vector field, the “flow” of a jet field would
depend on multiple parameters (in the base manifold). Moreover, they permit to
give a new interpretation of Ehresmann connections.

Proposition 34. Given an arbitrary fiber bundle π : E → M , consider its 1st-jet
manifold J1π. The set of jet fields, Sec(π1,0), and the set of Ehresmann connections
in π : E →M are in bijective correspondence.

The proof is quite simple. The idea is based on the following: Given a jet field
σ ∈ Sec(π1,0), at each point y ∈ E, σ(y) is seen as a linear map from Tπ(y)M to
TyE. Using this linear map, we define Hor(y) ⊆ TyE to be the image of Tπ(x)M by
σ(y).

Conversely, given an Ehresmann connection with horizontal distribution Hor(E),
we define a jet field σH ∈ Sec(π1,0) in such a way that, for any y ∈ E, σH(y) is the
linear map from Tπ(x)M to TyE whose image is Hor(y) and projects to the identity.

In the same way that a jet generalizes the concept of a tangent vector, we may
generalize the concept of a tangent map, although it is a bit more restrictive.

Definition 35. Given two fiber bundles (E, π,M) and (F, ρ,N), let Φ: E → F
be a fiber bundle morphism such that the base transformation φ : M → N is a
diffeomorphism. The 1st prolongation of Φ is the map

j1Φ: j1
xs ∈ J1π 7−→ j1

φ(x)(Φ ◦ s ◦ φ
−1) ∈ J1ρ .

Note 36. Note that the first prolongation j1Φ of a morphism Φ is both, an affine
morphism between (J1π, π1,0, E) and (J1ρ, ρ1,0, F ), and a morphism between (J1π, π1,M)
and (J1ρ, ρ1, N). In each case, the induced functions between the base spaces are
Φ and φ, respectively.

If (xi, uα, uαi ) and (yj , vβ, vβj ) denote adapted coordinates in J1π and J1ρ, re-
spectively, then we have

vβj ((j1Φ)(xi, uα, uαi )) =
dΦβ

dxi
· ∂φ

−i

∂yj
=
(
∂Φβ

∂xi
+ uαi

∂Φβ

∂uα

)
· ∂φ

−i

∂yj
.

The expression d/ dxi = ∂/∂xi+uαi ∂/∂u
α is know as the total coordinate derivative.

J1π
j1Φ //

π1,0

��

J1ρ

ρ1,0

��
E

Φ //

π

��

F

ρ

��
M

φ // N

s

HHj1s

FF

Φ◦s◦φ−1

VV j1(Φ◦s◦φ−1)

XX
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Definition 37. Let (E, π,M) be a fiber bundle. Given a vector field on the total
space, X ∈ X(E), we defines its 1st-jet prolongation to J1π as the vector field
X(1) ∈ X(J1π) locally given by the expression

X(1) = Xi ∂

∂xi
+Xα ∂

∂uα
+
(
∂Xα

∂xi
− uαj

∂Xj

∂xi

)
∂

∂uαi
,

where X = Xi∂/∂xi +Xα∂/∂uα.

Note 38. It is easy to show that, if X is π-projectable (or in particular vertical)
and Φt is its flow, which is a family of bundle automorphisms, then the flow of X(1)

is just the 1st-jet prolongation j1Φt.

Jet bundles and principal bundles. Now, let G : P → M be a principal
fiber bundle. The action of G on P induces an action of G on J1π: For each g ∈ G,
Rg is an automorphism of P over the identity. We define the (left) action of g ∈ G
on J1π as the first prolongation of Rg and, by abuse of notation, we denote it with
the same symbol, that is

Rg(j1
xs) := j1

x(Rg ◦ s) , s ∈ Secx(π) .

The quotient of J1π by this induced action will be of particular interest. In fact,
we have that

Proposition 39. The set Conn(P ) := J1π/G is an affine bundle over M = P/G,
called the bundle of connections. Moreover, it is modeled over the vector bundle
T ∗M ⊗M adP →M .

Note 40. Fixed a connection H on the bundle P , let σH : M → Conn(P ) be the
associated section of the connection bundle. Recall that Conn(P ) is an affine bundle
over M , therefore σH allows us to identify it with the vector bundle it is modeled
over, that is, with T ∗M ⊗M adP . The identification works as follows: To each
σ ∈ Connx(P ) corresponds the unique element α ⊗ ξ ∈ T ∗M ⊗M adP such that
σ = σH(x) + α⊗ ξ, i.e. the element

−−−−−→
σH(x)σ = α⊗ ξ.

