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Texts for the course include:
Geometric Mechanics I & II, by Darryl D Holm,

World Scientific: Imperial College Press, Singapore, Second edition (2011).
ISBN 978-1-84816-195-5

Main topic: The Euler-Poincaré theorem for geodesic motion on Lie groups

(1) The Euler-Poincaré theorem is reviewed
(2) Rigid body dynamics is written as geodesic motion on SO(3) and SO(n)

(a) Euler’s RB equations are derived from the Euler-Poincaré theorem
(b) The Hamiltonian formulation summons Lie-Poisson brackets and Nambu brackets on R3.
(c) The Hamilton-Pontryagin variational principle imposes the reconstruction equation.
(d) The Clebsch approach (constrained by infinitesimal transformation) leads to an interpre-

tation of RB motion in terms of cotangent-lift momentum maps that are left-equivariant:

-

Left-equivariant

Momentum Map

T ∗G T ∗G
Φg(t)

?

J(t)

-
Ad∗g(t)−1?

g∗ g∗ ' T ∗G/G

J(0)

(e) One may interpret the EP equation as the infinitesimal equivariance relation

ξ = g−1ġ(t) or ġ(t)g−1 J :=
δ`

δξ
Ad∗g(t)−1J(0) = J(t)

dJ

dt
= ±ad∗ξJ

(f) RB dynamics is cast as an isospectral problem, written in Manakov’s commutator form.
(3) EPDiff as geodesic motion on Diff(Rn)

(a) The EPDiff equation is derived from the Euler-Poincaré theorem.
(b) The Clebsch variational principle (constrained by the infinitesimal transformation) yields

cotangent lift (CL) momentum maps.

(c) CL momentum maps are infinitesimally equivariant, since J := δ`
δξ obeys J̇ = ±ad∗ξJ.

(d) The bi-Hamiltonian formulation of EPDiff in 1D sets up and Magri’s Lemmas.
(e) The isospectral problem for EPDiff is found in 1D, and the N -soliton (peakon) dynamics

is written in commutator (LAX) form.

Contents

1. Mathematical setting 5
2. Euler–Poincaré Theorem 5
Reconstruction 8

What will we investigate about the rigid body (RB)? 9
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3.6. An isospectral eigenvalue problem for the SO(n) rigid body 17
3.7. Manakov’s integration of the SO(n) rigid body 18
4. Hamiltonian form of rigid-body motion 19
4.1. Hamiltonian form and Poisson bracket 19
4.2. Lie–Poisson Hamiltonian rigid-body dynamics 20
4.3. Lie–Poisson bracket 21
4.4. Nambu’s R3 Poisson bracket 21
4.5. Clebsch variational principle for the rigid body 23
Recall the set-up for equivariant momentum maps. 25
4.6. Rotating motion with an added quadratic potential energy 27
5. Variations on rigid-body dynamics 28
5.1. Rotations in the language of quaternions 29
5.2. Rotations in four dimensions: SO(4) 41
5.3. Rotations in complex space 43
5.4. Two times and the continuum spin chain 46
6. Hamiltonian and Lagrangian formulations of SO(3)-strands 50
6.1. Formulating the continuum spin chain equations 50
6.2. Euler–Poincaré equations 51
6.3. Hamiltonian formulation 52
7. More variations on the rigid body theme 55
7.1. C2 oscillators & Hopf fibration 55
7.2. C3 oscillators 58
7.3. Motion on the symplectic Lie group Sp(2) 60
7.4. Two coupled rigid bodies 63
8. Symmetry breaking by potential energy: the heavy top 65
8.1. Heavy top: Introduction and definitions 65
8.2. Heavy-top action principle 65
8.3. Lie–Poisson brackets 66
8.4. Lie–Poisson brackets and momentum maps 67
8.5. Lie–Poisson brackets for the heavy top 67
8.6. Heavy top: Clebsch action principle 68
8.7. Heavy top: Kaluza–Klein construction 69
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Of course, not all of these letures could have been given at the five-day summer school at
Miraflores, To help select topics, the students were asked at the end of each lecture to turn in a
piece of paper including their name, date and email address on which they were supposed to
answer the following two questions in sentences.

(1) What was this lecture about?
(2) Write a question that you would like to see addressed in a subsequent lecture.

Subsequent lectures at the summer school then selected material from these notes that emphasized
the questions and interests that had been expressed by the students.

	
  

Figure 1. The fabric of geometric mechanics is woven by a network of fundamental
contributions by at least a dozen people to the dual fields of optics and motion.

1. Mathematical setting

• The mathematical setting for geometric mechanics involves manifolds, (matrix) Lie groups and
(later) diffeomorphisms

– Manifold M 'loc Rn e.g., n = 1 (scalars), n = m (m-vectors), n = m×m (matrices),
– Motion equation on TM : q̇(t) = f(q) =⇒ transformation theory (pullbacks and all that)
– Hamilton’s principle for Lagrangian L : TM → R vector fields

∗ Euler–Lagrange equations on T ∗M
∗ Hamilton’s canonical equations on T ∗M
∗ Euler–Poincaré eqns on T ∗eG ' g∗ for reduced Lagrangian ` : g → R, e.g., rigid

body.

A Lie group G is a manifold. Its tangent space at the identity TeG is its Lie algebra g.

2. Euler–Poincaré Theorem

The definition of an invariant (or symmetric) function under a group action is as follows:
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e

Definition

2.1. Let G act on TG by left translation. A function F : TG → R is called left invariant if
and only if

F (h(g, ġ)) = F (g, ġ) for all (g, ġ) ∈ TG ,
where

h(g, ġ) := (hg, hġ) .

Example

2.2. If the Lagrangian L(g, ġ) : TG → R in Hamilton’s principle δS = 0 with S =
∫
Ldt is left

invariant under the Lie group G, then:

L(g, ġ) = L(g−1g, g−1ġ) = L(e, g−1ġ) = L(e, ξ) for all (g, ġ) ∈ TG,
where ξ := g−1ġ. Note that in this case the Lagrangian satisfies

L(g, ġ) = L(e, ξ),

so it is left-invariant under G.

The Euler-Lagrange equation.
d

dt

δL

δġ
=
δL

δg

can be re-expressed as
d

dt

(
δl

δξ

)
= ad∗ξ

δl

δξ
,

where l is defined to be the restriction of L to g:

l : g→ R , l(ξ) := L(e, ξ) for all g ∈ ξ .
The following theorem can be easily verified [HoMaRa1998]:

Theorem

2.3 (Euler–Poincaré reduction). Let G be a matrix Lie group and let L : TG → R be a
left-invariant Lagrangian. Define the reduced Lagrangian,

l : g→ R, l(ξ) := L(e, ξ) ,
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as the restriction of L to g. For a curve g(t) ∈ G, let

ξ(t) = g(t)−1ġ(t) ∈ g .

Then, the following four statements are equivalent:

(i) The variational principle

δ

∫ b

a
L(g(t), ġ(t))dt = 0

holds, for variations among paths with fixed endpoints.
(ii) g(t) satisfies the Euler–Lagrange equations for Lagrangian L defined on G.

(iii) The variational principle

δ

∫ b

a
l(ξ(t))dt = 0

holds on g, using variations of the form

δξ = η̇ + [ξ, η] ,

where η(t) is an arbitrary path in g that vanishes at the endpoints in time, i.e. η(a) = 0 =
η(b).

(iv) The (left invariant) Euler–Poincaré equations hold:

d

dt

δl

δξ
= ad∗ξ

δl

δξ
,(2.1)

where 〈ad∗ξµ, η〉 := 〈µ, adξη〉, for µ ∈ g∗ and ξ, η ∈ g.

Proof. A direct computation proves Theorem 2.3. Later, we will explain the source of the constraint
δξ = η̇ + [ξ, η] on the form of the variations on the Lie algebra. One verifies the statement of the
theorem by computing with a nondegenerate pairing 〈 · , · 〉 : g∗ × g→ R,

0 = δ

∫ b

a
l(ξ) dt =

∫ b

a

〈 δl
δξ
, δξ
〉
dt

=

∫ b

a

〈 δl
δξ
, η̇ + adξ η

〉
dt

=

∫ b

a

〈
− d

dt

δl

δξ
+ ad∗ξ

δl

δξ
, η
〉
dt+

〈 δl
δξ
, η
〉∣∣∣∣b
a

,

upon integrating by parts. The last term vanishes, by the endpoint conditions, η(b) = η(a) = 0.
Since η(t) ∈ g is otherwise arbitrary, stationarity δS = 0 is equivalent to

− d

dt

δl

δξ
+ ad∗ξ

δl

δξ
= 0 ,

which recovers the Euler–Poincaré Equation (2.3) in the statement of the theorem. �

Exercise. Prove the Euler–Poincaré reduction Theorem 2.3 when G is a matrix Lie
group. F

Corollary

2.4 (Noether’s theorem for Euler–Poincaré). If η is an in finitesimal symmetry of the Lagrangian,
then 〈 δlδξ , η〉 is its associated constant of the Euler–Poincaré motion.

Proof. Consider the endpoint terms 〈 δlδξ , η〉|
b
a arising in the variation δS and note that this implies for

any time t ∈ [a, b] that 〈 δl

δξ(t)
, η(t)

〉
= constant,

when the Euler–Poincaré Equations are satisfied. �
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Remark

2.5. The form of the variation in δξ = η̇ + [ξ, η] arises directly by

(i) computing the variations of the left-invariant Lie algebra element ξ = g−1ġ ∈ g induced by
taking variations δg in the group;

(ii) taking the time derivative of the variation η = g−1g ′ ∈ g ; and
(iii) using the equality of cross derivatives (g ˙ ′ = d2g/dtds = g ′ ˙).

Namely, one computes, cf. Proposition (3.3) for the rigid body,

ξ ′ = (g−1ġ) ′ = − g−1g ′g−1ġ + g−1g ˙ ′ = − ηξ + g−1g ˙ ′ ,

η̇ = (g−1g ′) ˙ = − g−1ġg−1g ′ + g−1g ′ ˙ = − ξη + g−1g ′ ˙ .

On taking the difference, the terms with cross derivatives cancel and one finds the variational formula,

(2.2) ξ ′ − η̇ = [ ξ , η ] with [ ξ , η ] := ξ η − η ξ = adξ η .

Thus, the same formal calculations as for vectors and quaternions also apply to Hamilton’s principle
on (matrix) Lie algebras.

Remark

2.6. A similar statement holds, with obvious changes for right-invariant Lagrangian systems on
TG. In this case the Euler-Poincaré equations are given by:

(2.3)
d

dt

δl

δξ
= − ad∗ξ

δl

δξ
,

with the opposite sign.

Reconstruction.

Definition

2.7. The reconstruction of the solution g(t) of the Euler–Lagrange equations, with initial conditions
g(0) = g0 and ġ(0) = v0, is as follows:

First, solve the initial value problem for the left-invariant Euler–Poincaré equations:

d

dt

δl

δξ
= ad∗ξ

δl

δξ
with ξ(0) = ξ0 := g−1

0 v0 .

Second, using the solution for ξ(t) of the equation above, find the curve g(t) ∈ G by solving the
reconstruction equation

ġ(t) = g(t)ξ(t) with g(0) = g0 ,

which is a differential equation with time-dependent coefficients.

Exercise. Write out the proof of the Euler–Poincaré reduction theorem for right-
invariant Lagrangians and describe the corresponding reconstruction procedure. F

Exercise. Consider the following action of a Lie group G on a product space G× Y,
where Y is some manifold:

(g , (h, y))→ (gh, y).

Let L : T (G× Y )→ R be invariant with respect to this action. Define l : g× TY → R
as the restriction of L, i.e.

l(ξ, y, ẏ) := L(e, ξ, y, ẏ).
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Deduce the reduced Hamilton’s principle for l and show that the equations of motion
are given by

d

dt

δl

δξ
= ad∗ξ

δl

δξ
,

d

dt

δl

δẏ
=
δl

δy
.

F

What will we investigate about the rigid body (RB)?

(1) Euler–Poincaré eqn on so(3)∗ ' R3

(2) Hamilton-Pontryagin matrix form
(3) Noether theorem (coadjoint motion)
(4) Isospectral eigenvalue problem
(5) Manakov’s matrix commutator form
(6) Hamiltonian forms

(both Lie-Poisson and Nambu)

(7) Clebsch variational form
(momentum map)

(8) RB Variants: SO(4), SP (2), C2, C3

(9) Bichrons (2 time variables)
(10) Coupled RBs
(11) Including potential energy
(12) Euler–Poincaré eqn on X∗(R)

3. Euler–Poincaré form of rigid-body motion

Euler’s equations for rigid-body motion in principal axis coordinates, without external torques
are

(3.1)

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω3Ω1,

I3Ω̇3 = (I1 − I2)Ω1Ω2,

or, equivalently,

(3.2) IΩ̇ = IΩ×Ω .

Here Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector and I = diag(I1, I2, I3) is the moment of
inertia tensor, which is diagonal in the principal axis frame of the rigid body.

Quadratic form. The moment of inertia I defines the following quadratic form Ia · b associated to
the bilinear symmetric form for R3 vectors a and b in the body’s principal axis frame,

(3.3) (a, b) :=

∫
B

ρ0(X)(a×X) · (b×X)d3X = Ia · b = aiIijbj .

Riemannian metric. Thus, the body’s distribution of mass density ρ0(X) induces a Riemannian

metric I for lowering indices of vectors in the body frame. That is, I : R3 → R3∗ ' R3. By the hat
map then I : so(3)→ so(3)∗ ' R3.

Question? We ask whether Equations (3.1) may be expressed using Hamilton’s principle on R3. For
this, we will need to define the variational derivative of a functional S[(Ω].

Definition

3.1 (Variational derivative). The variational derivative of a functional S[(Ω] is defined as its lin-
earisation in an arbitrary direction δΩ in the vector space of body angular velocities. That is,

δS[Ω] := lim
s→0

S[Ω + sδΩ]− S[Ω]

s
=
d

ds

∣∣∣
s=0

S[Ω + sδΩ]=:
〈 δS
δΩ

, δΩ
〉
,

where the new pairing, also denoted as 〈 · , · 〉, is between the space of body angular velocities and its
dual, the space of body angular momenta.
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Theorem

3.2 ( Euler’s rigid-body equations).
Euler’s rigid-body equations are equivalent to Hamilton’s principle

(3.4) δS(Ω) = δ

∫ b

a
l(Ω) dt = 0,

in which the Lagrangian l(Ω) appearing in the action integral S(Ω) =
∫ b
a l(Ω) dt is given by the

kinetic energy in principal axis coordinates,

(3.5) l(Ω) =
1

2
(Ω,Ω) :=

1

2
IΩ ·Ω =

1

2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) ,

and variations of Ω are restricted to be of the form

(3.6) δΩ = Ξ̇ + Ω×Ξ ,

where Ξ(t) is a curve in R3 that vanishes at the endpoints in time.

Proof. Since l(Ω) = 1
2〈IΩ,Ω〉, and I is symmetric, one obtains

δ

∫ b

a
l(Ω) dt =

∫ b

a

〈
IΩ, δΩ

〉
dt

=

∫ b

a

〈
IΩ, Ξ̇ + Ω×Ξ

〉
dt

=

∫ b

a

[〈
− d

dt
IΩ,Ξ

〉
+
〈
IΩ,Ω×Ξ

〉]
dt

=

∫ b

a

〈
− d

dt
IΩ + IΩ×Ω, Ξ

〉
dt+

〈
IΩ, Ξ

〉∣∣∣tb
ta
,

upon integrating by parts. The last term vanishes, because of the endpoint conditions,

Ξ(a) = 0 = Ξ(b) .

Since Ξ is otherwise arbitrary, (3.4) is equivalent to

− d

dt
(IΩ) + IΩ×Ω = 0,

which recovers Euler’s Equations (3.1) in vector form. �

3.1. The hat map. The Lie algebra (R3,×) of vectors in R3 with vector product × maps to the Lie
algebra (so(3), [·, ·]) of 3× 3 skew-symmetric matrices with matrix commutator bracket [ · , · ], by the
following linear isomorphism, called the hat map,

u := (u1, u2, u3) ∈ R3 7→ û :=

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 ∈ so(3) .(3.7)

In matrix and vector components, the linear isomorphism is

ûij := − εijkuk ,
where εijk is the totally antisymmetric Levi-Civita symbol, with ε123 = 1. Equivalently, this isomor-
phism is given by

ûv = u× v for all u,v ∈ R3.

The hat map ̂ : (R3,×)→ (so(3), [·, ·]) may also be defined using

û = u · Ĵ = uaĴa ,

which holds for the so(3) basis set of skew-symmetric 3×3 matrices Ĵa ∈ so(3), with a = 1, 2, 3 defined
in the relation (3.7).
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Exercise. Verify the following formulas for u,v,w ∈ R3:

(u× v)̂ = û v̂ − v̂ û =: [û, v̂] ,

[û, v̂] w = (u× v)×w ,(
(u× v)×w

)̂ =
[
[û, v̂] , ŵ

]
,

u · v = −1

2
trace(û v̂)

=:
〈
û , v̂

〉
,

in which the dot product of vectors is also the natural pairing of 3× 3 skew-symmetric
matrices. F

Exercise. (Jacobi identity under the hat map) Verify that the Jacobi identity
for the cross product of vectors in R3 is equivalent to the Jacobi identity for the
commutator product of 3× 3 skew matrices by proving the following identity satisfied
by the hat map, (

(u× v)×w + (v ×w)× u + (w × u)× v
)̂

= 0 =
[
[û, v̂] , ŵ

]
+
[
[v̂, ŵ] , û

]
+
[
[ŵ, û] , v̂

]
.

F

3.2. Restricted variations.

Proposition

3.3 (Derivation of the restricted variation).
The restricted variation in (3.6) arises via the following steps:

(i) Vary the definition of the body angular velocity, Ω̂ = O−1Ȯ.

(ii) Take the time derivative of the variation, Ξ̂ = O−1O ′.
(iii) Use the equality of cross derivatives, O ˙ ′ = d2O/dtds = O ′ .̇
(iv) Apply the hat map.

Proof. One computes directly that

Ω̂ ′ = (O−1Ȯ) ′ = −O−1O ′O−1Ȯ +O−1O ˙ ′ = − Ξ̂ Ω̂ +O−1O ˙ ′ ,

Ξ̂ ˙ = (O−1O ′) ˙ = −O−1ȮO−1O ′ +O−1O ′ ˙ = − Ω̂ Ξ̂ +O−1O ′ ˙ .

On taking the difference, the cross derivatives cancel and one finds a variational formula equivalent to
(3.6),

(3.8) Ω̂ ′ − Ξ̂ ˙ =
[

Ω̂ , Ξ̂
]

with
[

Ω̂ , Ξ̂
]

:= Ω̂ Ξ̂− Ξ̂ Ω̂ .

Under the bracket relation [
Ω̂ , Ξ̂

]
= (Ω×Ξ)̂

for the hat map, this equation recovers the vector relation (3.6) in the form

(3.9) Ω ′ − Ξ̇ = Ω×Ξ .

Thus, Euler’s equations for the rigid body in TR3,

(3.10) IΩ̇ = IΩ×Ω ,

do follow from the variational principle (3.4) with variations of the form (3.6) derived from the defi-

nition of body angular velocity Ω̂. �
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Remark

3.4. The body angular velocity vector is expressed in terms of the spatial angular velocity vector by
Ω(t) = O−1(t)ω(t). Consequently, the kinetic energy Lagrangian in (3.5) transforms as

l(Ω) =
1

2
Ω · IΩ =

1

2
ω · Ispace(t)ω =: lspace(ω) ,

where
Ispace(t) := O(t)IO−1(t) .

Exercise. Show that Hamilton’s principle for the action

S(ω) =

∫ b

a
lspace(ω) dt

yields conservation of spatial angular momentum

π = Ispace(t)ω(t) .

Hint: First derive the formula δIspace = [ξ, Ispace] with right-invariant ξ = δOO−1. F

Exercise. (Noether’s theorem for the rigid body) What conservation law does
Noether’s theorem imply for the rigid-body Equations (3.2)?

Hint: Transform the endpoint terms arising on integrating the variation δS by parts
in the proof of Theorem 3.2 into the spatial representation by setting Ξ = O−1(t)Γ
and Ω = O−1(t)ω. F

Remark

3.5 (Reconstruction of O(t) ∈ SO(3)).
The Euler solution is expressed in terms of the time-dependent angular velocity vector in the body, Ω.
The body angular velocity vector Ω(t) yields the tangent vector Ȯ(t) ∈ TO(t)SO(3) along the integral
curve in the rotation group O(t) ∈ SO(3) by the relation

(3.11) Ȯ(t) = O(t)Ω̂(t) ,

where the left-invariant skew-symmetric 3× 3 matrix Ω̂ is defined by the hat map

(3.12) (O−1Ȯ)jk = Ω̂jk = −Ωiεijk .

Equation (3.11) is the reconstruction formula for O(t) ∈ SO(3).

Once the time dependence of Ω(t) and hence Ω̂(t) is determined from the Euler equations, solving
formula (3.11) as a linear differential equation with time-dependent coefficients yields the integral
curve O(t) ∈ SO(3) for the orientation of the rigid body.

Exercise. [Motion on SO(4)]
Write out the Euler–Poincaré equations in matrix form for a free rigid body fixed at
its centre of mass in a 4-dimensional space. Use the analogue of the ‘hat’ map for so(4)
and write the R6 vector representation of the equations. F

3.3. Hamilton–Pontryagin constrained variations. Formula (3.8) for the variation Ω̂ of the skew-
symmetric matrix

Ω̂ = O−1Ȯ

may be imposed as a constraint in Hamilton’s principle and thereby provide a variational derivation
of Euler’s Equations (3.1) for rigid-body motion in principal axis coordinates. This constraint is
incorporated into the matrix Euler equations, as follows.
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Proposition

3.6 (Matrix Euler equations). Euler’s rigid-body equation may be written in matrix form
as

(3.13)
dΠ

dt
= −

[
Ω̂ , Π

]
with Π = IΩ̂ =

δl

δΩ̂
,

for the Lagrangian l(Ω̂) given by

(3.14) l =
1

2

〈
IΩ̂ , Ω̂

〉
.

Here, the bracket

(3.15)
[

Ω̂ , Π
]

:= Ω̂Π−ΠΩ̂

denotes the commutator and 〈 · , · 〉 denotes the trace pairing, e.g.,

(3.16)
〈

Π , Ω̂
〉

=:
1

2
trace

(
ΠT Ω̂

)
.

Remark

3.7. Note that the symmetric part of Π does not contribute in the pairing and if set equal to zero
initially, it will remain zero.

Proposition

3.8 (Constrained v̇ariational ṗrinciple).
The matrix Euler Equations (3.13) are equivalent to stationarity δS = 0 of the following
constrained action:

S(Ω̂, O, Ȯ,Π) =

∫ b

a
l(Ω̂, O, Ȯ,Π) dt

=

∫ b

a

[
l(Ω̂) +

〈
Π , (O−1Ȯ − Ω̂ )

〉]
dt .

(3.17)

Remark

3.9. The integrand of the constrained action in (3.17) is similar to the formula for the Legendre
transform, but its functional dependence is different. This variational approach is related to the clas-
sic Hamilton–Pontryagin principle for control theory. It has also be used to develop algorithms
for geometric numerical integrations of rotating motion.

Proof. The variations of S in formula (3.17) are given by

δS =

∫ b

a

{〈 ∂l

∂Ω̂
−Π , δΩ̂

〉
+
〈
δΠ , (O−1Ȯ − Ω)

〉
+
〈

Π , δ(O−1Ȯ)
〉}

dt ,

where

(3.18) δ(O−1Ȯ) = Ξ̂ ˙ +
[

Ω̂ , Ξ̂
]
,

and Ξ̂ = (O−1δO) from Equation (3.8).
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Substituting for δ(O−1Ȯ) into the last term of δS produces∫ b

a

〈
Π , δ(O−1Ȯ)

〉
dt =

∫ b

a

〈
Π , Ξ̂ ˙ + [ Ω̂ , Ξ̂ ]

〉
dt

=

∫ b

a

〈
− Π˙− [ Ω̂ , Π ] , Ξ̂

〉
dt

+
〈

Π , Ξ̂
〉∣∣∣b
a
,(3.19)

where one uses the cyclic properties of the trace operation for matrices,

(3.20) trace
(

ΠT Ξ̂ Ω̂
)

= trace
(

Ω̂ ΠT Ξ̂
)
.

Thus, stationarity of the Hamilton–Pontryagin variational principle for vanishing endpoint conditions

Ξ̂(a) = 0 = Ξ̂(b) implies the following set of equations:

∂l

∂Ω̂
= Π , O−1dO

dt
= Ω̂ ,

dΠ

dt
= −[ Ω̂ , Π ] .(3.21)

These are the Euler rigid body equations in matrix form on SO(n). �

Remark

3.10 (Interpreting the formulas in (3.21)).
The first formula in (3.21) defines the angular momentum matrix Π as the fibre derivative of the

Lagrangian with respect to the angular velocity matrix Ω̂. The second formula is the reconstruction

formula (3.11) for the solution curve O(t) ∈ SO(3), given the solution Ω̂(t) = O−1Ȯ. And the third
formula is Euler’s equation for rigid-body motion in matrix form.