Note 41. Let Φ: P → P be a principal bundle automorphism (or a gauge transfor-
mation). Since Φ ◦ Rg = Rg ◦ Φ, its first prolongation j1Φ passes to the quotient
inducing an automorphism Φc : Conn(P ) → Conn(P ) (over the same base diffeo-
morphism).

This can be reproduced infinitesimally. If X ∈ X(P ) is an projectable invariant
vector field (or an infinitesimal gauge transformation), then its {Φt}t∈R is a 1-
parameter group of principal bundle automorphisms. Therefore, the induced family
{Φc

t}t∈R in Conn(P ) defines a vector field Xc ∈ X(Conn(P )), which projects over
the same vector on M .

Corollary 42. Let G : P → M be a principal fiber bundle. The set of equivariant
jet fields, that is the set of sections σ ∈ Sec(π1,0) such that Rg ◦ σ = σ ◦ Rg for
any g ∈ G, and the set of principal connections in π : P → M are in bijective
correspondence.

Note 43. By passing to the quotient, to give a section of J1π/G → M would
be equivalent to give an equivariant section of J1π → P and, thus, a principal
connection.

11



J1π

��

J1π/G = Conn(P )

��
P P/G = M

//______

Moreover, if Φ is a gauge transformation, then Φc maps principal connections into
principal connection: For instance, if ω : TP → g is a connection 1-form and
we define a new connection 1-form ω′ = (Φ−1)∗ω then, considered as sections of
Conn(P )→M , we have that ω′ = Φc ◦ ω.

4 Calculus of variations
Classically, the theory of mechanics seeks for curves c : R → Q in a configuration
space Q that optimize, for a given function L : R× TQ→ R, an integral functional
of the type ∫ t1

t0

L(t, c(t), ċ(t)) dt .

Recall that, if we consider the trivial bundle pr1 : R × Q → R, we have J1 pr1
∼=

R×TQ. If we think of the curves c : R→ Q as sections of the trivial bundle R×Q,
then L may rather be seen as a function L : J1pr1 → R. Now we extend this idea
to general fiber bundles π : E →M .

Definition 44. Given a fiber bundle π : E →M , a Lagrangian function is a func-
tion L : J1π → R. The associated integral action is the functional

AL(s) :=
∫
M
L(j1s)η ,

where η is a fixed volume form on M .
A critical section of AL is a section s ∈ Sec(π) for which the derivative of AL is

null, that is, a section such that

d

dt
[AL(st)]

∣∣∣
t=0

=
d

dt

[∫
M
L(j1st)η

] ∣∣∣∣
t=0

= 0

for any variation st of s.

Note 45. In classical field theory, it is usually assumed that the base manifold M
is an oriented smooth manifold endowed with a fixed volume form η ∈ Ωm(M).
In addition and for simplicity, we will also assume that M is a smooth compact
manifold without boundary.

Theorem 46 (Euler-Lagrange equations, [1, 4]). Given a Lagrangian function
L : J1π → R, critical sections of the associated integral action AL are characterized
by the Euler-Lagrange equations:

∂L

∂uα
− d

dxi

(
∂L

∂uαi

)
= 0 ,

where d/ dxi is the total coordinate derivative

d

dxj
=

∂

∂xj
+ uαj

∂

∂uα
+ uαij

∂

∂uαi
.
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Note 47. It is important to point out that the Euler-Lagrange equations are of
second order. In fact, they are defined in the 2nd-jet manifold J2π, which is defined
similarly to the 1st-jet manifold J1π and which is an affine subbundle of the iterated
1st-jet manifold J1π1. Even though it would be interesting to define and study with
detail these objects, it is not the purpose of these notes. The reader should refer to
[4] for further details.

Definition 48. Given a Lagrangian function L : J1π → R, a vertical vector field
X ∈ X(E) is said to be a symmetry of L if the Lagrangian is constant along X(1),
that is if

X(1)(L) = 0 or L ◦ j1Φt = L ,

where Φt is the flow of X.

Theorem 49 (Noether). There is an m-form ΘL in J1π such that if X if a sym-
metry of L, then

d[(j1s)∗(iX(1)ΘL)] = 0 ,

for any critical section s ∈ Sec(π) of AL.

Euler-Poincaré reduction. We now consider the case of a field theory where
the configuration bundle space is a principal fiber bundle π : P →M with structure
group G. In such a case, symmetries of a Lagrangian L : J1π → M are assumed
to be infinitesimal gauge transformations. Therefore, L will be invariant along
any ξP , with ξ ∈ g if and only if it is invariant under the induced action of the
structure group G, sort of speaking G is the group of symmetries of L (assuming
G is connected).