Exercise. Use the fibre derivative relation to compute the Hamiltonian h(Π) via the
Legendre transform,

h(Π) = 〈Π, Ω̂〉 − l(Ω̂)(3.22)

then express the matrix Euler rigid body equations in Hamiltonian form as a Poisson
bracket relation. Notice that equation (3.17) for the Hamilton–Pontryagin principle
also contains this Legendre transform. F

Answer. The Hamiltonian h(Π) satisfies

dh(Π) =

〈
dΠ,

∂h

∂Π

〉
=
〈
dΠ, Ω̂

〉
−
〈

Π− ∂l

∂Ω̂
, dΩ̂

〉
so that

Π =
∂l

∂Ω̂
,

∂h

∂Π
= Ω̂

The matrix Euler rigid body equations (3.21) are then expressed as

dΠ

dt
= −

[
∂h

∂Π
, Π

]
(3.23)

and a function f(Π) has time derivative

d

dt
f(Π) = −

〈
∂f

∂Π
,

[
∂h

∂Π
, Π

]〉
= −

〈
Π,

[
∂f

∂Π
,
∂h

∂Π

]〉
=:
{
f, h

}
(Π) .

(3.24)

The last expression defines the Lie-Poisson bracket, which inherits the Jacobi prop-
erty from the matrix commutator. N
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Exercise. Use equation (3.22) to rewrite the Hamilton–Pontryagin variational princi-
ple (3.17) as δS = 0 for the action

S(O−1Ȯ,Π) =

∫ b

a

(〈
Π , O−1Ȯ

〉
− h(Π)

)
dt .(3.25)

Take the variations using (3.18) and recover the Hamiltonian form of the matrix Euler
rigid body equations (3.21). How does this compare with the results for δS = 0 with

S =
∫ b
a 〈p, q̇〉 −H(q, p) dt? F

Exercise. Write the Lie-Poisson bracket in (3.24) in three dimensions for so(3)∗ in R3

vector form by using the hat map. Thereby, discover the Nambu bracket form of the
rigid body equations. F

Answer. In R3 vector form the Lie-Poisson bracket in (3.24) becomes

d

dt
f(Π) = − ∂f

∂Π
· ∂h
∂Π
×Π = −Π · ∂f

∂Π
× ∂h

∂Π
=:
{
f, h

}
(Π) .(3.26)

Euler’s equations are recovered by setting f(Π) = Π

dΠ

dt
= − ∂h

∂Π
×Π =:

{
Π, h

}
.(3.27)

If we write c(Π) = 1
2‖Π‖

2, then the Lie-Poisson bracket in (3.26) may be expressed in
Nambu bracket form,

d

dt
f(Π) = − ∂c

∂Π
· ∂f
∂Π
× ∂h

∂Π
=:
{
c, f, h

}
(Π) ,(3.28)

which is the triple scalar product of gradients in Π.1 N

Remark

3.11 (Interpreting the endpoint terms in (3.19)).
We transform the endpoint terms in (3.19), arising on integrating the variation δS by parts in the

proof of Theorem 3.2 into the spatial representation by setting Ξ̂(t) =: O(t) ξ̂ O−1(t) and Π̂(t) =:
O(t)π̂(t)O−1(t), as follows:〈

Π , Ξ̂
〉

= trace
(

ΠT Ξ̂
)

= trace
(
πT ξ̂

)
=
〈
π , ξ̂

〉
.(3.29)

Thus, the vanishing of both endpoints for a constant infinitesimal spatial rotation ξ̂ = (δOO−1) = const
implies

π(a) = π(b) .(3.30)

This is Noether’s theorem for the rigid body.

Theorem

3.12 ( Noether’s theorem for the rigid body).
Invariance of the constrained Hamilton–Pontryagin action under spatial rotations implies
conservation of spatial angular momentum,

π = O−1(t)Π(t)O(t) =: Ad∗O−1(t)Π(t).(3.31)

1The Lie-Poisson and Nambu brackets introduced by discovery in these two exercises will be discussed further below.
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Proof.

d

dt

〈
π , ξ̂

〉
=

d

dt

〈
O−1ΠO , ξ̂

〉
=

d

dt
trace

(
ΠT O−1ξ̂O

)
=

〈 d

dt
Π +

[
Ω̂ , Π

]
, O−1ξ̂O

〉
= 0

=:
〈 d

dt
Π− ad∗

Ω̂
Π , AdO−1 ξ̂

〉
,

d

dt

〈
Ad∗O−1Π , ξ̂

〉
=

〈
Ad∗O−1

( d

dt
Π− ad∗

Ω̂
Π
)
, ξ̂
〉
.(3.32)

The proof of Noether’s theorem for the rigid body is already on the second line. However, the last
line gives a general result. �

Remark

3.13. This proof of Noether’s theorem for the rigid body when the constrained Hamilton–Pontryagin ac-

tion is invariant under spatial rotations also proves a general result in Equation (3.32), with Ω̂ = O−1Ȯ
for a Lie group O, that

(3.33) d
dt

(
Ad∗O−1Π

)
= Ad∗O−1

(
d
dtΠ− ad∗

Ω̂
Π
)

This equation will be useful in the remainder of the text. In particular, it provides the solution of a
differential equation defined on the dual of a Lie algebra. Namely, for a Lie group O with Lie algebra

o, the equation for left-invariant Π ∈ o∗ and Ω̂ = O−1Ȯ ∈ o

(3.34) d
dtΠ− ad∗

Ω̂
Π = 0 , has solution Π(t) = Ad∗O(t)π with π = Π(0) ∈ o∗

Exercise. Retrace the proof of the variational principle for the Euler–Poincaré equa-

tion, replacing the left-invariant quantity Ω̂ = O−1Ȯ with the right-invariant quantity
ξ := ġg−1 ∈ g for g ∈ G, a Lie group.

Write Noether’s theorem for a right-invariant Lagrangian `(ξ).
F

Answer.
For a right-invariant system ξ := ġg−1 ∈ g and J := δ`/δξ ∈ g∗ for a reduced Lagrangian `(ξ), the
Euler-Poincaré theorem delivers the following equation, which has one sign difference from before,

(3.35)
d

dt
J(t) + ad∗ξJ(t) = 0 , with solution J(t) = Ad∗g(t)J(0).

N

3.4. Manakov’s formulation of the SO(n) rigid body.

Proposition

3.14 (Manakov [Man1976]). Euler’s equations for a rigid body on SO(n) take the matrix
commutator form,

(3.36)
dM

dt
=
[
M , Ω

]
with M = AΩ + ΩA ,

where the n×n matrices M, Ω are skew-symmetric (forgoing superfluous hats) and A is symmetric.
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Proof. Manakov’s commutator form of the SO(n) rigid-body Equations (3.36) follows as the Euler–
Lagrange equations for Hamilton’s principle δS = 0 with S =

∫
l dt for the Lagrangian

l = −1

2
tr(ΩAΩ) ,

where Ω = O−1Ȯ ∈ so(n) and the n×n matrix A is symmetric. Taking matrix variations in Hamilton’s
principle yields

δS = −1

2

∫ b

a
tr
(
δΩ (AΩ + ΩA)

)
dt = −1

2

∫ b

a
tr
(
δΩM

)
dt ,

after cyclically permuting the order of matrix multiplication under the trace and substituting M :=
AΩ + ΩA. Using the variational formula (3.18) for δΩ now leads to

δS = −1

2

∫ b

a
tr
(
(Ξ˙ + ΩΞ− ΞΩ)M

)
dt .

Integrating by parts and permuting under the trace then yields the equation

δS =
1

2

∫ b

a
tr
(
Ξ ( Ṁ + ΩM −MΩ )

)
dt .

Finally, invoking stationarity for arbitrary Ξ implies the commutator form (3.36). �

3.5. Matrix Euler–Poincaré equations. Manakov’s commutator form of the rigid-body equations
recalls much earlier work by Poincaré [Po1901], who also noticed that the matrix commutator form of
Euler’s rigid-body equations suggests an additional mathematical structure going back to Lie’s theory
of groups of transformations depending continuously on parameters. In particular, Poincaré [Po1901]
remarked that the commutator form of Euler’s rigid-body equations would make sense for any Lie
algebra, not just for so(3). The proof of Manakov’s commutator form (3.36) by Hamilton’s principle
is essentially the same as Poincaré’s proof in [Po1901], which is translated into English and discussed
thoroughly in [JKLOR2011].

Theorem

3.15 ( Matrix Euler–Poincaré equations).
The Euler–Lagrange equations for Hamilton’s principle δS = 0 with S =

∫
l(Ω) dt may be

expressed in matrix commutator form,

(3.37)
dM

dt
=
[
M , Ω

]
with M =

δl

δΩ
,

for any Lagrangian l(Ω), where Ω = g−1ġ ∈ g and g is the matrix Lie algebra of any matrix Lie
group G.

Proof. The proof here is the same as the proof of Manakov’s commutator formula (3.36) via

Hamilton’s principle, modulo replacing O−1Ȯ ∈ so(n) with g−1ġ ∈ g. �

Remark

3.16. Poincaré’s observation leading to the matrix Euler–Poincaré Equation (3.37) was reported in
two pages with no references [Po1901]. The proof above shows that the matrix Euler–Poincaré equa-
tions possess a natural variational principle. Note that if Ω = g−1ġ ∈ g, then M = δl/δΩ ∈ g∗, where
the dual is defined in terms of the matrix trace pairing.

3.6. An isospectral eigenvalue problem for the SO(n) rigid body. The solution of the SO(n)
rigid-body dynamics

(3.38)
dM

dt
= [M , Ω ] with M = AΩ + ΩA ,
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for the evolution of the n×n skew-symmetric matrices M, Ω, with constant symmetric A, is given by
a similarity transformation (later to be identified as coadjoint motion),

M(t) = O(t)−1M(0)O(t) =: Ad∗O(t)M(0) ,

with O(t) ∈ SO(n) and Ω := O−1Ȯ(t). Consequently, the evolution of M(t) is isospectral. This
means that

• The initial eigenvalues of the matrix M(0) are preserved by the motion; that is, dλ/dt = 0 in

M(t)ψ(t) = λψ(t) ,

provided its eigenvectors ψ ∈ Rn evolve according to

ψ(t) = O(t)−1ψ(0) .

The proof of this statement follows from the corresponding property of similarity transforma-
tions.
• Its matrix invariants are preserved:

d

dt
tr(M − λId)K = 0 ,

for every non-negative integer power K.
This is clear because the invariants of the matrix M may be expressed in terms of its

eigenvalues; but these are invariant under a similarity transformation.

Theorem

3.17. Isospectrality allows the quadratic rigid-body dynamics (3.38) on SO(n) to be rephrased
as a system of two coupled linear equations: the eigenvalue problem for M and an evolution
equation for its eigenvectors ψ, as follows:

Mψ = λψ and ψ̇ = −Ωψ , with Ω = O−1Ȯ(t) .

Proof. Applying isospectrality in the time derivative of the first equation yields

( Ṁ + [ Ω,M ] )ψ + (M − λId)(ψ̇ + Ωψ) = 0 .

Now substitute the second equation to recover the SO(n) rigid-body dynamics (3.38). �

3.7. Manakov’s integration of the SO(n) rigid body. Manakov [Man1976] observed that Equa-
tions (3.36) may be “deformed” into

(3.39)
d

dt
(M + λA) = [(M + λA), (Ω + λB)] ,

where A, B are also n×n matrices and λ is a scalar constant parameter. For these deformed rigid-body
equations on SO(n) to hold for any value of λ, the coefficient of each power must vanish.

• The coefficent of λ2 is

0 = [A,B] .

Therefore, A and B must commute. For this, let them be constant and diagonal:

Aij = diag(ai)δij , Bij = diag(bi)δij (no sum).

• The coefficent of λ is

0 =
dA

dt
= [A,Ω] + [M,B] .

Therefore, by antisymmetry of M and Ω,

(ai − aj)Ωij = (bi − bj)Mij ,

which implies that

Ωij =
bi − bj
ai − aj

Mij (no sum).

Hence, angular velocity Ω is a linear function of angular momentum, M .
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• Finally, the coefficent of λ0 recovers the Euler equation

dM

dt
= [M,Ω] ,

but now with the restriction that the moments of inertia are of the form

Ωij =
bi − bj
ai − aj

Mij (no sum).

This relation turns out to possess only five free parameters for n = 4.

Under these conditions, Manakov’s deformation of the SO(n) rigid-body equation into the commutator
form (3.39) implies for every non-negative integer power K that

d

dt
(M + λA)K = [(M + λA)K , (Ω + λB)] .

Since the commutator is antisymmetric, its trace vanishes and K conservation laws emerge, as

d

dt
tr(M + λA)K = 0 ,

after commuting the trace operation with the time derivative. Consequently,

tr(M + λA)K = constant ,

for each power of λ. That is, all the coefficients of each power of λ are constant in time for the SO(n)
rigid body. Manakov [Man1976] proved that these constants of motion are sufficient to completely
determine the solution for n = 4.

4. Hamiltonian form of rigid-body motion

The Legendre transform of the Lagrangian (3.5) in the variational principle (3.4) for Euler’s
rigid-body dynamics (3.10) on R3 will reveal its well-known Hamiltonian formulation.

Definition

4.1 (Legendre transformation).
The Legendre transformation Fl : R3 → R3∗ ' R3 is defined by the fibre derivative,

Fl(Ω) =
δl

δΩ
= Π .

The Legendre transformation defines the body angular momentum by the variations of the rigid
body’s reduced Lagrangian with respect to the body angular velocity. For the Lagrangian in (3.4),
the R3 components of the body angular momentum are

(4.1) Πi = IiΩi =
∂l

∂Ωi
, i = 1, 2, 3.

4.1. Hamiltonian form and Poisson bracket.

Definition

4.2 (Dynamical systems in Hamiltonian form).
A dynamical system on a manifold M

ẋ(t) = F(x) , x ∈M ,

is said to be in Hamiltonian form, if it can be expressed as

ẋ(t) = {x, H} , for H : M 7→ R ,

in terms of a Poisson bracket operation {· , ·} among smooth real functions F(M) : M 7→ R on the
manifold M ,

{· , ·} : F(M)× F(M) 7→ F(M) ,

so that Ḟ = {F , H} for any F ∈ F(M).
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Definition

4.3 (Poisson bracket).
A Poisson bracket operation {· , ·} is defined as possessing the following properties:

• It is bilinear.
• It is skew-symmetric, {F , H} = −{H , F}.
• It satisfies the Leibniz rule (product rule),

{FG , H} = {F , H}G+ F{G , H} ,
for the product of any two functions F and G on M .
• It satisfies the Jacobi identity,

(4.2) {F , {G , H}}+ {G , {H , F}}+ {H , {F , G}} = 0 ,

for any three functions F , G and H on M .

Remark

4.4. This definition of a Poisson bracket does not require it to be the standard canonical bracket
in position q and conjugate momentum p, although it does include that case as well.

4.2. Lie–Poisson Hamiltonian rigid-body dynamics. The Legendre transform for this system is

(4.3) h(Π) := Π ·Ω− l(Ω) ,

in terms of the vector dot product on R3. Hence, one finds the expected expression for the rigid-body
Hamiltonian

(4.4) h =
1

2
Π · I−1Π :=

Π2
1

2I1
+

Π2
2

2I2
+

Π2
3

2I3
.

The Legendre transform Fl = ∂l/∂Ω = Π for this case is a diffeomorphism, so one may solve for
the body angular velocity Ω as the derivative of the reduced Hamiltonian with respect to the body
angular momentum Π namely,

(4.5)
∂h

∂Π
= I−1Π = Ω .

Hence, the reduced Euler–Lagrange equations for l may be expressed equivalently in angular momen-
tum vector components in R3 and Hamiltonian h as

d

dt
(IΩ) = IΩ×Ω⇐⇒ Π̇ = Π× ∂h

∂Π
:= {Π, h} .

This expression suggests we introduce the following rigid-body Poisson bracket on functions of the
Π’s:

(4.6) {f, h}(Π) := −Π ·
(
∂f

∂Π
× ∂h

∂Π

)
.

For the Hamiltonian (4.4), one checks that the Euler equations in terms of the rigid-body angular
momenta,

(4.7)

Π̇1 =

(
1

I3
− 1

I2

)
Π2Π3 ,

Π̇2 =

(
1

I1
− 1

I3

)
Π3Π1 ,

Π̇3 =

(
1

I2
− 1

I1

)
Π1Π2 ,

that is, the equations

(4.8) Π̇ = Π× I−1Π ,

are equivalent to
ḟ = {f, h} , with f = Π .
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4.3. Lie–Poisson bracket. The Poisson bracket proposed in (4.6) is an example of a Lie–Poisson
bracket.

It satisfies the defining relations of a Poisson bracket for a number of reasons, not least because it
is the hat map to R3 of the following bracket defined by the general form in Equation (3.32) in terms
of the so(3)∗ × so(3) pairing 〈 · , · 〉 in Equation (3.19). Namely,

dF

dt
=

〈
d

dt
Π,

∂F

∂Π

〉
=

〈
ad∗

Ω̂
Π,

∂F

∂Π

〉
=

〈
Π, ad

Ω̂

∂F

∂Π

〉
=

〈
Π,

[
Ω̂,

∂F

∂Π

]〉
= −

〈
Π,

[
∂F

∂Π
,
∂H

∂Π

]〉
,(4.9)

where we have used the equation corresponding to (4.5) under the inverse of the hat map

Ω̂ =
∂H

∂Π

and applied antisymmetry of the matrix commutator. Writing Equation (4.9) as

dF

dt
= −

〈
Π,

[
∂F

∂Π
,
∂H

∂Π

]〉
=:
{
F, H

}
(4.10)

defines the Lie–Poisson bracket { · , · } on smooth functions (F,H) : so(3)∗ → R. This bracket
satisfies the defining relations of a Poisson bracket because it is a linear functional of the commutator
product of skew-symmetric matrices, which is bilinear, skew-symmetric, satisfies the Leibniz rule
(because of the partial derivatives) and also satisfies the Jacobi identity.

These Lie–Poisson brackets may be written in tabular form as

(4.11) {Πi, Πj} =

{ · , · } Π1 Π2 Π3

Π1

Π2

Π3

0 −Π3 Π2

Π3 0 −Π1

−Π2 Π1 0

or, in index notation, as

(4.12) {Πi , Πj} = −εijkΠk = Π̂ij .

Remark

4.5. The Lie–Poisson bracket in the form (4.10) would apply to any Lie algebra. This Lie–Poisson
Hamiltonian form of the rigid-body dynamics substantiates Poincaré’s observation in [Po1901] that
the corresponding equations could have been written on the dual of any Lie algebra by using the ad∗

operation for that Lie algebra. See [JKLOR2011] for more discussion.

The corresponding Poisson bracket in (4.6) in R3-vector form also satisfies the defining relations of a
Poisson bracket because it is an example of a Nambu bracket, to be discussed next.

4.4. Nambu’s R3 Poisson bracket. The rigid-body Poisson bracket (4.6) is a special case of the
Poisson bracket for functions of x ∈ R3,

(4.13) {f, h} = −∇c · ∇f ×∇h .

This bracket generates the motion

(4.14) ẋ = {x, h} = ∇c×∇h .

For this bracket the motion takes place along the intersections of level surfaces of the functions c and h
in R3. In particular, for the rigid body, the motion takes place along intersections of angular momentum
spheres c = |x|2/2 and energy ellipsoids h = x · Ix. (See the cover illustration of [MaRa1994].)
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Exercise. Consider the Nambu R3 bracket

(4.15) {f, h} = −∇c · ∇f ×∇h .
Let c = xT · Cx/2 be a quadratic form on R3, and let C be the associated symmetric
3×3 matrix. Show by direct computation that this Nambu bracket satisfies the Jacobi
identity. F

Exercise. Find the general conditions on the function c(x) so that the R3 bracket

{f, h} = −∇c · ∇f ×∇h
satisfies the defining properties of a Poisson bracket. Is this R3 bracket also a derivation
satisfying the Leibniz relation for a product of functions on R3? If so, why? F

Answer.
The bilinear skew-symmetric Nambu R3 bracket yields the divergenceless vector field

Xc,h = { · , h} = (∇c×∇h) · ∇ with div(∇c×∇h) = 0 .

Divergenceless vector fields are derivative operators that satisfy the Leibniz product rule. They also
satisfy the Jacobi identity for any choice of C2 functions c and h. Hence, the Nambu R3 bracket is a
bilinear skew-symmetric operation satisfying the defining properties of a Poisson bracket. N

Theorem

4.6 ( Jacobi identity).
The Nambu R3 bracket (4.15) satisfies the Jacobi identity.

Proof. The isomorphism XH = { · , H} between the Lie algebra of divergenceless vector fields and
functions under the R3 bracket is the key to proving this theorem. The Lie derivative among vector
fields is identified with the Nambu bracket by

LXGXH = [XG, XH ] = −X{G,H} .
Repeating the Lie derivative produces

LXF (LXGXH) = [XF , [XG, XH ] ] = X{F,{G,H}} .

The result follows because both the left- and right-hand sides in this equation satisfy the Jacobi
identity. �

Exercise. How is the R3 bracket related to the canonical Poisson bracket?
Hint: Restrict to level surfaces of the function c(x). F

Exercise. (Casimirs of the R3 bracket) The Casimirs (or distinguished functions,
as Lie called them) of a Poisson bracket satisfy{

c, h
}

(x) = 0 , for all h(x) .

Suppose the function c(x) is chosen so that the R3 bracket (4.13) defines a proper
Poisson bracket. What are the Casimirs for the R3 bracket (4.13)? Why? F
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Exercise. (Geometric interpretation of Nambu motion)
• Show that the Nambu motion equation (4.14)

ẋ = {x, h} = ∇c×∇h
for the R3 bracket (4.13) is invariant under a certain linear combination of the
functions c and h. Interpret this invariance geometrically.
• Show that the rigid-body equations (4.7) for

I = diag(1, 1/2, 1/3)

may be interpreted as intersections in R3 of the spheres x2
1 +x2

2 +x2
3 = constant

and the hyperbolic cylinders x2
1 − x2

3 = constant, as in Fig. 4.4.
• Show that the rigid-body equations (4.7) may be written as

(4.16) ẋ1 = − a1a3x2x3 , ẋ2 = − a2a3x3x1 , ẋ3 = a1a2x1x2 ,

with nonzero constants a1, a2 and a3 that satisfy 1/a1 + 1/a2 = 1/a3. Write
these equations as a Nambu motion equation on R3 of the form (4.14). Interpret
the solutions of Equations (4.16) geometrically as intersections of orthogonal
cylinders (elliptic or hyperbolic) for various values and signs of a1, a2 and a3,
as in Fig. 4.4.

F

Answer. ẋ := (ẋ1, ẋ2, ẋ3)T = 1
4∇(a1x

2
1 + a3x

2
3) × ∇(a2x

2
2 + a3x

2
3), where (a1, a2, a3)

may be written in terms of (I1, I2, I3), when they satisfy 1/a1 + 1/a2 = 1/a3. N

Figure 2. Left: Rigid body motions, seen as intersections in R3 of the sphere x2
1 +

x2
2 + x2

3 = constant and the hyperbolic cylinders x2
1 − x2

3 = constant. Right: The same
rigid body motions, seen as intersections in R3 of orthogonal elliptic cylinders.

4.5. Clebsch variational principle for the rigid body.

Proposition

4.7 (Clebsch variational principle).
The Euler rigid-body Equations (3.2) on TR3 are equivalent to the constrained variational
principle,

(4.17) δS(Ω,Q, Q̇; P) = δ

∫ b

a
l(Ω,Q, Q̇; P) dt = 0,
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for a constrained action integral

S(Ω,Q, Q̇) =

∫ b

a
l(Ω,Q, Q̇) dt(4.18)

=

∫ b

a

1

2
Ω · IΩ + P ·

(
Q̇ + Ω×Q

)
dt .

Remark

4.8 (Reconstruction as constraint).

• The first term in the Lagrangian (4.18),

(4.19) l(Ω) =
1

2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) =
1

2
ΩT IΩ ,

is again the (rotational) kinetic energy of the rigid body.
• The second term in the Lagrangian (4.18) introduces the Lagrange multiplier P which imposes

the constraint
Q̇ + Ω×Q = 0 .

This reconstruction formula has the solution

Q(t) = O−1(t)Q(0) ,

which satisfies

Q̇(t) = − (O−1Ȯ)O−1(t)Q(0)

= − Ω̂(t)Q(t) = −Ω(t)×Q(t) .(4.20)

Proof. The variations of S are given by

δS =

∫ b

a

( δl

δΩ
· δΩ +

δl

δP
· δP +

δl

δQ
· δQ

)
dt

=

∫ b

a

[( δl
δΩ
−P×Q

)
· δΩ

+ δP ·
(
Q̇ + Ω×Q

)
− δQ ·

(
Ṗ + Ω×P

)]
dt .

Thus, stationarity of this implicit variational principle implies the following set of equations:

Π :=
δl

δΩ
= P×Q , Q̇ = −Ω×Q , Ṗ = −Ω×P .(4.21)

Euler’s form of the rigid-body equations emerges from these symmetric equations, upon elimination
of Q and P, as

Π̇ = Ṗ×Q + P× Q̇

= Q× (Ω×P) + P× (Q×Ω)

= −Ω× (P×Q) = −Ω×Π ,

which are Euler’s equations for the rigid body in TR3 when Π = IΩ. �

Remark

4.9. The Clebsch variational principle for the rigid body is a natural approach in developing geometric
algorithms for numerical integrations of rotating motion.

Remark

4.10. The Clebsch approach is also a natural path across to the Hamiltonian formulation of the rigid-
body equations. This becomes clear in the course of the following exercise.
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Exercise. Given that the canonical Poisson brackets in Hamilton’s approach are{
Qi, Pj

}
= δij and

{
Qi, Qj

}
= 0 =

{
Pi, Pj

}
,

what are the Poisson brackets for Π = P×Q ∈ R3 in (4.21)? Show these Poisson
brackets recover the rigid-body Poisson bracket (4.6). F

Answer. The components of the angular momentum Π = IΩ in (4.21) are

Πa = εabcPbQc ,

and their canonical Poisson brackets are (noting the similarity with the hat map){
Πa,Πi

}
=
{
εabcPbQc , εijkPjQk

}
= − εailΠl .

Consequently, the derivative property of the canonical Poisson bracket yields

(4.22)
{
f, h
}

(Π) =
∂f

∂Πa

{
Πa,Πi

} ∂h
∂Πb

= − εabcΠc
∂f

∂Πa

∂h

∂Πb
,

which is indeed the Lie–Poisson bracket in (4.6) on functions of the Π’s. The correspondence with
the hat map noted above shows that this Poisson bracket satisfies the Jacobi identity as a result of
the Jacobi identity for the vector cross product on R3.

N

Remark

4.11. This exercise proves that the map T ∗R3 → R3 given by Π = P×Q ∈ R3 in (4.21) is Poisson.
That is, the map takes Poisson brackets on one manifold into Poisson brackets on another manifold.
This is one of the properties of a momentum map.

-

Left-equivariant

Momentum Map

T ∗G T ∗G
Φg(t)

?

J(t)

-
Ad∗g(t)?

g∗ g∗ ' T ∗G/G

J(0)

e

Recall the set-up for equivariant momentum maps.

Definition

4.12 (Cotangent lift (CL) momentum map). The CL momentum map

J : T ∗M 7→ g∗

is defined for the Lie algebra action ξM (q) of ξ ∈ g on q in manifold M by the pairings

Jξ(p, q) :=
〈
J(p, q), ξ

〉
g∗×g

=
〈〈
pq, ξM (q)

〉〉
T ∗M×TM

where pq ∈ T ∗qM is the momentum at position q ∈M and ξM (q) is the vector field tangent to the flow
of g(t) ∈ G at q.
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Proposition

4.13. Jξ(p, q) is the Hamiltonian for infinitesimal action ξM (q) and its cotangent lift.

Proof.

q̇ =
{
q, Jξ

}
= ξM (q) and ṗ =

{
p, Jξ

}
= − dξM

dq

T

· p

�

Example

4.14 (Body angular momentum, G = SO(3) and M = R3).

J(q, p) = p× q,
(
Body angular momentum J ∈ so(3)∗ ' R3

)
.

The Hamiltonian Jξ(q, p) = p× q · ξ generates the infinitesimal SO(3) rotations,

q′(t) =
{
q, Jξ(q, p)

}
= − ξ × q(t), p′(t) =

{
p, Jξ(q, p)

}
= − ξ × p(t),

for the canonical Poisson bracket
{
· , ·

}
. These imply the Euler-Poincaré (EP) equation for J(q, p) =

p× q ∈ so(3)∗ ' R3

J ′(t) = − ξ × J(t) = ad∗ξJ for ξ ∈ so(3) and J ∈ so(3)∗ .

Proof.

J ′(t) = p′(t)× q + p× q′(t)
= −(ξ × p)× q − p× (ξ × q)
= −q × (p× ξ)− p× (ξ × q)

(By Jacobi identity) = ξ × (q × p)
= − ξ × J
= ad∗ξJ

�

This calculation also illustrates the following theorem.

Theorem

4.15. The CL momentum map J(p, q) is infinitesimally equivariant.

That is, the CL momentum map J(p, q) satisfies the EP equation, when (p, q) satisfy the canonical
equations for the Hamiltonian Jξ(p, q) = 〈pq,ΦM (q)〉. Consequently, (p, q) satisfy the equations of
motion for the canonical transformation Φg(t) of T ∗M and the momentum map satisfies J ′(t) = ad∗ξJ ,
which is the infinitesimal (linearised) version of J(t) = Ad∗g(t)J(0). To remind ourselves of the latter

fact, we recall equation (3.33) in the present notation, as

d

dt

(
J(0)

)
=

d

dt

(
Ad∗g−1(t)J

)
= Ad∗g−1(t)

( d

dt
J − ad∗ξJ

)
= 0.

Exercise. The Euler–Lagrange equations in matrix commutator form of Manakov’s
formulation of the rigid body on SO(n) are

dM

dt
=
[
M , Ω

]
,
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where the n × n matrices M, Ω are skew-symmetric. Show that these equations may
be derived from Hamilton’s principle δS = 0 with constrained action integral

S(Ω, Q, P ) =

∫ b

a
l(Ω) + tr

(
P T
(
Q̇−QΩ

))
dt ,

for which M is the cotangent lift momentum map

M =
∂l

∂Ω
=

1

2
(P TQ−QTP )

and Q,P ∈ SO(n) satisfy the following symmetric equations reminiscent of those in
(4.21),

(4.23) Q̇ = QΩ and Ṗ = PΩ ,

as a result of the constraints.
Show that M satisfies the Euler-Poincaré equation

dM

dt
= ad∗ΩM = −

[
Ω, M

]
,

as it should, since it is a cotangent lift momentum map and those are equivariant.
F

4.6. Rotating motion with an added quadratic potential energy. Manakov’s method for show-
ing the integrability of the n-dimensional rigid body illustrates the conditions necessary to prove
isospectral integrability for any Lie–Poisson system. For example, consider the problem of a rigid
body in a quadratic potential, first studied in [Bo1985].

The Lagrangian of an arbitrary rigid body rotating about a fixed point at the origin of spatial
coordinates x ∈ Rn in a field with a quadratic potential

φ(x) =
1

2
tr
(
xTS0x

)
is defined in the body coordinates by the difference between its kinetic and potential energies in the
form

l =
1

2
tr(ΩTAΩ)︸ ︷︷ ︸
kinetic

− 1

2
tr(SA)︸ ︷︷ ︸

potential

.

Here, Ω(t) = O−1(t)Ȯ(t) ∈ so(n), the n × n constant matrices A and S0 are symmetric, and S(t) =
O−1(t)S0O(t).

The reduced Euler–Lagrange equations for this Lagrangian are computed by taking matrix varia-
tions in its Hamilton’s principle δS = 0 with S =

∫
l dt, to find

δS =
1

2

∫ b

a
tr
(
δΩM

)
dt+

1

2

∫ b

a
tr
(

Ξ
[
S , A

])
dt ,

with matrix commutator [S,A] := SA − AS, variation Ξ := O−1δO ∈ so(n) so that δS = [Ξ, S] and
variational derivative M := ∂l/∂Ω = AΩ + ΩA.

Integrating by parts, invoking homogeneous endpoint conditions, then rearranging as in the proof
of Proposition 3.4 and using the variational relation (3.18), rewritten here as

δΩ =
dΞ

dt
+ [ Ω , Ξ ] ,

finally yields the following formula for the variation,

δS = − 1

2

∫ b

a
tr

((
dM

dt
−
[
M , Ω

]
−
[
S , A

])
Ξ

)
dt .

Hence, Hamilton’s principle for δS = 0 with arbitrary Ξ implies an equation for the evolution of M
given by

dM

dt
=
[
M , Ω

]
+
[
S(t) , A

]
.(4.24)
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A differential equation for S(t) follows from the time derivative of its definition S(t) := O−1(t)S0O(t),
as

dS
dt

=
[
S , Ω

]
.(4.25)

The last two equations constitute a closed dynamical system for M(t) and S(t), with initial conditions
specified by the values of Ω(0) and S(0) = S0 for O(0) = Id at time t = 0.

Following Manakov’s idea [Man1976], these equations may be combined into a commutator of
polynomials,

d

dt

(
S + λM + λ2A2

)
=
[
S + λM + λ2A2 , Ω + λA

]
.(4.26)

The commutator form (4.26) implies for every non-negative integer power K that

d

dt
(S + λM + λ2A2)K = [(S + λM + λ2A2)K , (Ω + λA)] .

Since the commutator is antisymmetric, its trace vanishes and K conservation laws emerge, as

d

dt
tr(S + λM + λ2A2)K = 0 ,

after commuting the trace operation with the time derivative. Consequently,

tr(S + λM + λ2A2)K = constant ,(4.27)

for each power of λ. That is, all the coefficients of each power of λ are constant in time for the motion
of a rigid body in a quadratic field.

Exercise. Show that the Hamiltonian formulation of this system is Lie–Poisson, with
Hamiltonian function

H(M, S) =
1

2
tr
(
ΩTM

)
+

1

2
tr
(
S,A

)
.

Determine the Lie algebra involved. F

Exercise. Explicitly compute the conservation laws in (4.27) for n = 4. F

Exercise. What is the dimension of the generic solution of the system of equa-
tions (4.24) and (4.25)? That is, what is the sum of the dimensions of so(n)
and the symmetric n × n matrices, minus the number of conservation laws?

F

Exercise. Write the equations of motion and their Lie–Poisson Hamiltonian formula-
tion in R3-vector form for the case when

Ω(t) = O−1(t)Ȯ(t) ∈ so(3)

by using the hat map. List the conservation laws in this case. F

Exercise. How would the variational calculation of the system (4.24) and (4.25) have
changed if the Lie group had been unitary instead of orthogonal and the matrices S0,
A and S(t) were Hermitian, rather than symmetric? F



EULER-POINCARÉ THEORY FROM THE RIGID BODY TO SOLITONS 29

5. Variations on rigid-body dynamics

5.1. Rotations in the language of quaternions.

Quaternions came from Hamilton after his best work had been done, and though
beautifully ingenious, they have been an unmixed evil to those who have touched
them in any way.
– Lord Kelvin (William Thomson), 1890

Hamilton’s hope that quaternions “may be useful” was eventually redeemed by their broad modern
applications. The relation between quaternions and vectors is now understood, as we shall explain, and
quaternions are used for their special advantages in the robotics and avionics industries to track objects
moving continuously along a curve of tumbling rotations. They are also heavily used in graphics.

Hamilton was correct: quaternions are special. For example, they form the only associative division
ring containing both real and complex numbers. For us, they also form a natural introduction to
geometric mechanics. In particular, quaternions will introduce us to mechanics on Lie groups;
namely, mechanics on the Lie group SU(2) of 2× 2 special unitary matrices.

5.1.1. Multiplying quaternions using Pauli matrices. Every quaternion q ∈ H is a real linear combina-
tion of the basis quaternions, denoted as (J0, J1, J2, J3). The multiplication rules for their basis
are given by the triple product

(5.1) J1J2J3 = −J0 ,

and the squares

(5.2) J2
1 = J2

2 = J2
3 = −J0 ,

where J0 is the identity element. Thus, J1J2 = J3 holds, with cyclic permutations of (1, 2, 3). Ac-
cording to a famous story, Hamilton inscribed a version of their triple product formula on Brougham
(pronounced “Broom”) bridge in Dublin [OcoRo1998].

Quaternions combine a real scalar q ∈ R and a real three-vector q ∈ R3 with components qa a =
1, 2, 3, into a tetrad

q = [q0, q ] = q0J0 + q1J1 + q2J2 + q3J3 ∈ H .(5.3)

The multiplication table of the quaternion basis elements may be expressed as

(5.4)

J0 J1 J2 J3

J0

J1

J2

J3

J0 J1 J2 J3

J1 −J0 J3 −J2

J2 −J3 −J0 J1

J3 J2 −J1 −J0

.

Definition

5.1 (Multiplication of quaternions). The multiplication rule for two quaternions,

q = [q0, q ] and r = [r0, r ] ∈ H ,

may be defined in vector notation as

qr = [q0, q ][r0, r ] = [ q0r0 − q · r , q0r + r0q + q× r ] .(5.5)

Remark
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5.2. The antisymmetric and symmetric parts of the quaternionic product correspond to vector oper-
ations2:

1

2

(
qr− rq

)
= [0 , q× r ] ,(5.6)

1

2

(
qr + rq

)
= [q0r0 − q · r , q0r + r0q ] .(5.7)

The product of quaternions is not commutative. (It has a nonzero antisymmetric part.)

Theorem

5.3 (Isomorphism with Pauli matrix product).
The multiplication rule (5.5) may be represented in a 2× 2 matrix basis as

(5.8) q = [q0, q] = q0σ0 − iq · σ , with q · σ :=
3∑

a=1

qaσa ,

where σ0 is the 2 × 2 identity matrix and σa, with a = 1, 2, 3, are the Hermitian Pauli spin
matrices,

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
,

σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.(5.9)

Proof. The isomorphism is implied by the product relation for the Pauli matrices

σaσb = δab σ0 + iεabcσc for a, b, c = 1, 2, 3,(5.10)

where εabc is the totally antisymmetric tensor density with ε123 = 1. The Pauli matrices also satisfy
σ2

1 = σ2
2 = σ2

3 = σ0 and one has σ1σ2σ3 = i σ0 as well as cyclic permutations of {1, 2, 3}. Identifying
J0 = σ0 and Ja = −iσa, with a = 1, 2, 3, provides the basic quaternionic properties. �

Exercise. Verify by antisymmetry of εabc the commutator relation for the Pauli
matrices

(5.11) [σa , σb ] := σaσb − σbσa = 2iεabcσc for a, b, c = 1, 2, 3,

and their anticommutator relation

(5.12) {σa , σb }+ := σaσb + σbσa = 2δabσ0 for a, b = 1, 2, 3.

The corresponding relations among quaternions are given in (5.6) and (5.7), respec-
tively. F

Exercise. Verify the quaternionic multiplication rule expressed in the tetrad-bracket
notation in (5.5) by using the isomorphism (5.8) and the product relation for the Pauli
matrices in Equation (5.10). F

Answer.

qr = (q0σ0 − iqaσa)(r0σ0 − irbσb)
= (q0r0 − q · r)σ0 − i(q0r + r0q + q× r) · σ .

N

2Hamilton introduced the word vector in 1846 as a synonym for a pure quaternion, whose scalar part vanishes.
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Exercise. Use Equations (5.11), (5.12) and isomorphism (5.8) to verify relations (5.6)
and (5.7). F

Exercise. Use formula (5.10) to verify the decomposition of a vector in Pauli matrices

(5.13) qσ0 = (q · σ)σ − iq× σ ,
which is valid for three-vectors q ∈ R3. Verify also that

− |q× σ|2 = 2|q|2σ0 = 2(q · σ)2.

F

Exercise. Use Equations (5.11) to verify the commutation relation

[ p · σ, q · σ ] = 2ip× q · σ
for three-vectors p,q ∈ R3. F

5.1.2. Quaternionic conjugate.

Remark

5.4 (Quaternionic product is associative). The quaternionic product is associative:

(5.14) p(qr) = (pq)r .

However, the quaternionic product is not commutative,

(5.15) [p, q] := pq− qp = [0, 2p× q ] ,

as we saw earlier in (5.6).

Definition

5.5 (Quaternionic ċonjugate). One ḋefines ṫhe conjugate of q := [q0 , q] in analogy to complex vari-
ables as

(5.16) q∗ = [q0 , −q] .

Following this analogy, the scalar and vector parts of a quaternion are defined as

Re q :=
1

2
(q + q∗) = [ q0, 0 ] ,(5.17)

Im q :=
1

2
(q− q∗) = [ 0 , q ] .(5.18)

Lemma

5.6 (Properties of quaternionic conjugation). Two important properties of quaternionic conjugation
are easily demonstrated. Namely,

(pq)∗ = q∗p∗ (note reversed order),(5.19)

Re(pq∗) :=
1

2
(pq∗ + qp∗)

= [p0q0 + p · q , 0 ] (yields real part).(5.20)

Note that conjugation reverses the order in the product of two quaternions.
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Definition

5.7 (Dot ṗroduct ȯf q̇uaternions). The quaternionic product, or inner product, is de-
fined as

p · q = [p0 , p ] · [q0 , q ]

:= [p0q0 + p · q , 0 ] = Re(pq∗) .(5.21)

Definition

5.8 (Pairing of quaternions). The quaternionic dot product (5.21) defines a real symmetric pairing
〈 · , · 〉 : H×H 7→ R, denoted as

〈 p , q 〉 = Re(pq∗) := Re(qp∗) = 〈 q , p 〉 .(5.22)

In particular, 〈 q , q 〉 = Re(qq∗) =: |q|2 is a positive real number.

Definition

5.9 (Magnitude of a quaternion). The magnitude of a quaternion q may be defined by

|q| := (q · q)1/2 = (q0
2 + q · q)1/2 .(5.23)

Remark

5.10. A level set of |q| defines a three-sphere S3.

Definition

5.11 (Quaternionic inverse). We have the product

(5.24) |q|2 := qq∗ = (q · q)e ,

where e = [1, 0] is the identity quaternion. Hence, one may define

q−1 := q∗/|q|2(5.25)

to be the inverse of quaternion q.

Exercise. Does a quaternion q have a square root? Prove it. F

Exercise. Show that the magnitude of the product of two quaternions is the product
of their magnitudes. F

Answer. From the definitions of the quaternionic multiplication rule (5.5), inner product (5.21) and
magnitude (5.23), one verifies that

|pq|2 = (p0q0 − p · q)2 + |p0q + pq0 + p× q|2

= (p0
2 + |p|2)(q0

2 + |q|2) = |p|2|q|2 .
N

Definition

5.12. A quaternion q with magnitude |q| = 1 is called a unit quaternion.
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Definition

5.13. A quaternion with no scalar (or real) part q = [0, q] is called a pure quaternion, or equiva-
lently a vector (a term introduced by Hamilton in 1846 [Ne1997]).

Exercise. Show that the antisymmetric and symmetric parts of the product of two
pure quaternions v = [0 , v ] and w = [0 , w ] yield, respectively, the cross product and
(minus) the scalar product of the two corresponding vectors v, w. F

Answer. The quaternionic product of pure quaternions v = [0 , v ] and w = [0 , w ] is defined as

vw =
[
− v ·w, v×w

]
.

Its antisymmetric (vector) part yields the cross product of the corresponding vectors:

Im(vw) =
1

2

(
vw−wv

)
= [0 , v×w ]

(vanishes for v‖w) .
Its symmetric (or real) part yields minus the scalar product of the vectors:

Re(vw) =
1

2

(
vw + wv

)
= [− v ·w , 0 ]

(vanishes for v ⊥ w) . N

Remark

5.14 (H0 ' R3). Being three-dimensional linear spaces possessing the same vector and scalar products,
pure quaternions in H0 (with no real part) are equivalent to vectors in R3.

5.1.3. Decomposition of three-vectors. Pure quaternions have been identified with vectors in R3. Under
this identification, the two types of products of pure quaternions [0, v] and [0, w] are given by

[0, v] · [0, w] = [v ·w, 0] and [0, v][0, w] = [−v ·w, v ×w] .

Thus, the dot ( · ) and cross (× ) products of three-vectors may be identified with these two products
of pure quaternions. The product of an arbitrary quaternion [α, χ] with a pure unit quaternion [0, ω̂]
produces another pure quaternion, provided χ · ω̂ = 0. In this case, one computes

(5.26) [α, χ][0, ω̂] = [−χ · ω̂, α ω̂ + χ× ω̂] =: [0, v], for χ · ω̂ = 0 .

Remark

5.15. Quaternions are summoned whenever a three-vector v is decomposed into its components parallel
(‖) and perpendicular (⊥) to a unit three-vector direction ω̂, according to

(5.27) v = α ω̂ + χ× ω̂ = [α, χ][0, ω̂] = v‖ + v⊥ .

Here α = ω̂ · v and χ = ω̂ × v so that χ · ω̂ = 0 and one uses ω̂ · ω̂ = 1 to find v · v = α2 + χ2 with
χ := |χ|. The vector decomposition (5.27) is precisely the quaternionic product (5.26), in which the
vectors v and ω̂ are treated as pure quaternions.

This remark may be summarised by the following.

Proposition

5.16 (Vector decomposition). Quaternionic left multiplication of [0, ω̂] by [α, χ] = [ω̂ · v, ω̂ × v]
decomposes the pure quaternion [0 ,v] into components that are ‖ and ⊥ to the pure unit quaternion
[0 , ω̂].
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5.1.4. Quaternionic conjugation: Cayley–Klein parameters.

Definition

5.17 (Quaternionic conjugation).
Quaternionic conjugation is defined as the map under the quaternionic product (recalling that

this product is associative),

(5.28) r→ r ′ = q̂ r q̂∗ ,

where q̂ = [q0 , q] is a unit quaternion, q̂ · q̂ = 1, so q̂q̂∗ = e = [1, 0]. The inverse map is

r = q̂∗r ′q̂ .

Exercise. Show that the product of a quaternion r = [r0, r] with a unit quaternion
q̂ = [q0, q], whose inverse is q̂∗ = [q0,− q], satisfies

rq̂∗ =
[
r · q̂,− r0q + q0r + q× r

]
,

q̂ r q̂∗ =
[
r0|q̂|2, r + 2q0q× r + 2q× (q× r)

]
,

where r · q̂ = r0q0 + r · q and |q̂|2 = q̂ · q̂ = q0
2 + q · q = 1 according to the definitions

of the dot product in (5.21) and magnitude in (5.23). F

Remark

5.18. The same products using the pure unit quaternion ẑ = [0, ẑ] with ẑ = (0, 0, 1)T and the unit
quaternion q̂ = [q0,q] satisfy

ẑq̂∗ =
[
q3, q0ẑ + q× ẑ

]
,

q̂ ẑ q̂∗ =
[
0, ẑ + 2q0q× ẑ + 2q× (q× ẑ)

]
,

which produces a complete set of unit vectors.

Remark

5.19. Conjugation q̂ r q̂∗ is a wise choice, as opposed to, say, choosing the apparently less meaningful
triple product

q̂ r q̂ = [0, r] + (r0q0 − r · q)[q0, q]

for quaternions r = [r0, r] and q̂ = [q0,q] with |q|2 = q0
2 + q · q = 1.

Exercise. For q∗ = [q0, − q], such that q∗q = J0|q|2, verify that

2q∗ = −J0qJ∗0 + J1qJ∗1 + J2qJ∗2 + J3qJ∗3 .
What does this identity mean geometrically? Does the complex conjugate z∗ for z ∈ C
satisfy such an identity? Prove it. F

Lemma

5.20. As a consequence of Remark 5.18 and the Exercise just before it, one finds that conjugation
q̂ r q̂∗ of a quaternion r by a unit quaternion q̂ preserves the sphere S3

|r| given by any level set of |r|.
That is, the value of |r|2 is invariant under conjugation by a unit quaternion:

(5.29) |q̂ r q̂∗|2 = |r|2 = r0
2 + r · r .
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Definition

5.21 (Conjugacy classes). The set

(5.30) C(r) :=
{
r′ ∈ H

∣∣∣ r′ = q̂ r q̂∗
}

is called the conjugacy class of the quaternion r.

Corollary

5.22. The conjugacy classes of the three-sphere S3
|r| under conjugation by a unit quaternion q̂ are

the two-spheres given by

(5.31)
{

r ∈ R3
∣∣∣ r · r = |r|2 − r0

2
}
.

Proof. The proof is a straightforward exercise. �

Remark

5.23. The expressions in Remark 5.18 correspond to spatial rotations when r0 = 0 so that r = [0, r ].

Lemma

5.24 (Euler–Rodrigues formula). If r = [0, r] is a pure quaternion and q̂ = [q0 , q] is a
unit quaternion, then under quaternionic conjugation,

r ′ = q̂ r q̂∗ =
[
0, r ′

]
=

[
0, r + 2q0(q× r) + 2q× (q× r)

]
.(5.32)

For q̂ := ±[cos θ2 , sin θ
2 n̂], we have[

0, r ′
]

=
[

cos
θ

2
, sin

θ

2
n̂
] [

0, r
] [

cos
θ

2
,− sin

θ

2
n̂
]
,

so that

r ′ = r + 2 cos
θ

2
sin

θ

2
(n̂× r) + 2 sin2 θ

2

(
n̂× (n̂× r)

)
= r + sin θ (n̂× r) + (1− cos θ)

(
n̂× (n̂× r)

)
(5.33)

=: Oθn̂ r .

This is the famous Euler–Rodrigues formula for the rotation Oθn̂ r of a vector r by an angle θ
about the unit vector n̂.

Exercise. Verify the Euler–Rodrigues formula (5.33) by a direct computation using
quaternionic multiplication.

F

Exercise. Write formula (5.32) for conjugation of a pure quaternion by a unit quater-
nion q0

2 + q · q = 1 as a 3× 3 matrix operation acting on a vector. F

Answer. As a 3× 3 matrix operation acting on a vector, r ′ = O3×3r, formula (5.32) becomes

r ′ = r + 2q0(q× r) + 2q× (q× r)

=
[
(2q0

2 − 1)Id+ 2q0q̂ + 2qqT
]
r =: O3×3r ,
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where q̂ = q×, or in components q̂lm = −qkεklm by the hat map in (3.7) and (3.12). When q = [q0, q]
is a unit quaternion, the Euler–Rodrigues formula implies O3×3 ∈ SO(3). N

Definition

5.25 (Euler parameters). In the Euler–Rodrigues formula (5.33) for the rotation of vector r by angle
θ about n̂, the quantities θ, n̂ are called the Euler parameters.

Definition

5.26 (Cayley–Klein parameters). The unit quaternion q̂ = [q0 , q] corresponding to the rotation of
a pure quaternion r = [0 , r] by angle θ about n̂ using quaternionic conjugation is

(5.34) q̂ := ±
[

cos
θ

2
, sin

θ

2
n̂
]
.

The quantities q0 = ± cos θ2 and q = ± sin θ
2 n̂ in (5.34) are called the Cayley–Klein parameters.

Remark

5.27 (Cayley–Klein ċoordinates ȯf ȧ q̇uaternion). An arbitrary quaternion may be written in terms of
its magnitude and its Cayley–Klein parameters as

(5.35) q = |q|q̂ = |q|
[

cos
θ

2
, sin

θ

2
n̂
]
.