ξ
(1)
P (L) = 0 ∀ξ ∈ g ⇐⇒ L ◦ j1Rg = L ∀g ∈ G

Therefore, if we assume that the group of symmetries of L is the whole of the
structure group G, we then may define a function l : Conn(P ) = J1π/G → R,
which is called the reduced Lagrangian function.

The following theorem relates critical sections for G-invariant Lagrangian func-
tion L and critical sections for the reduced Lagrangian function l. Some of the
technical aspects of the theorem’s assertions are explained afterward.

Theorem 50 (Euler-Poincaré reduction [2]). Let L : J1π → R be a G-invariant
Lagrangian. Let s : M → P be a (local) section and σ : M → Conn(P ) be the induced
reduced (local) section, σ = µ ◦ j1s. Hence, the following points are equivalent:

i) s0 is critical for any infinitesimal variation δs.

ii) s0 satisfies the Euler-Lagrange equations.

iii) σ0 is critical for any infinitesimal variation δσ = ∇ση, η ∈ Sec(adP ).

iv) σ0 satisfies the Euler-Poincaré equations:

divσ0
η

[
δl

δσ
◦ σ0

]
= 0 .

Note 51. Thanks to the G-invariance of L, in order to compute its infinitesimal vari-
ation along a section, one only needs to consider infinitesimal gauge transformations
ξE ∈ X(E), with ξ ∈ g, instead of arbitrary vertical vector fields X ∈ X(E). It turns
out that, then, Tµ(ξ(1)

E ) ∈ X(Conn(P )) is of the form ∇ση for some η ∈ Sec(adP ),
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where µ : P → Conn(P ) is the canonical projection. That is, to consider variations
δ(j1s) for L of the form ξ

(1)
E , where ξE ∈ X(E) is an infinitesimal gauge trans-

formation, is equivalent to consider variations δσ for l of the form ∇ση for some
η ∈ Sec(adP ).

Note 52. The variation of the reduced Lagrangian l with respect to the variation
of a fixed connection σx ∈ Conn(P ) is defined as its fiber derivative at σx. Recall
that the connection bundle is an affine bundle modelled over the vector bundle
T ∗M ⊗M adP . Therefore, δl/δσ is the fibered map

δl

δσ
: Conn(P ) −→ TM ⊗M ad∗ P

σx 7−→ δl

δσ

∣∣∣
σx

where
δl

δσ

∣∣∣
σx

: T ∗xM ⊗ adx P −→ R

A 7−→ d

dt

[
l(σx + t ·A)

]∣∣∣
t=0

Note that δl
δσ ◦ σ0 ∈ X(M ; ad∗ P ) for a fixed connection σ0 : M → Conn(P ).

Note 53. The Euler-Poincaré equation is of first-order.

Note 54. If σ0 : M → Conn(P ) is an arbitrary fixed connection, then

divση = divσ0
η + ad∗σ−σ0

.

Hence, the Euler-Poincaré equations may be rewritten in the form

divσ0
η

[
δl

δσ

]
+ ad∗σ−σ0

[
δl

δσ

]
= 0 .

Whenever P is trivial, i.e. P = M × G, the bundle of connections Conn(P ) has
a canonical vector bundle structure and a distinguished connection may be chosen
“σ0 = 0”. Then, the Euler-Poincaré equation simplifies to

divη

[
δl

δσ

]
+ ad∗σ

[
δl

δσ

]
= 0 ,

where divη is the usual divergence operator on M . If in addition we assume that
M = R, which corresponds to the case of Classical Mechanics, then we recover the
classical Euler-Poincaré equations of mechanics

d

dt

[
δl

δσ

]
+ ad∗σ

[
δl

δσ

]
= 0 .

Corollary 55 (Reconstruction). The Euler-Lagrange equations of a G-invariant
Lagrangian are equivalent to the Euler-Poincaré equation plus the flatness of its
solutions (compatibility condition). More precisely, if σ : M → Conn(P ) is a flat
connection (Curv(σ) = 0) that satisfies the Euler-Poincaré equation, then its inte-
gral sections s : M → P (µ(j1s) = σ) satisfies the Euler-Lagrange equations.

Proposition 56. Let L : J1π → R be a G-invariant Lagrangian. Let s : M → P
be a (local) section and σ : M → Conn(P ) be the induced reduced (local) section,
σ = µ ◦ j1s. Hence, the following points are equivalent:

14



i) s satisfies the Noether conservation law for any ξ ∈ g:

d[(j1s)∗(i
ξ
(1)
P

ΘL)] = 0 .

ii) σ satisfies the Euler-Poincaré equations:

divση

[
δl

δσ

]
= 0 .
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