The calculation of the Euler–Rodrigues formula (5.33) shows the equivalence of quaternionic conju-
gation and rotations of vectors. Moreover, compositions of quaternionic products imply the following.

Corollary

5.28. Composition of rotations

Oθ
′

n̂′O
θ
n̂ r = q̂′(q̂ r q̂∗)q̂′

∗

is equivalent to multiplication of (±) unit quaternions.

Exercise. Compute OπŷO
π
x̂ − Oπx̂Oπŷ by quaternionic multiplication. Does it vanish?

Prove it. F

Remark

5.29 (Cayley–Klein parameters for three-vectors). Consider the unit Cayley–Klein quaternion,
p̂ := ±[cos θ2 , sin θ

2 χ̂]. Then the decompositions for quaternions (5.26) and for vectors (5.27) may
be set equal to find

[0, v̂] := |v|−1[0,v] = p̂[0, ω̂]p̂∗

= [0, cos θ ω̂ + sin θ χ̂× ω̂]

= |v|−1[α, χ][0, ω̂]

= (α2 + χ2)−1/2 [0, α ω̂ + χ× ω̂] .

Thus, the unit vector v̂ = |v|−1v is a rotation of ω̂ by angle θ around χ̂ with

cos θ =
α

(α2 + χ2)1/2
and sin θ =

χ

(α2 + χ2)1/2
.
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Hence, the alignment parameters α and χ in (5.26) and (5.27) define the three-vector v in [0, v] =

[α, χ][0, ω̂] as a stretching of ω̂ by (α2 + χ2)1/2 and a rotation of ω̂ by θ = tan−1 χ/α about χ̂. The
Cayley–Klein angle θ is the relative angle between the directions v̂ and ω̂.

5.1.5. Pure quaternions, Pauli matrices and SU(2).

Exercise. Write the product of two pure unit quaternions as a multiplication of Pauli
matrices. F

Answer. By the quaternionic multiplication rule (5.5), one finds

[0 , v̂][0 , ŵ] = [− v̂ · ŵ , v̂ × ŵ] =: [cos θ , n̂ sin θ] .(5.36)

Here v̂ · ŵ = − cos θ, so that θ is the relative angle between the unit three-vectors v̂ and ŵ, and
v̂ × ŵ = n̂ sin θ is their cross product, satisfying

|v̂ × ŵ|2 = |v̂|2|ŵ|2 − (v̂ · ŵ)2 = 1− cos2 θ = sin2 θ .

This is equivalent to following the multiplication of Pauli matrices,

(−iv̂ · σ)(−iŵ · σ) = − v̂ · ŵ σ0 − i v̂ × ŵ · σ
= − (cos θ σ0 + i sin θ n̂ · σ) ,

(5.37)

with, e.g., n̂ · σ =
∑3

a=1 n̂aσa. N

Proposition

5.30 (De Moivre’s theorem for quaternions). De Moivre’s theorem for complex numbers of unit mod-
ulus is

(cos θ + i sin θ)m = (cosmθ + i sinmθ) .

The analogue of De Moivre’s theorem for unit quaternions is

[cos θ, sin θn̂]m = [cosmθ, sinmθn̂] .

Proof. The proof follows immediately from the Cayley–Klein representation of a unit quaternion. �

Theorem

5.31. The unit quaternions form a representation of the matrix Lie group SU(2).

Proof. The matrix representation of a unit quaternion is given in (5.8). Let q̂ = [q0, q] be a unit
quaternion (|q̂|2 = q2

0 + q · q = 1) and define the matrix Q by

Q = q0σ0 − iq · σ

=

[
q0 − iq3 −iq1 − q2

−iq1 + q2 q0 + iq3

]
.(5.38)

The matrix Q is a unitary 2 × 2 matrix (QQ† = Id) with unit determinant (det Q = 1). That
is, Q ∈ SU(2). In fact, we may rewrite the map (5.28) for quaternionic conjugation of a vector
r = [0, r] by a unit quaternion equivalently in terms of unitary conjugation of the Hermitian Pauli
spin matrices as

r ′ = q̂ r q̂∗ ⇐⇒ r′ · σ = Q r · σQ† ,(5.39)

with

r · σ =

[
r3 r1 − ir2

r1 + ir2 − r3

]
.(5.40)

This is the standard representation of SO(3) rotations as a double covering (±Q) by SU(2)
matrices, which is now seen to be equivalent to quaternionic multiplication. �
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Remark

5.32. A variant of the map (5.38), known as the Kustaanheimo–Stiefel map, establishes a relation
between the solutions of a constrained isotropic harmonic oscillator in four dimensions and those of
the Kepler problem in three dimensions. However, the KS map is beyond our present scope.

Remark

5.33. Composition of SU(2) matrices by matrix multiplication forms a Lie subgroup of the Lie group
of 2× 2 complex matrices GL(2, C), see, e.g., [MaRa1994].

Exercise. Check that the matrix Q in (5.38) is a special unitary matrix so that
Q ∈ SU(2). That is, show that Q is unitary and has unit determinant. F

Exercise. Verify the conjugacy formula (5.39) arising from the isomorphism between
unit quaternions and SU(2). F

Remark

5.34. The (±) in the Cayley–Klein parameters reflects the 2:1 covering of the map SU(2)→ SO(3).

5.1.6. Tilde map: R3 ' su(2) ' so(3). The following tilde map may be defined by considering the
isomorphism (5.8) for a pure quaternion [0, q ]. Namely,

q ∈ R3 7→ −i q · σ = − i
3∑
j=1

qjσj(5.41)

=

[
−iq3 −iq1 − q2

−iq1 + q2 iq3

]
=: q̃ ∈ su(2) .

The tilde map (5.41) is a Lie algebra isomorphism between R3 with the cross product of vectors and
the Lie algebra su(2) of 2× 2 skew-Hermitian traceless matrices. Just as in the hat map one writes

JJ†(t) = Id =⇒ J̇J† + (J̇J†)† = 0 ,

so the tangent space at the identity for the SU(2) matrices comprises 2× 2 skew-Hermitian traceless
matrices, whose basis is −iσ, the imaginary number (−i) times the three Pauli matrices. This
completes the circle of the isomorphisms between Pauli matrices and quaternions, and between
pure quaternions and vectors in R3. In particular, their Lie products are all isomorphic. That is,

(5.42) Im(pq) =
1

2

(
pq− qp

)
= [p̃, q̃] = (p× q)˜.

In addition, recalling that Re(pq∗) = [ p · q , 0 ] helps prove the following identities:

det(q · σ) = |q|2 , (p̃q̃) = −p · q .

5.1.7. Dual of the tilde map: R3∗ ' su(2)∗ ' so(3)∗. One may identify su(2)∗ with R3 via the map
µ ∈ su(2)∗ → µ̆ ∈ R3 defined by

µ̆ · q :=
〈
µ, q̃

〉
su(2)∗×su(2)

for any q ∈ R3.
Then, for example,

µ̆ · (p× q) :=
〈
µ, [p̃, q̃]

〉
su(2)∗×su(2)

,

which foreshadows the adjoint and coadjoint actions of SU(2) in rigid-body dynamics.
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5.1.8. Pauli matrices and Poincaré’s sphere C2 → S2. The Lie algebra isomorphisms given by the
Pauli matrix representation of the quaternions (5.8) and the tilde map (5.41) are related to a map
C2 7→ S2 first introduced by Poincaré [Po1892] and later studied by Hopf [Ho1931]. Consider for
ak ∈ C2, with k = 1, 2 the four real combinations written in terms of the Pauli matrices

nα =

2∑
k,l=1

a∗k{σα}kl al with α = 0, 1, 2, 3 .(5.43)

The nα ∈ R4 have components

n0 = |a1|2 + |a2|2 ,
n3 = |a1|2 − |a2|2 ,(5.44)

n1 + i n2 = 2a∗1a2 .

Remark

5.35. One may motivate the definition of nα ∈ R4 in (5.43) by introducing the following Hermit-
ian matrix,

ρ = a⊗ a∗ =
1

2

(
n0σ0 + n · σ

)
,(5.45)

in which the vector n is defined as

n = tr ρσ = ala
∗
kσkl .(5.46)

The last equation recovers (5.43). We will return to the interpretation of this map when we discuss
momentum maps in Chapter ??. For now, we simply observe that the components of the singular
Hermitian matrix (det ρ = 0)

ρ = a⊗ a∗ =
1

2

[
n0 + n3 n1 − in2

n1 + in2 n0 − n3

]
are all invariant under the diagonal action

S1 : a→ eiφa, a∗ → e−iφa∗.

A fixed value n0 = const defines a three-sphere S3 ∈ R4. Moreover, because det ρ = 0 the remaining
three components satisfy an additional relation which defines the Poincaré sphere S2 ∈ S3 as

n2
0 = n2

1 + n2
2 + n2

3 = |n|2 .(5.47)

Each point on this sphere defines a direction introduced by Poincaré to represent polarised light. The
north (resp. south) pole represents right (resp. left) circular polarisation and the equator represents
the various inclinations of linear polarisation. Off the equator and the poles the remaining directions in
the upper and lower hemispheres represent right- and left-handed elliptical polarisations, respectively.
Opposing directions ±n correspond to orthogonal polarisations.

Exercise. State and prove Hamilton’s principle for the rigid body in quaternionic
form. F

5.1.9. Poincaré’s sphere and Hopf’s fibration. The same map S3 7→ S2 given by (5.43) from the
n0 = const S3 to the Poincaré sphere S2 was later studied by Hopf, who found it to be a fibration of
S3 over S2. That is, S3 ' S2 × S1 locally, where S1 is the fibre. A fibre bundle structure is defined
descriptively, as follows.

Definition

5.36 (Fibre bundle). In topology, a fibre bundle is a space which locally looks like a product of
two spaces but may possess a different global structure. Every fibre bundle consists of a continuous
surjective map π : E 7→ B, where small regions in the total space E look like small regions in the prod-
uct space B × F , of the base space B with the fibre space F (Figure 3.1). Fibre bundles comprise
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a rich mathematical subject. However, we shall confine our attention here to the one particular case
leading to the Poincaré sphere.

Remark

5.37. The Hopf fibration, or fibre bundle, S3 ' S2 × S1 has spheres as its total space, base space
and fibre, respectively. In terms of the Poincaré sphere one may think of the Hopf fibration locally
as a sphere S2 which has a great circle S1 attached at every point. The phase on the great circles at
opposite points are orthogonal (rotated by π/2, not π); so passing once around the Poincaré sphere
along a great circle rotates the S1 phase only by π, not 2π. One must pass twice around a great circle
on the Poincaré sphere to return to the original phase. Thus, the relation S3 ' S2 × S1 only holds
locally, not globally.

π

F

Figure 3. A fibre bundle E looks locally like the product space B × F , of the base
space B with the fibre space F . The map π : E ≈ B × F 7→ B projects E onto the
base space B.

Remark

5.38. The conjugacy classes of S3 by unit quaternions yield the family of two-spheres S2 in for-
mula (5.31) of Corollary 5.22. These also produce a version of the Hopf fibration S3 ' S2 × S1,
obtained by identifying the Poincaré sphere (5.47) from the definitions (5.44).

Remark

5.39 (Hopf fibration/quaternionic conjugation). Conjugating the pure unit quaternion along the z-
axis [0, ẑ] by the other unit quaternions yields the entire unit two-sphere S2. This is to be expected
from the complete set of unit vectors found by quaternionic conjugation in (5.29). However, it may
be shown explicitly by computing the SU(2) multiplication for |a1|2 + |a2|2 = 1,

(5.48)

[
a1 − a∗2
a2 a∗1

][
− i 0
0 i

][
a∗1 a∗2
− a2 a1

]
=

[
− in3 − in1 + n2

− in1 − n2 in3

]
.

This is the tilde map (5.41) once again and (n1, n2, n3) are the components of the Hopf fibration
[MaRa1994].

In other words, cf. Equation (5.38),

−igσ3g
† = −in · σ.
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for g† = g−1 ∈ SU(2) and |n|2 = 1.

Remark

5.40. The isomorphism given in (5.8), (5.41) and (5.48) between the unit quaternions and SU(2) ex-
pressed in terms of the Pauli spin matrices connects the quaternions to the mathematics of Poincaré’s
sphere C2 7→ S2, Hopf’s fibration S3 ' S2 × S1 and the geometry of fibre bundles. This deep network
of connections would amply reward the efforts of further study.

Exercise. Show that the Hopf fibration is a decomposition law for the group SU(2).
Hint: Write the Hopf fibration in quaternionic form. F

Exercise. Write the quaternionic version of unitary transformations of Hermitian
matrices.

Hint: The Pauli spin matrices defined in (5.9) are Hermitian. To get started, you
may want to take a look at Equation (5.39). F

5.2. Rotations in four dimensions: SO(4).

Scenario 5.41. The Tets are yet another alien life form who also use one-dimensional time t ∈ R
(we sigh with relief), but their spatial coordinates are X ∈ R4, while ours are x ∈ R3. They test us to
determine whether we are an intelligent life form by requiring us to write the equations for rigid-body
motion for four-dimensional rotations.

Hint: The angular velocity of rotation Ψ̂ = O−1Ȯ(t) for rotations O(t) ∈ SO(4) in four dimensions
will be represented by a 4 × 4 skew-symmetric matrix. Write a basis for the 4 × 4 skew-symmetric
matrices by adding a row and column to the 3× 3 basis.

Answer. Any 4× 4 skew-symmetric matrix may be represented as a linear combination of 4× 4 basis
matrices with three-dimensional vector coefficients Ω, Λ ∈ R3 in the form

Ψ̂ =


0 −Ω3 Ω2 −Λ1

Ω3 0 −Ω1 −Λ2

−Ω2 Ω1 0 −Λ3

Λ1 Λ2 Λ3 0


= Ω · Ĵ + Λ · K̂
= ΩaĴa + ΛbK̂b .

This is the formula for the angular velocity of rotation in four dimensions.

The 4× 4 basis set Ĵ = (J1, J2, J3)T and K̂ = (K1, K2, K3)T consists of the following six linearly

independent 4× 4 skew-symmetric matrices, Ĵa, K̂b with a, b = 1, 2, 3:

Ĵ1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , K̂1 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 ,

Ĵ2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , K̂2 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 ,

Ĵ3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K̂3 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .
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The matrices Ĵa with a = 1, 2, 3 embed the basis for 3 × 3 skew-symmetric matrices into the 4 × 4

matrices by adding a row and column of zeros. The skew matrices K̂a with a = 1, 2, 3 then extend
the 3× 3 basis to 4× 4.

5.2.1. Commutation relations. The skew matrix basis Ĵa, K̂b with a, b = 1, 2, 3 satisfies the commu-
tation relations, [

Ĵa, Ĵb
]

= ĴaĴb − ĴbĴa = εabcĴc ,[
Ĵa, K̂b

]
= ĴaK̂b − K̂bĴa = εabcK̂c ,[

K̂a, K̂b

]
= K̂aK̂b − K̂bK̂a = εabcĴc .

These commutation relations may be verified by a series of direct calculations, as [ Ĵ1, Ĵ2 ] = Ĵ3, etc.

5.2.2. Hat map for 4× 4 skew matrices. The map above for the 4× 4 skew matrix Ψ̂ may be written
as

Ψ̂ = Ω · Ĵ + Λ · K̂ = ΩaĴa + ΛbK̂b , sum on a, b = 1, 2, 3 .

This map provides the 4 × 4 version of the hat map, written now as ( · )̂ : R3 × R3 7→ so(4). Here
so(4) is the Lie algebra of the 4 × 4 special orthogonal matrices, which consists of the 4 × 4 skew

matrices represented in the six-dimensional basis of Ĵ ’s and K̂’s.

5.2.3. Commutator as intertwined vector product. The commutator of 4×4 skew matrices corresponds
to an intertwined vector product, as follows. For any vectors Ω, Λ, ω, λ ∈ R3, one has[

Ω · Ĵ + Λ · K̂ , ω · Ĵ + λ · K̂
]

=
(

Ω× ω + Λ× λ
)
· Ĵ +

(
Ω× λ− Λ× ω

)
· K̂ .

Likewise, the matrix pairing 〈A,B 〉 = tr(ATB) is related to the vector dot-product pairing in R3 by〈
Ω · Ĵ + Λ · K̂ , ω · Ĵ + λ · K̂

〉
= Ω · ω + Λ · λ .

That is, 〈
Ĵa , Ĵb

〉
= δab =

〈
K̂a , K̂b

〉
and

〈
Ĵa , K̂b

〉
= 0 .

5.2.4. Euler–Poincaré equation on so(4)∗. For

Φ = O−1δO(t) = ξ · Ĵ + η · K̂ ∈ so(4) ,

Hamilton’s principle δS = 0 for S =
∫ b
a `(Ψ) dt with

Ψ = O−1Ȯ(t) = Ω · Ĵ + Λ · K̂ ∈ so(4)

leads to

δS =

∫ b

a

〈 δ`
δΨ

, δΨ
〉
dt =

∫ b

a

〈 δ`
δΨ

, Φ̇ + adΨΦ
〉
dt ,

where

adΨΦ = [Ψ, Φ] =
[

Ω · Ĵ + Λ · K̂, ξ · Ĵ + η · K̂
]

=
(

Ω× ξ + Λ× η
)
· Ĵ +

(
Ω× η − Λ× ξ

)
· K̂ .
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Thus,

δS =

∫ b

a

〈
− d

dt

δ`

δΨ
, Φ
〉

+
〈 δ`
δΨ

, adΨΦ
〉
dt

=

∫ b

a

〈
− d

dt

δ`

δΩ
· Ĵ − d

dt

δ`

δΛ
· K̂ , ξ · Ĵ + η · K̂

〉
dt

+

∫ b

a

〈
δ`

δΩ
· Ĵ +

δ`

δΛ
· K̂ ,(

Ω× ξ + Λ× η
)
· Ĵ +

(
Ω× η − Λ× ξ

)
· K̂
〉
dt

=

∫ b

a

(
− d

dt

δ`

δΩ
+
δ`

δΩ
× Ω− δ`

δΛ
× Λ

)
· ξ

+
(
− d

dt

δ`

δΛ
+
δ`

δΛ
× Ω +

δ`

δΩ
× Λ

)
· η dt .

Hence, δS = 0 yields

d

dt

δ`

δΩ
=

δ`

δΩ
× Ω− δ`

δΛ
× Λ

and
d

dt

δ`

δΛ
=

δ`

δΛ
× Ω +

δ`

δΩ
× Λ .(5.49)

These are the Ĵ , K̂ basis components of the Euler–Poincaré equation on so(4)∗,

d

dt

δ`

δΨ
= ad∗Ψ

δ`

δΨ
,

written with Ψ = Ω · Ĵ + Λ · K̂ in this basis.

5.2.5. Hamiltonian form on so(4)∗. Legendre-transforming yields the pairs

Π =
δ`

δΩ
, Ω =

δh

δΠ
, and Ξ =

δ`

δΛ
, Λ =

δh

δΞ
.

Hence, these equations may be expressed in Hamiltonian form as

(5.50)
d

dt

[
Π
Ξ

]
=

[
Π× Ξ×
Ξ× Π×

] [
δh/δΠ
δh/δΞ

]
.

The corresponding Lie–Poisson bracket is given by

{f, h} = −Π ·
(
δf

δΠ
× δh

δΠ
+
δf

δΞ
× δh

δΞ

)
−Ξ ·

(
δf

δΠ
× δh

δΞ
− δh

δΠ
× δf

δΞ

)
.

This Lie–Poisson bracket has an extra term proportional to Π, relative to the se(3)∗ bracket for
the heavy top. Its Hamiltonian matrix has two null eigenvectors for the variational derivatives of
C1 = |Π|2 + |Ξ|2 and C2 = Π · Ξ. The functions C1, C2 are the Casimirs of the so(4) Lie–Poisson
bracket. That is, {C1, H} = 0 = {C2, H} for every Hamiltonian H(Π, Ξ).

The Hamiltonian matrix in Equation (5.50) is similar to that for the Lie–Poisson formulation of
heavy-top dynamics, except for the one extra term {Ξ, Ξ} 6= 0. N

5.3. Rotations in complex space.

Scenario 5.42. The Bers are another alien life form who use one-dimensional time t ∈ R (thankfully),
but their spatial coordinates are complex z ∈ C3, while ours are real x ∈ R3. They test us to determine
whether we are an intelligent life form by requiring us to write the equations for rigid-body motion for
body angular momentum coordinates L ∈ C3.

Their definition of a rigid body requires its moment of inertia I, rotational kinetic energy 1
2L · I−1L

and magnitude of body angular momentum
√

L · L all to be real. They also tell us these rigid-body
equations must be invariant under the operations of parity P z → −z∗ and time reversal T : t → −t.
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What equations should we give them? Are these equations the same as ours in real body angular
momentum coordinates? Keep your approach general for as long as you like, but if you wish to
simplify, work out your results with the simple example in which I = diag(1, 2, 3).

Answer. Euler’s equations for free rotational motion of a rigid body about its centre of mass may be
expressed in real vector coordinates L ∈ R3 (L is the body angular momentum vector) as

(5.51) L̇ =
∂C

∂L
× ∂E

∂L
,

where C and E are conserved quadratic functions defined by

(5.52) C(L) =
1

2
L · L , E(L) =

1

2
L · I−1L .

Here, I−1 = diag (I−1
1 , I−1

2 , I−1
3 ) is the inverse of the (real) moment of inertia tensor in principal axis

coordinates. These equations are PT-symmetric; they are invariant under spatial reflections of the
angular momentum components in the body P : L → L composed with time reversal T : L → −L.
The simplifying choice I−1 = diag(1, 2, 3) reduces the dynamics (5.51) to

(5.53) L̇1 = L2L3 , L̇2 = − 2L1L3 , L̇3 = L1L2 ,

which may also be written equivalently as

(5.54) L̇ = L× KL ,

with K = diag(−1, 0, 1).
Since L is complex, we set L = x + iy and obtain four conservation laws, namely the real and

imaginary parts of C(L) = 1
2L · L and H(L) = 1

2L · KL, expressed as

C(L) =
1

2
x · x− 1

2
y · y + ix · y ,(5.55)

H(L) =
1

2
x · Kx− 1

2
y · Ky + ix · Ky .(5.56)

The solutions to Euler’s equations that have been studied in the past are the real solutions to (5.53),
that is, the solutions for which y = 0. For this case the phase space is three-dimensional and the two
conserved quantities are

(5.57) C =
1

2

(
x2

1 + x2
2 + x2

3

)
, H = −1

2
x2

1 +
1

2
x2

3 .

If we take C = 1
2 , then the phase-space trajectories are constrained to a sphere of radius 1. There are

six critical points located at (±1, 0, 0), (0,±1, 0) and (0, 0,±1). These are the conventional trajectories
that are discussed in standard textbooks on dynamical systems [MaRa1994].

Exercise. When H = 0, show that the resulting equation is a first integral of the simple
pendulum problem. F

Let us now examine the complex PT-symmetric solutions to Euler’s equations. The equation set
(5.52) is six-dimensional. However, a reduction in dimension occurs because the requirement of PT

symmetry requires the constants of motion C and H in (5.56) to be real. The vanishing of the
imaginary parts of C and H gives the two equations

(5.58) x · y = 0, x · Ky = 0 .

These two bilinear constraints may be used to eliminate the y terms in the complex Equations (5.53).
When this elimination is performed using the definition K = diag(−1, 0, 1), one obtains the following
real equations for x on the PT constraint manifolds (5.58):

(5.59) ẋ = x× Kx +M(x) x .

Here, the scalar function M = PN/D, where the functions P , N and D are given by

P (x) = 2x1x2x3 , N(x) = x2
1 + x2

2 + x2
3 − 1 ,(5.60)

D(x) =

∣∣∣∣Re

(
∂C

∂L
× ∂H

∂L

)∣∣∣∣2 = x2
1x

2
2 + x2

2x
2
3 + 4x2

1x
2
3 .
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The system (5.59) has nonzero divergence, so it cannot be Hamiltonian even though it arises from
constraining a Hamiltonian system. Nonetheless, the system has two additional real conservation laws,
and it reduces to the integrable form

ẋ1 = x2x3

(
1 + 2x2

1N/D
)
,(5.61)

ẋ2 = −2x1x3

(
1− x2

2N/D
)
,

ẋ3 = x1x2

(
1 + 2x2

3N/D
)
,(5.62)

on level sets of two conserved quantities:

A =
(N + 1)2N

D
,(5.63)

B =
x2

1 − x2
3

D

(
2x2

2x
2
3 + 4x2

1x
2
3 + x4

2 + 2x2
1x

2
2 − x2

2

)
.

Hence, the motion takes place in R3 on the intersection of the level sets of these two conserved
quantities. These quantities vanish when either N = 0 (the unit sphere) or x2

3−x2
1 = 0 (the degenerate

hyperbolic cylinder). On these level sets of the conserved quantities the motion Equations (5.59)
restrict to Equations (5.53) for the original real rigid body. N

Remark

5.43. We are dealing with rotations of the group of complex 3 × 3 orthogonal matrices with unit
determinant acting on complex three-vectors. These are the linear maps, SO(3,C)× C3 7→ C3.

Euler’s Equations (5.51) for complex body angular momentum describe geodesic motion on SO(3,C)
with respect to the metric given by the trace norm g(Ω,Ω) = 1

2trace (ΩT IΩ) for the real symmetric

moment of inertia tensor I and left-invariant Lie algebra element Ω(t) = g−1(t)ġ(t) ∈ so(3,C). Be-
cause SO(3,C) is orthogonal, Ω ∈ so(3,C) is a 3 × 3 complex skew-symmetric matrix, which may

be identified with complex vectors Ω̂ ∈ C3 by (Ω)jk = −Ω̂iεijk. Euler’s Equations (5.51) follow from
Hamilton’s principle in Euler–Poincaré or Lie–Poisson form:

µ̇ = ad∗Ω µ = {µ, H} ,(5.64)

where

δl

δΩ
= µ , g−1ġ = Ω , Ω =

∂H

∂µ
.(5.65)

These are Hamiltonian with the standard Lie–Poisson bracket defined on the dual Lie algebra so(3,C3)∗.
Because of the properties of the trace norm, we may take µ = skew IΩ. (Alternatively, we may set
the preserved symmetric part of µ initially to zero.) Hence, µ may be taken as a skew-symmetric
complex matrix, which again may be identified with the components of a complex three-vector z as
(µ)jk = −ziεijk. On making this identification, Euler’s Equations (5.51) emerge for z ∈ C3, with real
I. The PT-symmetric initial conditions on the real level sets of the preserved complex quantities C and
H form an invariant manifold of this system of three complex ordinary differential equations. On this
invariant manifold, the complex angular motion is completely integrable. By following the approach
established by Manakov [Man1976] this reasoning may also extend to the rigid body on SO(n,C).

Exercise. The Bers left behind a toy monopole. This is a rigid body that rotates
by complex angles and whose three moments of inertia are the complex cube roots of
unity. What are the equations of motion for this toy monopole? For a hint, take a
look at [Iv2006]. F

Generalised rigid body.
Recall the following definitions for the left action of a Lie group G on the cotangent
bundle T ∗Q of a manifold Q:
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• The diamond operation � : T ∗Q→ g∗ is defined by〈
p � q , ξ

〉
= 〈〈p, −£ξq〉〉 ,

with Lie derivative £ξq given by the infinitesimal generator of the action of the
Lie algebra element ξ on the coordinate, q, and pairings 〈· , ·〉 : g∗× g→ R and
〈〈 · , · 〉〉 : TQ∗ × TQ→ R.
• The cotangent-lift momentum map for this action is given by

J = − p � q : T ∗Q→ g∗

for canonical variables (q, p) ∈ T ∗Q satisfying {q, p} = Id.
Let the Hamiltonian Hgrb for a generalized rigid body (grb) be defined as the pairing

of the cotangent-lift momentum map J with its dual J ] = K−1J ∈ g,

Hgrb =
1

2

〈
p � q , (p � q)]

〉
=

1

2

(
p � q , K−1(p � q)

)
,

for an appropriate inner product ( · , · ) : g∗ × g → R obtained, e.g., from the Killing
form K on g (which is symmetric and nondegenerate).

Problem statement
: [a] Compute the canonical equations for the Hamiltonian Hgrb.
: [b] Use these equations to compute the evolution equation for J = − p � q.
: [c] Identify the resulting equation and give a plausible argument why this was

to be expected, by writing out its associated Hamilton’s principle and Euler-
Poincaré equations.

: [d] Write the dynamical equations for q, p and J on R3 and explain why the
name generalized rigid body might be appropriate.

F

5.4. Two times and the continuum spin chain.

Scenario 5.44. The Bichrons are an alien life form who use two-dimensional time u = (s, t) ∈ R2

for time travel. To decide whether we are an intelligent life form, they require us to define spatial and
body angular velocity for free rigid rotation in their two time dimensions. What should we tell them?

Answer. (Bichrons) Following the Euler-Poincaré approach to rotating motion, let’s define a trajec-
tory of a moving point x = r(u) ∈ R3 as a smooth invertible map r : R2 → R3 with ”time” u ∈ R2, so
that u = (s, t). Suppose the components of the trajectory are given in terms of a fixed and a moving
orthonormal frame by

r(u) = rA0 (u)eA(0) fixed frame,
= raea(u) moving frame,

with constant ra ∈ R3 and moving orthonormal frame defined by O : R2 → SO(3), so that

ea(u) = O(u)ea(0) .

Here O(u) is a map R2 → SO(3) parameterised by the two times u = (s, t) ∈ R2. The exterior
derivative3 of the moving frame relation above yields the infinitesimal spatial displacement,

dr(u) = radea(u) = radOO−1(u)ea(u) = ω̂(u)r ,

in which ω̂(u) = dOO−1(u) ∈ so(3) is the one-form for spatial angular displacement. One denotes

dO = O′ ds+ Ȯ dt ,

so that the spatial angular displacement is the right-invariant so(3)-valued one-form

ω̂(u) = dOO−1 = (O′ ds+ Ȯ dt)O−1 .

3This subsection uses the notation of differential forms and wedge products. Readers unfamiliar with it may regard
this subsection as cultural background.
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Likewise, the body angular displacement is the left-invariant so(3)-valued one-form

Ω̂(u) = AdO−1ω̂(u) = O−1ω̂(u)O = O−1dO(5.66)

= O−1(O′ ds+ Ȯ dt) =: Ω̂sds+ Ω̂tdt ,

and Ω̂s and Ω̂t are its two body angular velocities.
This is the answer the Bichrons wanted: For them, free rotation takes place on a surface in SO(3)
parameterised by u = (s, t) ∈ R2 and it has two body angular velocities because such a surface has
two independent tangent vectors. N

Scenario 5.45. What would the Bichrons do with this information?

Answer. To give an idea of what the Bichrons might do with our answer, let us define the coframe
at position x = r(u) as the infinitesimal displacement in body coordinates,

(5.67) Ξ = O−1dr .

Taking its exterior derivative gives the two-form,

(5.68) dΞ = −O−1dO ∧O−1dr = −Ω̂ ∧Ξ ,

in which the left-invariant so(3)-valued one-form Ω̂ = O−1dO encodes the exterior derivative of the

coframe as a rotation by the body angular displacement. In differential geometry, Ω̂ is called the
connection form and Equation (5.68) is called Cartan’s first structure equation for a moving
orthonormal frame [Fl1963, Da1994]. Taking another exterior derivative gives zero (because d2 = 0)
in the form of

0 = d2Ξ = −dΩ̂ ∧Ξ− Ω̂ ∧ dΞ = −(dΩ̂ + Ω̂ ∧ Ω̂) ∧Ξ .

Hence we have Cartan’s second structure equation,

(5.69) dΩ̂ + Ω̂ ∧ Ω̂ = 0 .

The left-hand side of this equation is called the curvature two-form associated with the connection

form Ω̂. The interpretation of (5.69) is that the connection form Ω̂ = O−1dO has zero curvature. This
makes sense because the rotating motion takes place in Euclidean space, R3, which is flat.

Of course, one may also prove the zero curvature relation (5.69) directly from the definition

Ω̂ = O−1dO by computing

dΩ̂ = d(O−1dO) = −O−1dO ∧O−1dO = −Ω̂ ∧ Ω̂ .

Expanding this out using the two angular velocities Ω̂s = O−1O′ and Ω̂t = O−1Ȯ gives (by using
antisymmetry of the wedge product, ds ∧ dt = −dt ∧ ds)

dΩ̂(u) = d(Ω̂sds+ Ω̂tdt)

= −
(

Ω̂sds+ Ω̂tdt
)
∧
(

Ω̂sds+ Ω̂tdt
)

= − Ω̂ ∧ Ω̂

=
∂Ω̂s

∂t
dt ∧ ds+

∂Ω̂t

∂s
ds ∧ dt

= −Ω̂sΩ̂t ds ∧ dt− Ω̂tΩ̂s dt ∧ ds

=

(
∂Ω̂t

∂s
− ∂Ω̂s

∂t

)
ds ∧ dt

=
(
Ω̂tΩ̂s − Ω̂sΩ̂t

)
ds ∧ dt

=:
[

Ω̂t , Ω̂s

]
ds ∧ dt .

Since ds∧ dt 6= 0, this equality implies that the coefficients are equal. In other words, this calculation
proves the following.
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Proposition

5.46. The zero curvature relation (5.69) may be expressed equivalently as

∂Ω̂t

∂s
− ∂Ω̂s

∂t
= Ω̂tΩ̂s − Ω̂sΩ̂t =

[
Ω̂t , Ω̂s

]
,(5.70)

in terms of the two angular velocities, Ω̂s = O−1O′ and Ω̂t = O−1Ȯ.

N

Exercise. Why would Ω̂ be called a connection form? F

Answer. Consider the one-form Equation (5.67) written in components as

(5.71) Ξj = Ξjα(r)drα ,

in which the matrix Ξjα(r) depends on spatial location, and it need not be orthogonal. In the basis
Ξj(r), a one-form v may be expanded in components as

(5.72) v = vjΞ
j .

Its differential is computed in this basis as

dv = d(vjΞ
j)

= dvj ∧ Ξj + vjdΞj .

Substituting Equation (5.68) in components as

(5.73) dΞj = − Ω̂j
k ∧ Ξk

then yields the differential two-form,

dv = (dvk − vjΩ̂j
k) ∧ Ξk

=: (dvk − vjΓjklΞ
l) ∧ Ξk

=: Dvk ∧ Ξk .(5.74)

The last equation defines the covariant exterior derivative operation D in the basis of one-form dis-

placements Ξ(r). The previous equation introduces the quantities Γjkl defined as

(5.75) Ω̂j
k = ΓjklΞ

l .

Γjkl are the Christoffel coefficients in the local coframe given by Equation (5.71). These are the
standard connection coefficients for curvilinear geometry. N

Exercise. Prove from their definition in formula (5.74) that the Christoffel coefficients

are symmetric under the exchange of indices, Γjkl = Γjlk. F

Definition

5.47 (Body covariant derivative). The relation in Equation (5.74)

(5.76) Dvk := dvk − vjΩ̂j
k = dvk − vjΓjklΞ

l

defines the components of the covariant derivative of the one-form v in the body frame; that is, in

the Ξ-basis. That is, Ω̂ is a connection form in the standard sense of differential geometry [Fl1963,
Da1994, doCa1976].
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Remark

5.48 (Metric tensors). The metric tensors in the two bases of infinitesimal displacements dr and
Ξ are related by requiring that the element of length measured in either basis must be the same. That
is,

(5.77) ds2 = gαβ dr
α ⊗ drβ = δjk Ξj ⊗ Ξk ,

where ⊗ is the symmetric tensor product. This implies a relation between the metrics,

(5.78) gαβ = δjk ΞjαΞkβ ,

which, in turn, implies

(5.79) Γνβµ(r) =
1

2
gνα
[
∂gαµ(r)

∂rβ
+
∂gαβ(r)

∂rµ
−
∂gβµ(r)

∂rα

]
.

This equation identifies Γνβµ(r) as the Christoffel coefficients in the spatial basis. Note that the spatial

Christoffel coefficients are symmetric under the exchange of indices, Γνβµ(r) = Γνµβ(r).

Definition

5.49 (Spatial covariant derivative). For the spatial metric gαµ, the covariant derivative of the one-

form v = vβdr
β in the spatial coordinate basis drβ is defined by the standard formula, cf. Equation

(5.76),

Dvβ = dvβ − vνΓναβdr
α ,

or, in components,

∇αvβ = ∂αvβ − vνΓναβ .

Remark

5.50 (What the Bichrons knew, and we found out).

• In differential geometry, the connection one-form (5.75) in the local coframe encodes the Riemann-
ian Christoffel coefficients for the spatial coordinates, via the equivalence of metric length (5.77) as
measured in either set of coordinates.

• The left-invariant so(3)-valued one-form Ω̂ = O−1dO that the Bichrons need for keeping track of the
higher-dimensional time components of their rotations in body coordinates in (5.66) plays the same role
for their two-time surfaces in SO(3) as the connection one-form does for taking covariant derivatives
in a local coframe. For more discussion of connection one-forms and their role in differential geometry,
see, e.g., [Fl1963, Da1994].

Exercise. Write the two-time version of the Euler–Poincaré equation for a left-
invariant Lagrangian defined on so(3). F

Answer. This exercise is worked out in the next section. N

5.4.1. Induced Riemannian geometry. Let’s explore two more implications of the Riemannian geome-

try induced by the interpretation of body angular displacement Ω̂ = O−1dO as a connection one-form.
Let’s begin by expanding the first structure Equation (5.73) in the spatial coordinate basis with

Ξj = Ξjβdr
β and Ω̂j

k = Ω̂j
kαdr

α to find

(5.80) dΞj + Ω̂j
k ∧ Ξk =

(
∂αΞjβ + Ω̂j

kα Ξkβ

)
drα ∧ drβ = 0 .

This equation implies that the term in parentheses with mixed spatial and body indices must be
symmetric in the spatial indices (αβ). We may write this in suggestive notation as,

(5.81) ∂αΞjβ + Ω̂j
kα Ξkβ = Γjβα = Γjαβ .
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To transform properly, the quantity Γjαβ defined in Equation (5.81) must be linearly related to both

the coframe matrix Ξjν (with mixed indices) and the Christoffel coefficients in the spatial basis Γναβ
(with only spatial indices). This requires,

(5.82) Γjβα = ΞjνΓναβ .

Equations (5.81) and (5.82) define the following covariant derivative relation for the coframe matrix,

(5.83) DαΞjβ := ∂αΞjβ(r) + Ω̂j
kα Ξkβ − ΞjµΓµαβ = 0 .

This is vanishing of the spatial covariant derivative of the coframe matrix Ξjβ(r) in Equation (5.71).

Taking the spatial covariant derivative of the metric relation (5.78) using (5.83) now implies

(5.84) Dµgαβ = Dµ

(
δjk ΞjαΞkβ

)
= 0 ,

which is the required relation for the covariant derivative of a Riemannian metric [doCa1976, ?]. Thus,
the equivalence of length (5.77) as measured by infinitesimal displacements in either space and body
coordinates and the transformation property (5.82) combine to induce a Riemannian metric gαβ(r)
in the corresponding spatial coordinates through the coframe relation (5.71) between infinitesimal
displacements.

6. Hamiltonian and Lagrangian formulations of SO(3)-strands

Now we will begin thinking in terms of Hamiltonian partial differential equations (PDEs) in the
specific example of G-strands, which are evolutionary maps into a Lie group g(t, x) : R × R → G
that follow from Hamilton’s principle for a certain class of G-invariant Lagrangians. The case when
G = SO(3) may be regarded physically as a smooth distribution of so(3)-valued spins attached to
a one-dimensional straight strand lying along the x-axis. We will investigate its three-dimensional
orientation dynamics at each point along the strand. For no additional cost, we may begin with the
Euler–Poincaré theorem for a left-invariant Lagrangian defined on the tangent space of an arbitrary
Lie group G and later specialise to the case where G is the rotation group SO(3).

The Lie–Poisson Hamiltonian formulation of the Euler–Poincaré Equation for this problem will be
derived via the Legendre Transformation by following calculations similar to those done previously for
the rigid body in Section 4. To emphasise the systematic nature of the Legendre transformation from
the Euler–Poincaré picture to the Lie–Poisson picture, we will lay out the procedure in well-defined
steps.

6.1. Formulating the continuum spin chain equations. We shall consider Hamilton’s principle
δS = 0 for a left-invariant Lagrangian,

S =

∫ b

a

∫ ∞
−∞
`(Ω,Ξ) dx dt ,(6.1)

with the following definitions of the tangent vectors Ω and Ξ,

Ω(t, x) = g−1∂tg(t, x) and Ξ(t, x) = g−1∂xg(t, x) ,(6.2)

where g(t, x) ∈ G is a real-valued map g : R×R→ G for a Lie group G. Later, we shall specialise to
the case where G is the rotation group SO(3). We shall apply the by now standard Euler–Poincaré
procedure, modulo the partial spatial derivative in the definition of Ξ(t, x) = g−1∂xg(t, x) ∈ g. This
procedure takes the following steps:

(i) Write the auxiliary equation for the evolution of Ξ : R×R→ g, obtained by differen-
tiating its definition with respect to time and invoking equality of cross derivatives.

(ii) Use the Euler–Poincaré theorem for left-invariant Lagrangians to obtain the equation
of motion for the momentum variable ∂`/∂Ω : R× R→ g∗, where g∗ is the dual Lie
algebra. Use the L2 pairing defined by the spatial integration.

(These will be partial differential equations. Assume homogeneous boundary
conditions on Ω(t, x), Ξ(t, x) and vanishing endpoint conditions on the variation
η = g−1δg(t, x) ∈ g when integrating by parts.)
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(iii) Legendre-transform this Lagrangian to obtain the corresponding Hamiltonian. Dif-
ferentiate the Hamiltonian and determine its partial derivatives. Write the Euler–
Poincaré equation in terms of the new momentum variable Π = δ`/δΩ ∈ g∗.

(iv) Determine the Lie–Poisson bracket implied by the Euler–Poincaré equation in terms
of the Legendre-transformed quantities Π = δ`/δΩ, by rearranging the time derivative
of a smooth function f(Π,Ξ) : g∗ × g→ R.

(v) Specialise to G = SO(3) and write the Lie–Poisson Hamiltonian form in terms of
vector operations in R3.

(vi) For G = SO(3) choose the Lagrangian

` =
1

2

∫ ∞
−∞

Tr
([
g−1∂tg, g

−1∂xg
]2)

dx

=
1

2

∫ ∞
−∞

Tr
([

Ω, Ξ
]2)

dx ,(6.3)

where [Ω, Ξ] = Ω Ξ − Ξ Ω is the commutator in the Lie algebra g. Use the hat map
to write the Euler–Poincaré equation and its Lie–Poisson Hamiltonian form in terms
of vector operations in R3.

6.2. Euler–Poincaré equations. The Euler–Poincaré procedure systematically produces the follow-
ing results.
Auxiliary equations. By definition, Ω(t, x) = g−1∂tg(t, x) and Ξ(t, x) = g−1∂xg(t, x) are Lie-algebra-
valued functions over R × R. The evolution of Ξ is obtained from these definitions by taking the
difference of the two equations for the partial derivatives

∂tΞ(t, x) = −
(
g−1∂tg

)(
g−1∂xg

)
+ g−1∂t∂xg(t, x) ,

∂xΩ(t, x) = −
(
g−1∂xg

)(
g−1∂tg

)
+ g−1∂x∂tg(t, x) ,

and invoking equality of cross derivatives. Hence, Ξ evolves by the adjoint operation, much like in the
derivation of the variational derivative of Ω,

(6.4) ∂tΞ(t, x)− ∂xΩ(t, x) = Ξ Ω− Ω Ξ = [Ξ, Ω] =: − adΩΞ .

This is the auxiliary equation for Ξ(t, x), cf. equation (5.70). In differential geometry, this relation is
called a zero curvature relation, because it implies that the curvature vanishes for the Lie-algebra-
valued connection one-form A = Ωdt+ Ξdx [doCa1976].

Hamilton’s principle. For η = g−1δg(t, x) ∈ g, Hamilton’s principle δS = 0 for S =
∫ b
a `(Ω,Ξ) dt

leads to

δS =

∫ b

a

〈 δ`
δΩ

, δΩ
〉

+
〈 δ`
δΞ

, δΞ
〉
dt

=

∫ b

a

〈 δ`
δΩ

, ∂tη + adΩη
〉

+
〈 δ`
δΞ

, ∂xη + adΞη
〉
dt

=

∫ b

a

〈
− ∂t

δ`

δΩ
+ ad∗Ω

δ`

δΩ
, η
〉

+
〈
− ∂x

δ`

δΞ
+ ad∗Ξ

δ`

δΞ
, η
〉
dt

=

∫ b

a

〈
− ∂

∂t

δ`

δΩ
+ ad∗Ω

δ`

δΩ
− ∂

∂x

δ`

δΞ
+ ad∗Ξ

δ`

δΞ
, η
〉
dt ,

where the formulas for the variations δΩ and δΞ are obtained by essentially the same calculation as
in part (i). Hence, δS = 0 yields

(6.5)
∂

∂t

δ`

δΩ
= ad∗Ω

δ`

δΩ
− ∂

∂x

δ`

δΞ
+ ad∗Ξ

δ`

δΞ
.

This is the Euler–Poincaré equation for δ`/δΩ ∈ g∗.
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Exercise. Use Remark 3.13 to show that the Euler–Poincaré Equation (6.5) is a
conservation law for the spin angular momentum Π = δ`/δΩ. That is, show

(6.6)
∂

∂t

(
Ad∗g(t,x)−1

δl

δΩ

)
= − ∂

∂x

(
Ad∗g(t,x)−1

δl

δΞ

)
.

F

6.3. Hamiltonian formulation.
Legendre transform. Legendre-transforming the Lagrangian `(Ω,Ξ): g× V → R yields the Hamil-
tonian h(Π,Ξ) : g∗ × V → R,

(6.7) h(Π,Ξ) =
〈

Π , Ω
〉
− `(Ω,Ξ) .

Differentiating the Hamiltonian determines its partial derivatives:

δh =
〈
δΠ ,

δh

δΠ

〉
+
〈 δh
δΞ

, δΞ
〉

=
〈
δΠ , Ω

〉
+
〈

Π− δl

δΩ
, δΩ

〉
−
〈 δ`

δΞ
, δΞ

〉
⇒ δl

δΩ
= Π ,

δh

δΠ
= Ω and

δh

δΞ
= − δ`

δΞ
.

The middle term vanishes because Π − δl/δΩ = 0 defines Π. These derivatives allow one to rewrite
the Euler–Poincaré equation solely in terms of momentum Π as

∂tΠ = ad∗δh/δΠ Π + ∂x
δh

δΞ
− ad∗Ξ

δh

δΞ
,

∂tΞ = ∂x
δh

δΠ
− adδh/δΠ Ξ .(6.8)

Hamiltonian equations. The corresponding Hamiltonian equation for any functional of f(Π,Ξ) is
then

∂

∂t
f(Π,Ξ) =

〈
∂tΠ ,

δf

δΠ

〉
+
〈
∂tΞ ,

δf

δΞ

〉
=

〈
ad∗δh/δΠΠ + ∂x

δh

δΞ
− ad∗Ξ

δh

δΞ
,
δf

δΠ

〉
+
〈
∂x
δh

δΠ
− adδh/δΠΞ ,

δf

δΞ

〉
= −

〈
Π ,

[
δf

δΠ
,
δh

δΠ

]〉
+
〈
∂x
δh

δΞ
,
δf

δΠ

〉
−
〈
∂x
δf

δΞ
,
δh

δΠ

〉
+
〈

Ξ , ad∗δf/δΠ
δh

δΞ
− ad∗δh/δΠ

δf

δΞ

〉
=: {f , h}(Π,Ξ) .

Assembling these equations into Hamiltonian form gives, symbolically,

(6.9)
∂

∂t

[
Π
Ξ

]
=

[
ad∗�Π div − ad∗Ξ

grad + adΞ 0

] [
δh/δΠ
δh/δΞ

]
The box � in Equation (6.9) indicates how the ad and ad∗ operations are applied in the matrix
multiplication. For example,

ad∗�Π(δh/δΠ) = ad∗δh/δΠΠ ,

so each matrix entry acts on its corresponding vector component.4

4This is the lower right corner of the Hamiltonian matrix for a perfect complex fluid [Ho2002, GBRa2008]. It also
appears in the Lie–Poisson brackets for Yang–Mills fluids [GiHoKu1982] and for spin glasses [HoKu1988].
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Higher dimensions. Although it is beyond the scope of the present text, we shall make a few short
comments about the meaning of the terms appearing in the Hamiltonian matrix (6.9). First, the
notation indicates that the natural jump to higher dimensions has been made. This is done by using
the spatial gradient to define the left-invariant auxiliary variable Ξ ≡ g−1∇g in higher dimensions.
The lower left entry of the matrix (6.9) defines the covariant spatial gradient, and its upper right
entry defines the adjoint operator, the covariant spatial divergence. More explicitly, in terms of
indices and partial differential operators, this Hamiltonian matrix becomes,

(6.10)
∂

∂t

[
Πα

Ξαi

]
= Bαβ

[
δh/δΠβ

δh/δΞβj

]
,

where the Hamiltonian structure matrix Bαβ is given explicitly as

(6.11) Bαβ =

[
−Πκ t

κ
αβ δ βα ∂j + tβακΞκ

j

δαβ∂i − tαβκΞκi 0

]
.

Here, the summation convention is enforced on repeated indices. Superscript Greek indices refer to
the Lie algebraic basis set, subscript Greek indices refer to the dual basis and Latin indices refer to
the spatial reference frame. The partial derivative ∂j = ∂/∂xj , say, acts to the right on all terms in a
product by the chain rule.
Lie–Poisson bracket. For the case that tαβκ are structure constants for the Lie algebra so(3), then

tαβκ = εαβκ with ε123 = +1. By using the hat map (3.7), the Lie–Poisson Hamiltonian matrix in (6.11)

may be rewritten for the so(3) case in R3 vector form as

(6.12)
∂

∂t

[
Π
Ξi

]
=

[
Π× ∂j + Ξj×

∂i + Ξi× 0

] [
δh/δΠ
δh/δΞj

]
.

Returning to one dimension, stationary solutions ∂t → 0 and spatially independent solutions ∂x → 0
both satisfy equations of the same se(3) form as the heavy top. For example, the time-independent
solutions satisfy, with Ω = δh/δΠ and Λ = δh/δΞ,

d

dx
Λ = −Ξ× Λ−Π× Ω and

d

dx
Ω = −Ξ× Ω .

That the equations have the same form is to be expected because of the exchange symmetry under
t↔ x and Ω↔ Ξ. Perhaps less expected is that the heavy-top form reappears.

For G = SO(3) and the Lagrangian R3 × R3 → R in one spatial dimension `(Ω, Ξ) the Euler–
Poincaré equation and its Hamiltonian form are given in terms of vector operations in R3, as follows.
First, the Euler–Poincaré Equation (6.5) becomes

(6.13)
∂

∂t

δ`

δΩ
= −Ω× δ`

δΩ
− ∂

∂x

δ`

δΞ
− Ξ× δ`

δΞ
.

Choices for the Lagrangian.

• Interesting choices for the Lagrangian include those symmetric under exchange of Ω and Ξ,
such as

`⊥ = |Ω× Ξ|2/2 and `‖ = (Ω · Ξ)2/2 ,

for which the variational derivatives are, respectively,

δ`⊥
δΩ

= Ξ× (Ω× Ξ) =: |Ξ|2Ω⊥ ,

δ`⊥
δΞ

= Ω× (Ξ× Ω) =: |Ω|2Ξ⊥ ,

for `⊥ and the complementary quantities,

δ`‖

δΩ
= (Ω · Ξ)Ξ =: |Ξ|2Ω‖ ,

δ`‖

δΞ
= (Ω · Ξ)Ω =: |Ω|2Ξ‖ ,

for `‖. With either of these choices, `⊥ or `‖, Equation (6.13) becomes a local conservation
law for spin angular momentum

∂

∂t

δ`

δΩ
= − ∂

∂x

δ`

δΞ
.
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The case `⊥ is reminiscent of the Skyrme model [Sk1961], a nonlinear topological model of
pions in nuclear physics.
• Another interesting choice for G = SO(3) and the Lagrangian R3 × R3 → R in one spatial

dimension is

`(Ω, Ξ) =
1

2

∫ ∞
−∞

Ω · AΩ + Ξ · BΞ dx ,

for symmetric matrices A and B, which may also be L2-symmetric differential operators. In
this case the variational derivatives are given by

δ`(Ω, Ξ) =

∫ ∞
−∞

δΩ · AΩ + δΞ · BΞ dx ,

and the Euler–Poincaré Equation (6.5) becomes

(6.14)
∂

∂t
AΩ + Ω× AΩ +

∂

∂x
BΞ + Ξ× BΞ = 0 .

This is the sum of two coupled rotors, one in space and one in time, again suggesting the one-
dimensional spin glass, or spin chain. When A and B are taken to be the identity, Equation
(6.14) recovers the chiral model, or sigma model, which is completely integrable.

Hamiltonian structures. The Hamiltonian structures of these equations on so(3)∗ are obtained
from the Legendre-transform relations

δ`

δΩ
= Π ,

δh

δΠ
= Ω and

δh

δΞ
= − δ`

δΞ
.

Hence, the Euler–Poincaré Equation (6.5) becomes

(6.15)
∂

∂t
Π = Π× δh

δΠ
+

∂

∂x

δh

δΞ
+ Ξ× δh

δΞ
,

and the auxiliary Equation (6.4) becomes

(6.16)
∂

∂t
Ξ =

∂

∂x

δh

δΠ
+ Ξ× δh

δΠ
,

which recovers the Lie–Poisson structure in Equation (6.12).
Finally, the reconstruction equations may be expressed using the hat map as

∂tO(t, x) = O(t, x)Ω̂(t, x) and ∂xO(t, x) = O(t, x)Ξ̂(t, x) .(6.17)

Remark

6.1. The Euler–Poincaré equations for the continuum spin chain discussed here and their Lie–Poisson
Hamiltonian formulation provide a framework for systematically investigating three-dimensional ori-
entation dynamics along a one-dimensional strand. These partial differential equations are interesting
in their own right and they have many possible applications. For an idea of where the applications of
these equations could lead, consult [SiMaKr1988,EGHPR2010].

Exercise. Let the set of 2× 2 matrices Mi with i = 1, 2, 3 satisfy the defining relation
for the symplectic Lie group Sp(2),

(6.18) MiJM
T
i = J with J =

(
0 −1
1 0

)
.

The corresponding elements of its Lie algebra mi = ṀiM
−1
i ∈ sp(2) satisfy (Jmi)

T =

Jmi for each i = 1, 2, 3. Thus, Xi = Jmi satisfying XTi = Xi is a set of three symmetric

2 × 2 matrices. Define X = JṀM−1 with time derivative Ṁ = ∂M(t, x)/∂t and
Y = JM ′M−1 with space derivative M ′ = ∂M(t, x)/∂x. Then show that

(6.19) X′ = Ẏ + [X,Y]J ,

for the J-bracket defined by

[X,Y]J := XJY − YJX =: 2sym(XJY) =: adJXY .
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In terms of the J-bracket, compute the continuum Euler–Poincaré equations for a
Lagrangian `(X,Y) defined on the symplectic Lie algebra sp(2).

Compute the Lie–Poisson Hamiltonian form of the system comprising the continuum
Euler–Poincaré equations on sp(2)∗ and the compatibility equation (6.19) on sp(2).
F

Exercise. Write the Bichron equations when SO(3) is replaced by Diff(R).

Hint: one could simply replace the ad- and ad∗-operations in the Hamiltonian form
(6.9) by their vector field equivalents and see what ensues. For details and further
developments, consult [HoIvPe2012]. F

7. More variations on the rigid body theme

7.1. C2 oscillators & Hopf fibration.

Example

7.1 (The 1 : 1 resonance [Ku1978]). This example computes the momentum map for C2 7→ u(2)∗

and explains the relation of this momentum map to the Poincaré sphere and Hopf fibration.
A unitary 2× 2 matrix U(s) acts on a complex two-vector a ∈ C2 by matrix multiplication as

a(s) = U(s)a(0) = exp(isξ)a(0) ,

in which iξ = U ′U−1|s=0 is a 2 × 2 skew-Hermitian matrix. Therefore, the infinitesimal generator
ξ(a) ∈ C2 may be expressed as a linear transformation,

ξ(a) =
d

ds

[
exp(isξ)a

]∣∣∣
s=0

= iξa ,

in which the matrix ξ† = ξ is Hermitian.

7.1.1. Momentum map J : C2 7→ u(2)∗. The momentum map J(a) : C2 7→ u(2)∗ for the matrix
action of U(2) on C2 is defined by

Jξ(a) :=
〈
J(a), ξ

〉
u(2)

=
i

2

〈〈
a, ξ(a)

〉〉
C2

=
1

2
ω(a, ξ(a)) with ξ(a) = iξa,(7.1)

and ξ† = ξ. The C2 pairing 〈〈 · , · 〉〉C2 in this map is the Hermitian pairing, which for skew-Hermitian
ξ(a)† = − ξ(a) is also the canonical symplectic form, ω(a,b) = Im(a∗ · b) on C2, as discussed in
[MaRa1994]. Thus,

2Jξ(a) := ω(a, ξ(a)) = ω(a, iξa)

= Im(a∗k(iξ)klal)

= a∗kξklal

= tr
(
(a⊗ a∗) ξ

)
= tr

(
J†(a∗,a) ξ

)
.(7.2)

Consequently, the momentum map J : C2 7→ u(2)∗ is given by the Hermitian expression

J(a) =
1

2
a⊗ a∗.(7.3)

This conclusion may be checked by computing the differential of the Hamiltonian dJξ(a) for the mo-
mentum map, which should be canonically related to its Hamiltonian vector field XJξ(a) = { · , Jξ(a)}.
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As the infinitesimal generator ξ(a) = iξa is linear, we have

dJξ(a) = d
〈
J(a), ξ

〉
u(2)

=
i

2

〈〈
a, ξ(da)

〉〉
C2 +

i

2

〈〈
da, ξ(a)

〉〉
C2

= =
〈〈
ξ(a), da

〉〉
C2 = ω(ξ(a), · ) = XJξ(a) ω,

which is the desired canonical relation.

7.1.2. The Poincaré sphere S2 ⊂ S3. We expand the Hermitian matrix J = 1
2a⊗a∗ in (7.3) in a basis

of four 2× 2 unit Hermitian matrices (σ0 ,σ), with σ = (σ1, σ2, σ3) given by

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
,

σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.(7.4)

The result is the decomposition

J =
1

4

(
Rσ0 + Y · σ

)
.(7.5)

Here we denote R := tr(J σ0) = |a1|2 + |a2|2 and

Y = tr(J σ) = a∗kσklal ,(7.6)

with vector notation σ = (σ1, σ2, σ3). In components, one finds

J =
1

2

[
a∗1a1 a∗1a2

a∗2a1 a∗2a2

]
=

1

4

[
R+ Y3 Y1 − iY2

Y1 + iY2 R− Y3

]
,(7.7)

with trace tr J = R. Thus, the decomposition (7.5) splits the momentum map into its trace part
R ∈ R and its traceless part Y ∈ R3, given by

Y = J − 1

2
(tr J) Id ∈ su(2)∗ ∼= R3 .(7.8)

This formula is the SU(2) momentum map for the Poincaré sphere.

Definition

7.2 (Poincaré sphere). The coefficients R ∈ R and Y ∈ R3 in the expansion of the matrix J in
(7.5) comprise the four real quadratic quantities,

R =
1

2

(
|a1|2 + |a2|2

)
,

Y3 =
1

2

(
|a1|2 − |a2|2

)
and

Y1 − i Y2 = a∗1a2 .(7.9)

These quantities are all invariant under the action a → eiφa of φ ∈ S1 on a ∈ C2. The S1-invariant
coefficients in the expansion of the momentum map J = a ⊗ a∗ (7.3) in the basis of sigma matrices
(7.4) satisfy the relation

(7.10) 4 det J = R2 − |Y|2 = 0 , with |Y|2 ≡ Y 2
1 + Y 2

2 + Y 2
3 .

This relation defines the Poincaré sphere S2 ∈ S3 of radius R which, in turn, is related to the
Hopf fibration C2/S1 ' S3. For more information about the Poincaré sphere and the Hopf fibration,
consult, e.g., [Ho2011] and references therein.

7.1.3. The U(2) Lie group structure. The Lie group U(2) = S1 × SU(2) is the direct product of its
centre,

Z(U(2)) = {zI with |z| = 1} ≡ S1,

and the special unitary group in two dimensions,

SU(2) =

{[
α β
−β ∗ α∗

]
with |α|2 + |β|2 = 1

}
.
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As a consequence, the momentum map J(a) = 1
2a ⊗ a∗ in (7.3) for the action U(2) × C2 → C2

decomposes into two momentum maps obtained by separating J into its trace part JS1 = R ∈ R and
its traceless part JSU(2) = Y ∈ R3. This decomposition may be sketched, as follows.

C2

JSU(2) = Y JS1 = R

su(2)∗ R

�
�
�

�	

@
@
@
@R

The target spaces su(2)∗ and R of the left and right legs of this pair of momentum maps are each
Poisson manifolds, with coordinates Y ∈ su(2)∗ and R ∈ R, respectively. The corresponding Poisson
brackets are given in tabular form as

(7.11)

{ · , · } Y1 Y2 Y3 R
Y1

Y2

Y3

R

0 Y3 −Y2 0
−Y3 0 Y1 0
Y2 −Y1 0 0
0 0 0 0

.

In index notation, these Poisson brackets are given as

(7.12) {Yk , Yl} = εklmYm and {Yk , R} = 0 .

The last Poisson bracket relation means that the spaces with coordinates Y ∈ su(2)∗ and R ∈ R are
symplectically orthogonal in u(2)∗ = su(2)∗ × R.

Equations (7.12) prove the following.

Theorem

7.3 ( Momentum map (7.3) is Poisson). The direct-product structure of U(2) = S1 × SU(2)
decomposes the momentum map J in Equation (7.3) into two other momentum maps,
JSU(2) : C2 7→ su(2)∗ and JS1 : C2 7→ R. These other momentum maps are also Poisson maps.
That is, they each satisfy the Poisson property for smooth functions F and H,{

F ◦ J , H ◦ J
}

=
{
F , H

}
◦ J .(7.13)

This relation defines a Lie–Poisson bracket on su(2)∗ that inherits the defining properties of a
Poisson bracket from the canonical relations

{ak, a∗l } = −2iδkl ,

for the canonical symplectic form, ω = = (daj ∧ da∗j ).

Remark

7.4. The Poisson bracket table in (7.11) is the so(3)∗ Lie–Poisson bracket table for angular mo-
mentum in the spatial frame. It differs by an overall sign from the so(3)∗ Lie–Poisson bracket table
for angular momentum in the body frame, see (4.11).

Definition

7.5 (Dual pairs). Let (M,ω) be a symplectic manifold and let P1, P2 be two Poisson manifolds. A pair
of Poisson mappings

P1
J1←− (M,ω)

J2−→ P2

is called a dual pair [We1983b] if kerTJ1 and kerTJ2 are symplectic orthogonal complements of one
another, that is,

(7.14) (kerTJ1)ω = kerTJ2.
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A systematic treatment of dual pairs can be found in Chapter 11 of [OrRa2004]. The infinite-
dimensional case is treated in [GaVi2010].

Remark

7.6 (Summary). In the pair of momentum maps

(7.15) su(2)∗ ≡ R3 Y←− (C2, ω)
R−→ R,

Y maps the fibres of R, which are three-spheres, into two-spheres, that are coadjoint orbits of SU(2).
The restriction of Y to these three-spheres is the Hopf fibration. Further pursuit of the theory of dual
pairs is beyond our present scope. See [HoVi2010] for a recent discussion of dual pairs for resonant
oscillators from the present viewpoint.

Exercise. For a ∈ C3 one may write the 3×3 Hermitian matrix Q = a⊗a∗ as the sum
Q = S + iA of a 3× 3 real symmetric matrix S plus i times a 3× 3 real antisymmetric
matrix A:

Q =

 M1 N3 − iL3 N2 + iL2

N3 + iL3 M2 N1 − iL1

N2 − iL2 N1 + iL1 M3


=

 M1 N3 N2

N3 M2 N1

N2 N1 M3

+ i

 0 −L3 L2

L3 0 −L1

−L2 L1 0

 .
(i) Compute the Poisson brackets of the L’s, M ’s and N ’s among themselves, given

that {aj , a∗k} = −2iδjk for j, k = 1, 2, 3.

(ii) Transform into a rotating frame in which the real symmetric part of Q is diago-
nal. Write the Hamiltonian equations for the L’s, M ’s and N ’s in that rotating
frame for a rotationally invariant Hamiltonian.

F

7.2. C3 oscillators. Answer. (Oscillator variables in three dimensions) The nine elements of
Q are the S1-invariants

Qjk = aja
∗
k = Sjk + iAjk , j, k = 1, 2, 3.

The Poisson brackets among these variables are evaluated from the canonical relation,

{aj , a∗k} = −2i δjk ,

by using the Leibniz property (product rule) for Poisson brackets to find

{Qjk , Qlm} = 2i (δklQjm − δjmQkl) , j, k, l,m = 1, 2, 3 .

Remark

7.7. The quadratic S1-invariant quantities in C3 Poisson commute among themselves. This prop-
erty of closure is to be expected for a simple reason. The Poisson bracket between two homogeneous
polynomials of weights w1 and w2 produces a homogeneous polynomial of weight w = w1 +w2− 2 and
2 + 2− 2 = 2; so the quadratic homogeneous polynomials Poisson-commute among themselves.

The result is also a simple example of Poisson reduction by symmetry, obtained by transforming
to quantities that are invariant under the action of a Lie group. The action in this case is the
(diagonal) S1 phase shift aj → aje

iφ for j = 1, 2, 3.

(i) One defines La := − 1
2 εajkAjk = (p× q)a and finds the Poisson bracket relations,

{La , Lb} = Aab −Aba = εabcLc ,

{La , Qjk} =
1

2

[
εajcQck − εakcQjc

]
.
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Thus, perhaps not unexpectedly, the Poisson bracket for quadratic S1-invariant quantities in
C3 contains the angular momentum Poisson bracket among the variables La with a = 1, 2, 3.
This could be expected, because the 3× 3 form of Q contains the 2× 2 form, which we know
admits the Hopf fibration into quantities which satisfy Poisson bracket relations dual to the

Lie algebra so(3) ' su(2). Moreover, the imaginary part ImQ = L · Ĵ = LaĴa, where Ĵa with
a = 1, 2, 3 is a basis set for so(3) as represented by the 3× 3 skew-symmetric real matrices.

Another interesting set of Poisson bracket relations among the M ’s, N ’s and L’s may be
found. These relations are

{Na − iLa , Nb − iLb} = 2i εabc(Nc + iLc) ,

{Ma , Mb} = 0 ,

{Ma , Nb − iLb} = 2i sgn(b− a)(−1)a+b

(Nb − iLb) ,
where sgn(b− a) is the sign of the difference (b− a), which vanishes when b = a.

Additional Poisson bracket relations may also be read off from the Poisson commutators of
the real and imaginary components of Q = S + iA among themselves as

{Sjk , Slm} = δjlAmk + δklAmj − δjmAkl − δkmAjl ,
{Sjk , Alm} = δjlSmk + δklSmj − δjmSkl − δkmSjl ,
{Ajk , Alm} = δjlAmk − δklAmj + δjmAkl − δkmAjl .

(7.16)

These relations produce the following five tables of Poisson brackets in addition to {Ma , Mb} =
0:

{ · , · } L1 L2 L3

L1

L2

L3

0 L3 −L2

−L3 0 L1

L2 −L1 0

{ · , · } N1 N2 N3

N1

N2

N3

0 −L3 L2

L3 0 −L1

−L2 L1 0

{ · , · } L1 L2 L3

M1

M2

M3

0 2N2 − 2N3

− 2N1 0 2N3

2N1 − 2N2 0

{ · , · } N1 N2 N3

M1

M2

M3

0 − 2L2 2L3

2L1 0 −2L3

− 2L1 2L2 0

{ · , · } L1 L2 L3

N1

N2

N3

M2 −M3 −N3 N2

N3 M3 −M1 −N1

−N2 N1 M1 −M2

As expected, the system is closed and it has the angular momentum Poisson bracket table
as a closed subset. Next, we will come to understand that this is because the Lie algebra su(2)
is a subalgebra of su(3).

(ii) The rotation group SO(3) is a subgroup of SU(3). An element Q ∈ su(3)∗ transforms under
SO(3) by the coAdjoint action

Ad∗RQ = R−1QR = R−1SR+ iR−1AR .

Choose R ∈ SO(3) so that R−1SR = D = diag(d1, d2, d3) is diagonal. (That is, rotate into
principal axis coordinates for S.) The eigenvalues are unique up to their order, which one may
fix as, say, d1 ≥ d2 ≥ d3. While it diagonalises the symmetric part of Q, the rotation R takes
the antisymmetric part from the spatial frame to the body frame, where S is diagonal. At the
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same time the spatial angular momentum matrix A is transformed to B = R−1AR, which is
the body angular momentum. Thus,

Ad∗RQ = R−1SR+ iR−1AR =: D + iB .

Define the body angular velocity Ω = R−1Ṙ ∈ so(3), which is left-invariant. The Hamiltonian
dynamical system obeys

Q̇ = {Q, H(Q)} .
For B = R−1AR, this implies

Ḃ + [Ω, B] = R−1ȦR = R−1{A, H(Q)}R .
However, H(Q) being rotationally symmetric means the spatial angular momentum A will be

time-independent Ȧ = {A, H(Q)} = 0. Hence,

Ḃ + [Ω, B] = 0 .

Thus, the equation for the body angular momentum B is formally identical to Euler’s equations
for rigid-body motion. Physically, this represents conservation of spatial angular momentum,
because of the rotational symmetry of the Hamiltonian.

Likewise, for D = R−1SR, one finds

Ḋ + [Ω, D] = R−1ṠR = R−1{S, H(Q)}R 6= 0 .

The body angular momentum B satisfies Euler’s rigid-body equations, but this body is not
rigid! While the rotational degrees of freedom satisfy spatial angular momentum conservation,
the shape of the body depends on the value of the Poisson bracket R−1{S, H(Q)}R which
is likely to be highly nontrivial! For example, the Hamiltonian H(Q) may be chosen to be a
function of the following three rotationally invariant quantities:

tr(ATA) = tr(BTB) ,

tr(ATSA) = tr(BTDB) ,

tr(ATS2A) = tr(BTD2B) .

Dependence of the Hamiltonian on these quantities will bring the complications of the Poisson
bracket relations in (7.16) into the dynamics of the triaxial ellipsoidal shape represented by D.

N

Remark

7.8. The quantity

Q̃ = a⊗ a∗ − 1

3
Id|a|2 : C3 7→ su(3)∗

corresponds for the action of SU(3) on C3 to the momentum map J : C2 7→ su(2)∗ in Example 7.1.1
for the action of SU(2) on C2.

7.3. Motion on the symplectic Lie group Sp(2). Let the set of 2× 2 matrices Mi with i = 1, 2, 3
satisfy the defining relation for the symplectic Lie group Sp(2),

MiJM
T
i = J with J =

(
0 −1
1 0

)
.

The corresponding elements of its Lie algebra mi = ṀiM
−1
i ∈ sp(2) satisfy (Jmi)

T = Jmi for each

i = 1, 2, 3. Thus, Xi = Jmi satisfying XTi = Xi is a set of three symmetric 2 × 2 matrices. For
definiteness, we may choose a basis given by

X1 = Jm1 =

(
2 0
0 0

)
, X2 = Jm2 =

(
0 0
0 2

)
, X3 = Jm3 =

(
0 1
1 0

)
.

This basis corresponds to the momentum map R6 → sp(2)∗ of quadratic phase-space functions X =
(|q|2, |p|2,q · p)T . One sees this by using the symmetric matrices X1,X2,X3 above to compute the
following three quadratic forms defined using z = (q,p)T :

1

2
zTX1z = |q|2 = X1,

1

2
zTX2z = |p|2 = X2,

1

2
zTX3z = q · p = X3 .
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Exercise. (The Lie bracket) For X = Jm and Y = Jn ∈ sym(2) with m,n ∈ sp(2),
prove

[X,Y]J := XJY − YJX = −J(mn− nm) = −J [m,n].

Use this equality to prove the Jacobi identity for the J-bracket [X,Y]J . F

Answer. The first part is a straightforward calculation using J2 = −Id2×2 with the definitions of X
and Y. The second part follows from the Jacobi identity for the symplectic Lie algebra and linearity
in the definitions of X,Y ∈ sym(2) in terms of m,n ∈ sp(2). N

Exercise. (A variational identity) If

X = JṀM−1 for derivative Ṁ = ∂M(s, σ)/∂s|σ=0 and Y = JM ′M−1 for variational
derivative δM = M ′ = ∂M(s, σ)/∂σ|σ=0, show that equality of cross derivatives in s
and σ implies the relation

δX = X′ = Ẏ + [X,Y]J .

F

Answer. This relation follows from an important standard calculation in geometric mechanics, per-
formed earlier in deriving Equation (3.8). It begins by computing the time derivative of MM−1 = Id
along the curve M(s) to find (MM−1) ˙ = 0, so that

(M−1) ˙ = −M−1ṀM−1 .

Next, one defines m = ṀM−1 and n = M ′M−1. Then the previous relation yields

m′ = Ṁ ′M−1 − ṀM−1M ′M−1

ṅ = Ṁ ′M−1 −M ′M−1ṀM−1

so that subtraction yields the relation

m′ − ṅ = nm−mn =: −[m,n].

Then, upon substituting the definitions of X and Y, one finds

X′ = Jm′ = Jṅ− J [m,n]

= Ẏ + [X,Y]J = Ẏ + 2sym(XJY).
N

Exercise. (Hamilton’s principle for sp(2)) Use the previous relation to compute
the Euler–Poincaré equation for evolution resulting from Hamilton’s principle,

0 = δS = δ

∫
`(X(s)) ds =

∫
tr

(
∂`

∂X
δX

)
ds.

F

Answer. Integrate by parts and rearrange as follows:

0 = δS =

∫
tr

(
∂`

∂X
X′
)
ds

=

∫
tr

(
∂`

∂X
(Ẏ − YJX + XJY)

)
ds

=

∫
tr

((
− d

ds

∂`

∂X
− JX ∂`

∂X
+
∂`

∂X
XJ
)
Y

)
ds

=

∫
tr

((
− d

ds

∂`

∂X
− 2sym

(
JX

∂`

∂X

))
Y

)
ds ,
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upon setting the boundary term tr( ∂`∂XY )|s1s0 equal to zero. This results in the Euler–Poincaré equation,

d

ds

∂`

∂X
= −2sym

(
JX

∂`

∂X

)
= 2sym

( ∂`
∂X

XJ
)
.(7.17)

N

Exercise. (Geodesic motion on sp(2)∗) Specialise this evolution equation to the
case that `(X) = 1

2tr(X2), where tr denotes the trace of a matrix. (This is geodesic
motion on the matrix Lie group Sp(2) with respect to the trace norm of matrices.)
F

Answer. When `(X) = 1
2tr(X2) we have ∂`/∂X = X, so the Euler–Poincaré Equation (7.17) becomes

Ẋ = −2sym
(
JX2

)
= X2J − JX2 = [X2, J ] .(7.18)

This is called a Bloch–Iserles equation [BlIs2006]. N

Exercise. (Lie–Poisson Hamiltonian formulation) Write the Hamiltonian form of
the Euler–Poincaré equation on SP (2) and identify the associated Lie–Poisson bracket.

F

Answer. The Hamiltonian form of the Euler–Poincaré Equation (7.17) is found from the Legendre
transform via the dual relations

µ =
∂`

∂X
and X =

∂h

∂µ
with h(µ) = tr(µX)− `(X) .

Thus,

µ̇ = −2sym
(
J
∂h

∂µ
µ
)

= −J ∂h
∂µ
µ+ µ

∂h

∂µ
J .

The Lie–Poisson bracket is obtained from

d

ds
f(µ) = tr

(
∂f

∂µ

dµ

ds

)
= − 2tr

(
µ sym

(∂f
∂µ
J
∂h

∂µ

))
= − tr

(
µ
[∂f
∂µ

,
∂h

∂µ

]
J

)
=:

{
f , h

}
J
.

The Jacobi identity for this Lie–Poisson bracket follows from that of the J-bracket discussed earlier.

The geodesic Bloch–Iserles Equation (7.18) is recovered when the Hamiltonian is chosen as h =
1
2tr(µ2) and one sets µ→ X. N

Exercise. (A second Bloch–Iserles Poisson bracket) Show that the geodesic
Bloch–Iserles Equation (7.18) may also be written in Hamiltonian form with Hamil-
tonian h = 1

3tr(µ3). F

Answer. Equation (7.18) may also be written as

µ̇ = −2sym
(
J
∂h

∂µ
µ
)

= −J ∂h
∂µ

+
∂h

∂µ
J
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with Hamiltonian h = 1
3tr(µ3). The corresponding Poisson bracket has constant coefficients,

d

ds
f(µ) = tr

(
∂f

∂µ

dµ

ds

)
= − 2tr

(
sym

(∂f
∂µ
J
∂h

∂µ

))
= − tr

([∂f
∂µ

,
∂h

∂µ

]
J

)
=:

{
f , h

}
J2
.

N

Exercise. (A parallel with the rigid body) The geodesic Bloch–Iserles Equation
(7.18) may be written in a form reminiscent of the rigid body, as

d

dt
X = [X, Ω] with Ω = JX +XJ = −ΩT .

This suggests the Manakov form

d

dt
(X + λJ) = [X + λJ, JX +XJ + λ2J2].

This seems dual to the Manakov form (3.39) for the rigid body, because the symmetric
and antisymmetric matrices exchange roles.

Verify these equations and explain what the Manakov form means in determining
the conservation laws for this problem. F

Exercise. (The Bloch–Iserles G-strand) Write the two-time version of the Euler–
Poincaré equation for a left-invariant Lagrangian defined on sp(2). F

7.4. Two coupled rigid bodies. In the centre of mass frame, the Lagrangian for the problem of
two coupled rigid bodies may be written as depending only on the angular velocities of the two bodies
Ω1 = A−1

1 Ȧ1(t), Ω2 = A−1
2 Ȧ2(t) and the relative angle A = A−1

1 A2 between the bodies [GrKrMa1988],

l(Ω1,Ω2, A) : so(3)× so(3)× SO(3)→ R,

which we write as

l(Ω1,Ω2, A) =
1

2

(
Ω1

Ω2

)T
·M(A)

(
Ω1

Ω2

)
,

where M(A) is a 6×6 block matrix containing both A and the two inertia tensors of the bodies.
Upon identifying R3 with so(3) = TeSO(3) by the hat map, this Lagrangian becomes

l = l(Ω̂1, Ω̂2, A)

and we may identify SO(3) with its dual SO∗(3) through the matrix pairing SO(3)× SO∗(3)→ R.
The Lagrangian is then a function

l : so(3)× so(3)× SO∗(3)→ R

which may be written as

l(Ω, A) =
1

2

〈
M(A) Ω, Ω

〉
=:

1

2

〈
Π,Ω

〉
,

where a nondegenerate matrix trace pairing is defined in components by

〈
Π,Ω

〉
:= Tr

( Ω̂1

Ω̂2

)T
·

(
Π̃1

Π̃2

)
for all Ω = (Ω̂1, Ω̂2) ∈ so(3)× so(3), Π = (Π̃1, Π̃2) ∈ so∗(3)× so∗(3).
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The Euler–Poincaré theory has been developed to treat Lagrangians of the form

l : g× V ∗ → R
where V is a vector space on which the Lie algebra acts.

Exercise. Formulate the Euler–Poincaré equations for the problem of two coupled
rigid bodies. F

Answer. The direct-product Lie algebra

g = so(3)× so(3)

is endowed with the product Lie bracket

adΩΞ =
[
Ω,Ξ

]
=

[(
Ω̂1

Ω̂2

)
,

(
Ξ̂1

Ξ̂2

)]
=

(
[[Ω̂1, Ξ̂1]]

[[Ω̂2, Ξ̂2]]

)
(7.19)

where [[ · , · ]] indicates the standard so(3) matrix commutator.
Formulating the Euler–Poincaré theorem for this problem will require a Lie algebra action of so(3)×

so(3) on SO∗(3), which fortunately is readily available. Indeed, from the definitions of the two body
angular velocities and relative angle A = A−1

1 A2, one finds

(7.20)
dA

dt
= −Ω̂1A+AΩ̂2 ,

which is the Lie algebra action we seek, abbreviated as

(7.21)
dA

dt
= −Ω(A).

The Euler–Poincaré variational principle is then δS = 0, for

δ

∫ t1

t0

l(Ω, A) dt =

∫ t1

t0

〈
δl

δΩ
, δΩ

〉
+

〈
δl

δA
, δA

〉
dt

=

∫ t1

t0

〈
δl

δΩ
,
dΞ

dt
+ adΩΞ

〉
+

〈
δl

δA
, −Ξ(A)

〉
dt

=

∫ t1

t0

〈
− d

dt

δl

δΩ
+ ad∗Ω

δl

δΩ
+

δl

δA
�A, Ξ

〉
dt

with δΩ = Ξ̇+adΩΞ and δA = −Ξ(A). As a result, the (left-invariant) Euler–Poincaré equations may
be written as

(7.22)
d

dt

δl

δΩ
= ad∗Ω

δl

δΩ
+

δl

δA
�A .

This, of course, is the general form of the Euler–Poincaré equations with advected quantities.
The Euler–Poincaré equations for the present problem of coupled rigid bodies will take their final

form, once we have computed the diamond operation ( � ),

(7.23) � : SO(3)× SO(3)∗ → so(3)∗ .

The Lie algebra action (7.21) yields the following definition of diamond for our case,〈
δl

δA
�A, Ξ

〉
:= −

〈
A, Ξ

(
δl

δA

)〉
= −

〈
A,

(
Ξ̂1

δl

δA
− δl

δA
Ξ̂2

)〉
= −

〈
A
δl

δA
, Ξ̂1

〉
+

〈
δl

δA
A, Ξ̂2

〉
,

where the last step is justified by the cyclic property of the trace. Consequently, the components of
the diamond operation are given by

δl

δA
�A =

(
−A δl

δA
,
δl

δA
A

)
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and substituting them into the general form of the Euler–Poincaré equations in (7.22) gives the equa-
tions of motion of our problem:

d

dt
Π̃1 = ad∗

Ω̂1
Π̃1 −A

δl

δA
,

d

dt
Π̃2 = ad∗

Ω̂2
Π̃2 +

δl

δA
A .

These along with the auxiliary Equation (7.20) comprise the Euler–Poincaré form of the Lie–Poisson
equations that are derived for the motion of two coupled rigid bodies in [GrKrMa1988]. The corre-
sponding Lie–Poisson equations in [GrKrMa1988] may be derived from the Euler–Poincaré equations
here by applying a symmetry-reduced Legendre transform. N

8. Symmetry breaking by potential energy: the heavy top

8.1. Heavy top: Introduction and definitions. A top is a rigid body of mass m rotating with a
fixed point of support in a constant gravitational field of acceleration −gẑ pointing vertically down-
ward. The orientation of the body relative to the vertical axis ẑ is defined by the unit vector
Γ = R−1(t)ẑ for a curve R(t) ∈ SO(3). According to its definition, the unit vector Γ represents
the motion of the vertical direction as seen from the rotating body. Consequently, it satisfies the
auxiliary motion equation,

(8.1) Γ̇ = −R−1Ṙ(t)Γ = − Ω̂(t)Γ = Γ×Ω .

Here the rotation matrix R(t) ∈ SO(3), the skew matrix Ω̂ = R−1Ṙ ∈ so(3) and the body angular

frequency vector Ω ∈ R3 are related by the hat map, Ω =
(
R−1Ṙ

)̂
, where

hat map, ̂ : (so(3), [·, ·])→ (R3,×) ,

with Ω̂v = Ω× v for any v ∈ R3.
The motion of a top is determined from Euler’s equations in vector form,

IΩ̇ = IΩ×Ω +mgΓ× χ ,(8.2)

Γ̇ = Γ×Ω ,(8.3)

where Ω, Γ, χ ∈ R3 are vectors in the rotating body frame. Here

• Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector.
• I = diag(I1, I2, I3) is the moment of inertia tensor, diagonalised in the body principal axes.
• Γ = R−1(t)ẑ represents the motion of the unit vector along the vertical axis, as seen from the

body.
• χ is the constant vector in the body from the point of support to the body’s centre of mass.
• m is the total mass of the body and g is the constant acceleration of gravity.

8.2. Heavy-top action principle.

Proposition

8.1. The heavy-top motion equation (8.2) is equivalent to the heavy-top action princi-
ple δSred = 0 for a reduced action,

(8.4) Sred =

∫ b

a
l(Ω,Γ) dt =

∫ b

a

1

2

〈
IΩ , Ω

〉
−
〈
mgχ , Γ

〉
dt ,

where variations of vectors Ω and Γ are restricted to be of the form

(8.5) δΩ = Σ̇ + Ω×Σ and δΓ = Γ×Σ ,

arising from variations of the corresponding definitions Ω̂ = R−1Ṙ and Γ = R−1(t)ẑ in which

Σ̂(t) = R−1δR is a curve in R3 that vanishes at the endpoints in time.
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Proof. Since I is symmetric and χ is constant, one finds the variation,

δ

∫ b

a
l(Ω,Γ) dt =

∫ b

a

〈
IΩ , δΩ

〉
−
〈
mgχ , δΓ

〉
dt

=

∫ b

a

〈
IΩ , Σ̇ + Ω×Σ

〉
−
〈
mgχ , Γ×Σ

〉
dt

=

∫ b

a

〈
− d

dt
IΩ , Σ

〉
+
〈
IΩ , Ω×Σ

〉
−
〈
mgχ , Γ×Σ

〉
dt

=

∫ b

a

〈
− d

dt
IΩ + IΩ×Ω +mgΓ× χ , Σ

〉
dt,

upon integrating by parts and using the endpoint conditions, Σ(b) = Σ(a) = 0. Since Σ is otherwise
arbitrary, (8.4) is equivalent to

− d

dt
IΩ + IΩ×Ω +mgΓ× χ = 0 ,

which is Euler’s motion equation for the heavy top (8.2). This motion equation is completed by the

auxiliary equation Γ̇ = Γ×Ω in (8.3) arising from the definition of Γ. �

The Legendre transformation for l(Ω,Γ) gives the body angular momentum

Π =
∂l

∂Ω
= IΩ .

The well-known energy Hamiltonian for the heavy top then emerges as

h(Π,Γ) = Π ·Ω− l(Ω,Γ) =
1

2
〈Π , I−1Π〉+ 〈mgχ , Γ 〉 ,(8.6)

which is the sum of the kinetic and potential energies of the top.

8.3. Lie–Poisson brackets.

Definition

8.2. Let f, h : g∗ → R be real-valued functions on the dual space g∗. Denoting elements of g∗ by
µ, the functional derivative of f at µ is defined as the unique element δf/δµ of g defined by

(8.7) lim
ε→0

1

ε
[f(µ+ εδµ)− f(µ)] =

〈
δµ,

δf

δµ

〉
,

for all δµ ∈ g∗, where 〈· , ·〉 denotes the pairing between g∗ and g.

Definition

8.3 (Lie–Poisson equations). The (±) Lie–Poisson brackets are defined by

(8.8) {f, h}±(µ) = ±
〈
µ,

[
δf

δµ
,
δh

δµ

]〉
= ∓

〈
µ, adδh/δµ

δf

δµ

〉
.

The corresponding Lie–Poisson equations, determined by ḟ = {f, h} , read

(8.9) µ̇ = {µ, h} = ∓ ad∗δh/δµ µ ,

where one defines the ad∗ operation in terms of the pairing 〈· , ·〉, by

{f, h} =

〈
µ, adδh/δµ

δf

δµ

〉
=

〈
ad∗δh/δµ µ,

δf

δµ

〉
.

Remark

8.4. The Lie–Poisson setting of mechanics is a special case of the general theory of systems on Poisson
manifolds, for which there is now extensive theoretical development. (See [MaRa1994] for a start on
this literature.)
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8.4. Lie–Poisson brackets and momentum maps. An important feature of the rigid-body bracket
carries over to general Lie algebras. Namely, Lie–Poisson brackets on g∗ arise from canonical brackets
on the cotangent bundle (phase space) T ∗G associated with a Lie group G which has g as its associated
Lie algebra. Thus, the process by which the Lie–Poisson brackets arise is the momentum map

T ∗G 7→ g∗ .

For example, a rigid body is free to rotate about its centre of mass and G is the (proper) rotation
group SO(3). The choice of T ∗G as the primitive phase space is made according to the classical
procedures of mechanics described earlier. For the description using Lagrangian mechanics, one forms
the velocity phase space TG. The Hamiltonian description on T ∗G is then obtained by standard
procedures: Legendre transforms, etc.

The passage from T ∗G to the space of Π’s (body angular momentum space) is determined by left
translation on the group. This mapping is an example of a momentum map; that is, a mapping
whose components are the “Noether quantities” associated with a symmetry group. That the map
from T ∗G to g∗ is a Poisson map is a general fact about momentum maps. The Hamiltonian point of
view of all this is a standard subject reviewed, for example, in [MaRa1994].

Remark

8.5 (Lie–Poisson description of the heavy top).
As it turns out, the underlying Lie algebra for the Lie–Poisson description of the heavy top consists
of the Lie algebra se(3,R) of infinitesimal Euclidean motions in R3. This is a bit surprising, because
heavy-top motion itself does not actually arise through spatial translations by the Euclidean group; in
fact, the body has a fixed point! Instead, the Lie algebra se(3,R) arises for another reason associated
with the breaking of the SO(3) isotropy by the presence of the gravitational field. This symmetry break-
ing introduces a semidirect-product Lie–Poisson structure which happens to coincide with the dual of
the Lie algebra se(3,R) in the case of the heavy top.

8.5. Lie–Poisson brackets for the heavy top. The Lie algebra of the special Euclidean group in
three dimensions is se(3) = R3 × R3 with the Lie bracket

(8.10) [(ξ,u), (η,v)] = (ξ × η, ξ × v − η × u) .

We identify the dual space with pairs (Π,Γ); the corresponding (−) Lie–Poisson bracket called the
heavy-top bracket is

{f , h}(Π,Γ) = −Π · ∂f
∂Π
× ∂h

∂Π
− Γ ·

( ∂f
∂Π
× ∂h

∂Γ
− ∂h

∂Π
× ∂f

∂Γ

)
.

This Lie–Poisson bracket and the Hamiltonian (8.6) recover Equations (8.2) and (8.3) for the heavy
top, as

Π̇ = {Π , h} = Π× ∂h

∂Π
+ Γ× ∂h

∂Γ

= Π× I−1Π + Γ×mgχ ,

Γ̇ = {Γ , h} = Γ× ∂h

∂Π
= Γ× I−1Π .

Remark

8.6 (Semidirect products and symmetry breaking). The Lie algebra of the Euclidean group has a
structure which is a special case of what is called a semidirect product . Here, it is the semidirect-
product action so(3)sR3 of the Lie algebra of rotations so(3) acting on the infinitesimal translations
R3, which happens to coincide with se(3,R).

In general, the Lie bracket for semidirect-product action gsV of a Lie algebra g on a vector space
V is given by [

(X, a), (X, a)
]

=
(

[X,X ], X(a)−X(a)
)
,
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in which X,X ∈ g and a, a ∈ V . Here, the action of the Lie algebra on the vector space is denoted,
e.g., X(a). Usually, this action would be the Lie derivative.

Lie–Poisson brackets defined on the dual spaces of semidirect-product Lie algebras tend to occur
under rather general circumstances when the symmetry in T ∗G is broken, e.g., reduced to an isotropy
subgroup of a set of parameters. In particular, there are similarities in structure between the Poisson
bracket for compressible flow and that for the heavy top. In the latter case, the vertical direction of
gravity breaks the isotropy of R3 from SO(3) to SO(2). The general theory for semidirect products
is reviewed in a variety of places, including [MaRaWe1984a, MaRaWe1984b].

Many interesting examples of Lie–Poisson brackets on semidirect products exist for fluid dynamics.
These semidirect-product Lie–Poisson Hamiltonian theories range from simple fluids, to charged fluid
plasmas, to magnetised fluids, to multiphase fluids, to super fluids, to Yang–Mills fluids, relativistic
or not, and to liquid crystals. Many of these theories are discussed from the Euler–Poincaré viewpoint
in [HoMaRa1998] and [Ho2002].

8.6. Heavy top: Clebsch action principle.

Proposition

8.7 (Clebsch heavy-top action principle). The heavy-top Equations (8.2) and (8.3) follow
from a Clebsch constrained action principle, δS = 0, with

(8.11) S =

∫ b

a

1

2

〈
IΩ , Ω

〉
−
〈
mgχ , Γ

〉
+
〈
Ξ , Γ̇ + Ω× Γ

〉
dt .

Remark

8.8. The last term in this action is the Clebsch constraint for the auxiliary equation satisfied by
the unit vector Γ. From its definition Γ = R−1(t)ẑ and the definition of the body angular velocity

Ω = R−1(t)Ṙ, this unit vector must satisfy

Γ̇ = −R−1Ṙ(t)Γ = − Ω̂(t)Γ = −Ω× Γ .

(The third equality invokes the hat map.) According to the Clebsch construction, the Lagrange mul-
tiplier Ξ enforcing the auxiliary Equation (8.11) will become the momentum canonically conjugate to
the auxiliary variable Γ.

Proof. The stationary variations of the constrained action (8.11) yield the following three Clebsch
relations, cf. Equations (4.21) for the rigid body,

δΩ : IΩ + Γ×Ξ = 0 ,

δΞ : Γ̇ + Ω× Γ = 0 ,

δΓ : Ξ̇ + Ω×Ξ +mgχ = 0 .

The first Clebsch relation defines the momentum map T ∗R3 → so(3)∗ for the body angular momentum
IΩ. From the other two Clebsch relations, the equation of motion for the body angular momentum
may be computed as

IΩ̇ = − Γ̇×Ξ− Γ× Ξ̇

= (Ω× Γ)×Ξ + Γ× (Ω×Ξ +mgχ)

= Ω× (Γ×Ξ) + Γ×mgχ
= −Ω× (IΩ) +mgΓ× χ ,

which recovers Euler’s motion Equation (8.2) for the heavy top. �



EULER-POINCARÉ THEORY FROM THE RIGID BODY TO SOLITONS 69

8.7. Heavy top: Kaluza–Klein construction. The Lagrangian in the heavy-top action principle
(8.4) may be transformed into quadratic form. This is accomplished by suspending the system in a
higher-dimensional space via the Kaluza–Klein construction . This construction proceeds for the
heavy top as a slight modification of the well-known Kaluza–Klein construction for a charged particle
in a prescribed magnetic field.

Let QKK be the manifold SO(3)×R3 with variables (R,q). On QKK introduce the Kaluza–Klein
Lagrangian

LKK : TQKK ' TSO(3)× TR3 7→ R ,
as

LKK(R,q, Ṙ, q̇; ẑ) = LKK(Ω,Γ,q, q̇)

=
1

2
〈 IΩ , Ω 〉+

1

2
|Γ + q̇|2 ,(8.12)

with Ω =
(
R−1Ṙ

)̂ and Γ = R−1ẑ. The Lagrangian LKK is positive-definite in (Ω,Γ, q̇); so it may
be regarded as a kinetic energy which defines a metric, the Kaluza–Klein metric on TQKK .

The Legendre transformation for LKK gives the momenta

(8.13) Π = IΩ and p = Γ + q̇ .

Since LKK does not depend on q, the Euler–Lagrange equation

d

dt

∂LKK
∂q̇

=
∂LKK
∂q

= 0

shows that p = ∂LKK/∂q̇ is conserved. The constant vector p is now identified as the vector in
the body,

p = Γ + q̇ = −mgχ .
After this identification, the heavy-top action principle in Proposition 8.1 with the Kaluza–Klein
Lagrangian returns Euler’s motion equation for the heavy top (8.2).

The Hamiltonian HKK associated with LKK by the Legendre transformation (8.13) is

HKK(Π,Γ,q,p) = Π ·Ω + p · q̇− LKK(Ω,Γ,q, q̇)

=
1

2
Π · I−1Π− p · Γ +

1

2
|p|2

=
1

2
Π · I−1Π +

1

2
|p− Γ|2 − 1

2
|Γ|2 .

Recall that Γ is a unit vector. On the constant level set |Γ|2 = 1, the Kaluza–Klein Hamiltonian HKK

is a positive quadratic function, shifted by a constant. Likewise, on the constant level set p = −mgχ,
the Kaluza–Klein Hamiltonian HKK is a function of only the variables (Π,Γ) and is equal to the
Hamiltonian (8.6) for the heavy top up to an additive constant. As a result we have the following.

Proposition

8.9. The Lie–Poisson equations for the Kaluza–Klein Hamiltonian HKK recover Euler’s
equations for the heavy top, (8.2) and (8.3).

Proof. The Lie–Poisson bracket may be written in matrix form explicitly as

(8.14) { f , h } =


∂f/∂Π
∂f/∂Γ
∂f/∂q
∂f/∂p


T 

Π× Γ× 0 0
Γ× 0 0 0
0 0 0 Id
0 0 − Id 0



∂h/∂Π
∂h/∂Γ
∂h/∂q
∂h/∂p

 .
Consequently, one obtains the following Hamiltonian equations for h = HKK(Π,Γ,q,p),

(8.15)


Π̇

Γ̇
q̇
ṗ

 =


Π× Γ× 0 0
Γ× 0 0 0
0 0 0 Id
0 0 − Id 0




Ω
−p
0

p− Γ

 .
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These recover the heavy-top Equations (8.2) and (8.3) upon evaluating p = −mgχ. �

Exercise. In an attempt to mimic Manakov’s beautiful idea for showing the integra-
bility of the rigid body on SO(n), one might imagine writing the three-dimensional
heavy-top Equations (8.2) and (8.3) by inserting a spectral parameter λ as

d

dt

(
Γ + λΠ + λ2J

)
=
(
Γ + λΠ + λ2J

)
×
(
Ω + λK

)
,

with constant vectors J and K in R3. Does this formulation provide enough constants
of motion to show the integrability of the heavy-top equations for some values of χ
and I? If so, which types of tops may be shown to be integrable this way? F

Answer. The polynomial equation above implies the following relations, for powers
of λ:

λ3 : J ×K = 0 =⇒ J ‖ K, =⇒ J = αK, α = const.

λ2 : J̇ = 0 = Π×K + J × Ω, =⇒ (IΩ− αΩ)×K = 0.

λ1 : Π̇ = Π× Ω + Γ×K, =⇒ K = mgχ .

λ0 : Γ̇ = Γ× Ω.

These relationships hold, provided the moment of inertia I is either proportional to
the identity (Euler top), or has two equal entries that make it cylindrically symmetric
about the vector χ (Lagrange top).

This system conserves each of the coefficients of the powers of λ in |Γ + λΠ + λ2J |2.
That is, besides the kinematic constant |J |2, it conserves

|Γ|2, Γ ·Π ,
1

2α
|Π|2 +mgΓ · χ , Π · χ .

The first two are the Casimirs of the Lie–Poisson bracket in (8.11), the third is the
Hamiltonian and the last is the χ-component of the angular momentum, which is
conserved when the moment of inertia I is cylindrically symmetric about the vector χ.

Cylindrical symmetry holds for the Euler top and the Lagrange top, which are
indeed known to be integrable. For in-depth discussions of this approach to heavy-top
dynamics, see [Ra1982, RaVM1982]. N

Exercise. Manakov’s approach for the heavy top in the vector notation of the previous
exercise suggests a similar application to the n× n matrix commutator equation

d

dt

(
Γ + λΠ + λ2J

)
=
[
Γ + λΠ + λ2J, Ω + λK

]
with skew-symmetric (Γ,Π,Ω, J,K) with constant (J,K). Determine whether this ap-
proach could be used to extend Manakov’s treatment of the rigid body in n dimensions
to the n-dimensional versions of the Euler top and the Lagrange top. F

Exercise. Extend the Manakov approach even further by computing the system of
n× n matrix equations for

d

dt

(
Γ + λM + λ2N + λ3J

)
=
[
Γ + λM + λ2N + λ3J, Ω + λω + λ2K

]
Is this extended matrix system Hamiltonian? If so, what is its Lie–Poisson bracket?
F

9. Euler–Poincaré reduction for continua

As discussed in Theorem 2.3, Euler–Poincaré reduction starts with a G-invariant Lagrangian

L : TG→ R
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defined on the tangent bundle of a Lie group G.

Definition

9.1. A Lagrangian L : TG→ R is said to be right G-invariant if L(TRh(v)) = L(v), for all v ∈ TgG
and for all g, h ∈ G. In shorter notation, right invariance of the Lagrangian may be written as

L(g(t)h, ġ(t)h) = L(g(t), ġ(t)) ,

for all h ∈ G.

For a G-invariant Lagrangian defined on TG, reduction by symmetry takes Hamilton’s principle
from TG to TG/G ' g. Stationarity of the symmetry-reduced Hamilton’s principle yields the Euler–
Poincaré equations on g∗ discussed in Section 2. As we have seen, the corresponding reduced Legendre
transformation yields the now-standard Lie–Poisson bracket for the Hamiltonian formulation of
these equations.

Theorem

9.2 (Euler–Poincaré reduction).
Let G be a Lie group and L : TG→ R be a right invariant Lagrangian. Let ` := L|g : g→ R
be its restriction to g. For a curve g(t) ∈ G, let

u(t) = ġ(t) · g(t)−1 := Tg(t)Rg(t)−1 ġ(t) ∈ g .

Then the following four statements are equivalent:

(i) g(t) satisfies the Euler–Lagrange equations for Lagrangian L defined on G.
(ii) The variational principle

(9.1) δ

∫ b

a
L(g(t), ġ(t))dt = 0 ,

holds, for variations with fixed endpoints.
(iii) The (right invariant) Euler–Poincaré equations hold:

(9.2)
d

dt

δ`

δu
= − ad∗u

δ`

δu
.

(iv) The variational principle

(9.3) δ

∫ b

a
`(u(t)) dt = 0 ,

holds on g, using variations of the form

(9.4) δu = v̇ + [u, v] ,

where u(t) is an arbitrary path in g that vanishes at the endpoints, i.e. u(a) = u(b) = 0.

We identify the Lie group G with the smooth invertible maps with smooth inverses; that is, we
identify G with Diff(D) the group of diffeomorphisms acting on the domain D. We will forego any an-
alytical technicalities that may arise in making this identification. These issues for the diffeomorphism
group remain an active field of current research.

The adjoint action of X(D) on itself is

(9.5) aduv =
d

dt

∣∣∣∣
t=0

(Φu(t))∗v = − d

dt

∣∣∣∣
t=0

(Φu(t))∗v = −Luv = −[u, v],

where the bracket on the right is the standard Jacobi–Lie bracket of the vector fields,

− (aduv)i = [u, v]i = uj
∂vi

∂xj
− vj ∂u

i

∂xj
,

or − aduv = [u,v] = u · ∇v − v · ∇u .(9.6)

Thus, the Lie bracket on X(D), considered as the Lie algebra of Diff(D), is minus the standard
Jacobi-Lie bracket.



72 DARRYL D HOLM IMPERIAL COLLEGE LONDON

10. EPDiff:
Euler–Poincaré equation on the diffeomorphisms

10.1. The n-dimensional EPDiff equation. Eulerian geodesic motion of a fluid in n dimensions
is generated as an EP equation via Hamilton’s principle, when the Lagrangian is given by the kinetic
energy. The kinetic energy defines a norm ‖u‖2 for the Eulerian fluid velocity, represented by the
contravariant vector function u(x, t) : Rn × R → Rn. The choice of the kinetic energy as a positive
functional of fluid velocity u is a modelling step that depends upon the physics of the problem being
studied. We shall choose the kinetic-energy Lagrangian,

(10.1) ` = Lg =
1

2
‖u‖2Qop =

1

2

∫
u ·m dV with m := Qopu .

This Lagrangian may also be expressed as the L2 pairing,

(10.2) ` =
1

2

〈
u , m

〉
=

1

2

∫
u ·Qopu dV ,

where, in a coordinate basis, the components of the vector field u and the 1-form density m are defined
by

u = uj
∂

∂xj
= u · ∇ and m = midx

i ⊗ dV = m · dx⊗ dV .

We use the same font for a quantity and its dual. In particular, italic font denotes vector field u
and 1-form density m, and bold denotes vector u and covector m. In eqns (10.1) and (10.2), the
positive-definite, symmetric operator Qop defines the norm ‖u‖, for appropriate (homogeneous, say, or
periodic) boundary conditions. Conversely, the spatial velocity vector u is obtained by convolution of
the momentum covector m with the Green’s function for the operator Qop. This Green’s function
G is defined by the vector equation

QopG = δ(x) ,

in which δ(x) is the Dirac measure and G satisfies appropriate boundary conditions. Consequently,

(10.3) u(x) = (G ∗m)(x) =

∫
G(x,x′)m(x′) dx′ .

For more discussion of Green’s functions for linear differential operators, see [Tay96].

Remark

10.1. An analogy exists between the kinetic energy in eqn (10.1) based on the norm ‖u‖Qop and the
kinetic energy for the rigid body. In this analogy, the spatial velocity vector field u corresponds to body
angular velocity, the operator Qop to moment of inertia, and G to its inverse.

Remark

10.2. As defined earlier, the EPDiff equation is the Euler–Poincaré equation (9.2) for the Eulerian
geodesic motion of a fluid with respect to norm ‖u‖. Its explicit form is given in the notation of
Hamilton’s principle by

(10.4)
d

dt

δ`

δu
+ ad∗u

δ`

δu
= 0 , in which `[u] =

1

2
‖u‖2 .

Definition

10.3. The variational derivative of ` is defined by using the L2 pairing between vector fields and
1-form densities as

(10.5) δ`[u] =

〈
δ`

δu
, δu

〉
=

∫
δ`

δu
· δu dV .
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Consequently, the variational derivative with respect to the vector field u is the one-form
density of momentum given as in eqn (10.1),

(10.6)
δ`

δu
=
δ`

δu
· dx⊗ dV = m,

which has vector components given by

(10.7)
δ`

δu
= Qopu = m .

In addition, ad∗ is the dual of the vector-field ad-operation (minus the vector-field commutator) with
respect to the L2 pairing,

(10.8) 〈ad∗um, v〉 = 〈m, aduv〉 ,
where u and v are vector fields. The notation adu v denotes the adjoint action of the right Lie
algebra of Diff(D) on itself, given by

adu v = − [u, v](10.9)

where [u, v] is the commutator of vector fields, defined by

[u, v] := uj
∂vi

∂xj
− vj ∂u

i

∂xj
.(10.10)

The pairing in eqn (10.8) is the L2 pairing. Hence, upon integration by parts, one finds

〈ad∗um, v〉 = 〈m, aduv〉

= −
∫
mi

(
uj
∂vi

∂xj
− vj ∂u

i

∂xj

)
dV

=

∫ ( ∂

∂xj
(
miu

j
)

+mj
∂uj

∂xj

)
vi dV ,

for homogeneous boundary conditions. In a coordinate basis, the preceding formula for ad∗um has the
coordinate expression in Rn,

(10.11)
(

ad∗um
)
i
dxi ⊗ dV =

(
∂

∂xj
(miu

j) +mj
∂uj

∂xi

)
dxi ⊗ dV .

In this notation, the abstract EPDiff equation (10.4) may be written explicitly in Euclidean coor-
dinates as a partial differential equation for a covector function m(x, t) : Rn × R1 → Rn. Namely,
the EPDiff equation is given explicitly in Euclidean coordinates as

(10.12)
∂

∂t
m + u · ∇m︸ ︷︷ ︸

Convection

+ (∇u)T ·m︸ ︷︷ ︸
Stretching

+ m(div u)︸ ︷︷ ︸
Expansion

= 0 .

Here, one denotes (∇u)T ·m =
∑

jmj∇uj . To explain the terms in underbraces, we rewrite EPDiff
as preservation of the one-form density of momentum along the characteristic curves of the velocity.
In vector coordinates, this is

(10.13)
d

dt

(
m · dx⊗ dV

)
= 0 along

dx

dt
= u = G ∗m .

This form of the EPDiff equation also emphasizes its non-locality, since the velocity is obtained from
the momentum density by convolution against the Green’s function G of the operator Qop, as in eqn
(10.3). One may check that the characteristic form of EPDiff in eqn (10.13) recovers its Eulerian
form by computing directly the result that

d

dt

(
m · dx⊗ dV

)
=

dm

dt
· dx⊗ dV + m · ddx

dt
⊗ dV + m · dx⊗

( d

dt
dV
)

=
( ∂
∂t

m + u · ∇m +∇uT ·m + m(div u)
)
· dx⊗ dV = 0 ,(10.14)
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along
dx

dt
= u = G ∗m .

This calculation explains the terms convection, stretching and expansion in the under-braces in eqn
(10.12).

Remark

10.4. In 2D and 3D, the EPDiff equation (10.12) may also be written equivalently in terms of the
operators div, grad and curl as,

(10.15)
∂

∂t
m− u× curl m +∇(u ·m) + m(div u) = 0 .

Thus, for example, the numerical solution of EPDiff would require an algorithm that has the capability
to deal with the distinctions and relationships among the operators div, grad and curl.

10.2. Variational derivation of EPDiff. The EPDiff equation (10.12) may be derived by the fol-
lowing direct calculation for the present right invariant case in the continuum notation,

δ

∫ b

a
l(u)dt =

∫ b

a

〈
δl

δu
, δu

〉
dt =

∫ b

a

〈
δl

δu
,

dv

dt
− aduv

〉
dt

=

∫ b

a

〈
δl

δu
,

dv

dt

〉
dt−

∫ b

a

〈
δl

δu
, aduv

〉
dt

= −
∫ b

a

〈
d

dt

δl

δu
+ ad∗u

δl

δu
, v

〉
dt ,

where, using (10.9) in (9.4), we have set

(10.16) δu =
dv

dt
− aduv ,

for the variation of the right invariant vector field u. The angle brackets 〈· , ·〉 denote the pairing
between elements of the Lie algebra and its dual. In our case, this is the L2 pairing between vector
fields and 1-form densities in eqn (10.5), written in components as〈

δl

δu
, δu

〉
=

∫
δl

δui
δui dV .

This L2 pairing yields the component form of the EPDiff equation explicitly, as∫ b

a

〈
δl

δu
, δu

〉
dt =

∫ b

a
dt

∫
δl

δui

(∂vi
∂t

+ uj
∂vi

∂xj
− vj ∂u

i

∂xj

)
dV

= −
∫ b

a
dt

∫ {
∂

∂t

δl

δui
+

∂

∂xj

( δl
δui

uj
)

+
δl

δuj
∂uj

∂xi

}
vi dV

+

∫ b

a
dt

∫ {
∂

∂t

( δl
δui

vi
)

+
∂

∂xj

( δl
δui

viuj
)}

dV .(10.17)

Invoking vi = 0 at the endpoints in time and taking the fluid velocity vector u to be tangent to the
(fixed) boundary in space, then substituting the definition m = δl/δu recovers the coordinate forms in
Euclidean components for the coadjoint action of vector fields in eqn (10.11) and the EPDiff equation
itself in eqn (10.12). When `[u] = 1

2‖u‖
2, EPDiff describes geodesic motion on the diffeomorphisms

with respect to the norm ‖u‖.

10.3. Noether’s theorem for EPDiff. Noether’s theorem associates conservation laws to continu-
ous symmetries of a Lagrangian. See, e.g., [Olv00] for a clear discussion of the classical theory. Mo-
mentum and energy conservation for the EPDiff equation in eqn (10.12) readily emerge from Noether’s
theorem, since the Lagrangian in eqn (10.1) admits space and time translations. That is, the action
for EPDiff,

S =

∫
`[u]dt =

∫
1

2
‖u‖2dt ,
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is invariant under the following transformations,

(10.18) xj → x′
j

= xj + cj and t→ t′ = t+ τ ,

for constants τ and cj , with j = 1, 2, 3. Noether’s theorem then implies conservation of corresponding
momentum components mj , with j = 1, 2, 3, and energy E of the expected forms,

(10.19) mj =
δ`

δuj
and E =

δ`

δuj
uj − `[u] ,

which may be readily verified.

Exercise. Show that the EPDiff equation (10.4) may be written as

(10.20)
( ∂
∂t

+ Lu

)(
m · dx⊗ dV

)
= 0 ,

where Lu is the Lie derivative with respect to the vector field with components
u = G ∗m. How does the Lie-derivative form of EPDiff in eqn (10.20) differ from
its characteristic form (10.13)? Hint: compare the coordinate expression obtained
from the dynamical definition of the Lie derivative with the corresponding expression
obtained from its definition via Cartan’s formula. F

Exercise. Show that EPDiff in 1D may be written as

(10.21) mt + umx + 2mux = 0 .

How does the factor of 2 arise in this equation? Hint: Take a look at eqn (10.12). F

Exercise. Write the EPDiff equation in coordinate form (10.12) for (a) the L2 norm
and (b) the H1 norm (L2 norm of the gradient) of the spatial fluid velocity. F

Exercise. Verify that the EPDiff equation (10.12) conserves the spatially integrated
momentum and energy in eqn (10.19). Hint: for momentum conservation look at eqn
(10.17) when vj = cj for spatial translations. F

10.4. Fluids background for EPDiff. The configuration space Diff(D) is a group, with the group
operation being composition and the group identity being the identity map. This group acts on D in
the obvious way: g ·X := g(X), where we are using the ‘dot’ notation for the group action.

Definition

10.5. During a motion gt or g(t), the particle labelled by X describes a path in D along a locus
of points

(10.22) x(X, t) := gt(X) = g(t) ·X ,

which are called the Eulerian or spatial points of the path. This locus of points in Rn is also
called the Lagrangian, or material, trajectory , because a Lagrangian fluid parcel follows this path
in space.



76 DARRYL D HOLM IMPERIAL COLLEGE LONDON

g 1-

x

CurrentReference

g(t)

(t)

X
Figure 4. The map from Lagrange reference coordinates X in the fluid to the current
Eulerian spatial position x is performed by the time-dependent diffeomorphism g(t),
so that x(t,X) = g(t) ·X.

Definition

10.6. The Lagrangian, or material, velocity U of the system along the motion gt or g(t) is defined
by taking the time derivative of the Lagrangian trajectory (10.22) keeping the particle labels X fixed:

(10.23) U(X, t) :=
∂

∂t
gt ·X =

∂

∂t
x(X, t) .

Thus U(X, t) is the velocity of the particle with label X at time t.
The Eulerian, or spatial, velocity u of the system is velocity expressed as a function of spatial

position and time, meaning that if x = x(X, t) = gt(X) then

u(x, t) := U(X, t) = U(g−1
t (x), t) .(10.24)

Thus, u(x, t) is the velocity at time t of the particle currently in position x.

The Eulerian velocity u can also be regarded as a time-dependent vector field ut ∈ X(D), where
ut(x) := u(x, t). It follows from eqn (10.24) that

Ut = ut ◦ gt .(10.25)

In this sense, the Lagrangian velocity field at a particular time is a right translation of the Eulerian
velocity field. This observation leads to consideration of the Lie-group structure of Diff(D).

11. Clebsch action principle for EPDiff(Emb(S,Rn))

To set the notation, let the domain D = Rn, fix a k-dimensional manifold S with a given volume
element and whose points are denoted s ∈ S. Let Emb(S,Rn) denote the set of smooth embeddings
Q : S → Rn. (If the EPDiff equations are taken on a manifold M , replace Rn with M .) Under
appropriate technical conditions, which we shall just treat formally here, Emb(S,Rn) is a smooth
manifold. (See, for example, [EM70] for a discussion and references.)

The tangent space TQ Emb(S,Rn) to Emb(S,Rn) at the point Q ∈ Emb(S,Rn) is given by the space
of material velocity fields, namely the linear space of maps V : S → Rn that are vector fields over
the map Q. The dual space to this space will be identified with the space of one-form densities over
Q, which we shall regard as maps P : S → (Rn)∗. In summary, the cotangent bundle T ∗ Emb(S,Rn)
is identified with the space of pairs of maps (Q,P).

Definition
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11.1 (Clebsch action principle for EPDiff). For a given functional l : X(D) × T ∗M with M :=
Emb(S,Rn), the smooth manifold of embeddings, the Clebsch action principle for EPDiff is

(11.1) δS[u(t);Q(t),P (t)] = δ

∫ t2

t1

l[u(t)] +
〈
P (t), Q̇(t)− u(Q, t)

〉
T ∗M

dt = 0,

where u ∈ X(D) is the Eulerian velocity, Q(t) is the map S → Rn, P (t) is a Lagrange multiplier in
T ∗QM and 〈·, ·〉T ∗M is the standard inner product on T ∗M , which contains an implied sum and integral

(denoted simply as
∑

) over the connected components of M := Emb(S,Rn).

This Lagrangian leads to the following Clebsch variational equations.

Lemma

11.2 (Clebsch equations).
The action principle (11.1) has stationary points when the following Clebsch variational equations are
satisfied:

δl

δu
=
∑

P (t) δ(x−Q(t)), Q̇ = u(Q, t), Ṗ = −
(
∂u

∂Q

)T
· P(11.2)

Proof.

0 = δ

∫ t2

t1

l[u] +
〈
P , Q̇− u(Q, t)

〉
T ∗M

dt

= δ

∫ t2

t1

l[u] +

〈
P , Q̇−

∫
u(x, t)δ(x−Q(t)) dx

〉
T ∗M

+ δ

∫ t2

t1

〈
P , Q̇

〉
T ∗M

dt

=

∫ t2

t1

〈
δl

δu
−
∑

P δ(x−Q(t)), δu

〉
X∗

+
〈
δP , Q̇− u(Q, t)

〉
T ∗M

+

〈
P , δQ̇− ∂u

∂Q
· δQ

〉
T ∗M

dt

=

=

∫ t2

t1

〈
δl

δu
−
∑

P δ(x−Q(t)), δu

〉
X∗

+
〈
δP , Q̇− u(Q, t)

〉
T ∗M

−

〈
Ṗ +

(
∂u

∂Q

)T
· P , δQ

〉
T ∗M

dt

and the result follows since δu, δP , and δQ are arbitrary. �

Corollary

11.3. The momentum equation arising from the Clebsch action principle (11.2)

m :=
δl

δu
=
∑

P (t) δ(x−Q(t))

for measure-valued solutions of the EPDiff equation (9.2), defines an equivariant momentum map

JSing : T ∗ Emb(S,Rn)→ X(Rn)∗,

called the singular solution momentum map. For discussions of this momentum map from various
viewpoints, see [HoMa2004].

In particular, expressing m ∈ X(Rn)∗ in terms of Q,P ∈ T ∗ Emb(S,Rn) (which are functions of
coordinates s on the connected components of the embedded manifold S) is a momentum map from
the space of (Q(s),P(s)) to the space of m(x). Its equivariance follows because it is a cotangent lift.
Consequently, m := δl

δu satisfies the (right invariant) Euler–Poincaré equations (9.2).

Lemma

11.4 (Legendre transform). The Clebsch equations (11.2) for Q, P and the momentum map are
canonical for the Hamiltonian (Routhian) given by the Legendre transform,

H(Q,P ) = 〈P (t),u(Q, t)〉T ∗M − l[u(t)].
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Proof. The result follows directly by calculating the canonical equations for this Hamiltonian, from

δH =
〈
δP ,u(Q, t)

〉
T ∗M

+

〈(
∂u

∂Q

)T
· P , δQ

〉
T ∗M

−
〈
δl

δu
−
∑

P δ(x−Q(t)), δu

〉
X∗

�

12. EPDiff solution behaviour

I shall speak of things . . . so singular in their oddity as in some manner to instruct, or at least
entertain, without wearying.

– Lorenzo da Ponte (1749–1838), [LDP2000]

This section discusses the coherent particle-like properties of the unidirectional singular solutions of
the EPDiff equation (10.21). These singular solutions emerge from any smooth spatially confined initial
velocity profile u(x, 0). After emerging, they dominate the evolution in interacting fully nonlinearly
by exchanging momentum in elastic collisions. The mechanism for their emergence is shown to be
pulse steepening due to nonlinearity. Several examples of the dynamics among singular solutions are
given.

12.1. Introduction. Consider the following particular case of the EPDiff equation (10.21) in one
spatial dimension,

(12.1) mt + umx + 2mux = 0 with m = (1− α2∂2
x)u ,

in which the fluid velocity u is a function of position x on the real line and time t. This equation
governs geodesic motion on the smooth invertible maps (diffeomorphisms) of the real line with respect
to the metric associated with the H1 Sobolev norm of the fluid velocity given by

(12.2) ‖u‖2H1 =

∫
(u2 + α2u2

x) dx .

The peakon is the solitary travelling wave solution for the EPDIff equation (12.1),

(12.3) u(x, t) = c e−|x−ct|/α .

The peakon travelling wave moves at a speed equal to its maximum height, at which it has a sharp peak
(jump in derivative). The spatial velocity profile e−|x|/α is the Green’s function for the Helmholtz
operator (1−α2∂2

x) on the real line with vanishing boundary conditions at spatial infinity. In particular,
it satisfies

(12.4) (1− α2∂2
x)e−|x−ct|/α = 2αδ(x− ct) .

A novel feature of the EPDiff equation (12.1) is that it admits solutions representing a wave train
of peakons

(12.5) u(x, t) =

N∑
a=1

pa(t)e
−|x−qa(t)|/α .

By eqn (12.4), this corresponds to a sum over delta functions representing the singular solution in
momentum,

(12.6) m(x, t) = 2α
N∑
a=1

pa(t) δ(x− qa(t)) ,

in which the delta function δ(x− q) is defined by

(12.7) f(q) =

∫
f(x)δ(x− q) dx ,

for an arbitrary smooth function f . Such a sum is an exact solution of the EPDiff equation (12.1)
provided the time-dependent parameters {pa} and {qa}, a = 1, . . . , N , satisfy certain canonical Hamil-
tonian equations that will be discussed later.
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Figure 5. Under the evolution of the EPDiff equation (12.1), an ordered wave
train of peakons emerges from a smooth localized initial condition (a Gaussian). The
spatial profiles at successive times are offset in the vertical to show the evolution. The
peakon wave train eventually wraps around the periodic domain, thereby allowing the
leading peakons to overtake the slower peakons from behind in collisions that conserve
momentum and preserve the peakon shape but cause phase shifts in the positions of
the peaks, as discussed in [CH93].

Remark

12.1. The peakon-train solutions of EPDiff are an emergent phenomenon. A wave train of peakons
emerges in solving the initial-value problem for the EPDiff equation (12.1) for essentially any spatially
confined initial condition. An example of the emergence of a wave train of peakons from a Gaussian
initial condition is shown in Figure 5.

12.2. Steepening lemma: the peakon-formation mechanism. We may understand the mecha-
nism for the emergent formation of the peakons seen in Figure 5, by showing that initial conditions
exist for which the solution of the EPDiff equation (13.11) can develop a vertical slope in its velocity
u(t, x), in finite time. The mechanism turns out to be associated with inflection points of negative
slope, such as occur on the leading edge of a rightward-propagating velocity profile. In particular,

Lemma

12.2 (Steepening lemma [CH93]).
Suppose the initial profile of velocity u(0, x) has an inflection point at x = x to the right of its maxi-
mum, and otherwise it decays to zero in each direction sufficiently rapidly for the H1 Sobolev norm of
the fluid velocity in eqn (12.2) to be finite. Then, the negative slope at the inflection point will become
vertical in finite time.

Proof. Consider the evolution of the slope at the inflection point. Define s = ux(x(t), t). Then the
EPDiff equation (12.1), rewritten as,

(12.8) (1− α2∂2)(ut + uux) = − ∂
(
u2 +

α2

2
u2
x

)
,

yields an equation for the evolution of s. Namely, using uxx(x(t), t) = 0 leads to

(12.9)
ds

dt
= − 1

2
s2 +

1

2

∫ ∞
−∞

sgn(x− y)e−|x−y|∂y

(
u2 +

1

2
u2
y

)
dy .
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Integrating by parts and using the inequality A2 + B2 ≥ 2AB, for any two real numbers A and B,
leads to

ds

dt
= − 1

2
s2 − 1

2

∫ ∞
−∞

e−|x−y|
(
u2 +

1

2
u2
y

)
dy + u2(x(t), t)

≤ − 1

2
s2 + 2u2(x(t), t) .(12.10)

Then, provided u2(x(t), t) remains finite, say less than a number M/4, we have

ds

dt
= − 1

2
s2 +

M

2
,(12.11)

which implies, for negative slope initially s ≤ −
√
M , that

s ≤
√
M coth

(
σ +

t

2

√
M

)
,(12.12)

where σ is a negative constant that determines the initial slope, also negative. Hence, at time t =
−2σ/

√
M the slope becomes negative and vertical. The assumption that M in eqn (12.11) exists is

verified in general by a Sobolev inequality. In fact, M = 8H1, since

max
x∈R

u2(x, t) ≤
∫ ∞
−∞

(
u2 + u2

x

)
dx = 2H1 = const .(12.13)

�

Remark

12.3. Suppose the initial condition is anti-symmetric, so the inflection point at u = 0 is fixed and
dx/dt = 0, due to the symmetry (u, x) → (−u,−x) admitted by eqn (14.1). In this case, M = 0 and
no matter how small |s(0)| (with s(0) < 0) verticality s→ −∞ develops at x in finite time.

Figure 6. This is the velocity profile (13.35) for the peakon-antipeakon head-on
collision as a function of separation between the peaks [FH01].

Remark

12.4 (Implications of the steepening lemma).
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• The steepening lemma indicates that travelling wave solutions of the EPDiff equation (12.1) cannot
have the sech2 shape that appears for KdV solitons, since inflection points with sufficiently negative
slope can lead to unsteady changes in the shape of the profile if inflection points are present.

• In fact, numerical simulations show that the presence of an inflection point of negative slope in
any confined initial velocity distribution triggers the steepening lemma as the mechanism for the
formation of the peakons.

• Namely. the initial (positive) velocity profile “leans” to the right and steepens, then produces a
peakon that is taller than the initial profile, so it propagates away to the right.

• This process leaves a profile behind with an inflection point of negative slope; so it repeats, thereby
producing a wave train of peakons with the tallest and fastest ones moving rightward in order of height.

• Remarkably, this recurrent process produces only peakons.

The EPDiff equation (12.1) arises from a shallow water wave equation in the limit of zero linear
dispersion in one dimension. As we shall see, the peakon solutions (12.6) for EPDiff generalize to
higher dimensions and other kinetic energy norms.

Exercise. Verify that the EPDiff equation (12.1) preserves the H1 norm (12.2). F

Exercise. Verify that the peakon formula (12.3) provides the solitary travelling wave
solution for the EPDiff equation (12.1). F

Exercise. Verify formula (12.4) for the Green’s function. Why is this formula useful
in representing the travelling-wave solution of the EPDIff equation (12.1)? F

13. Shallow-water background for peakons

The EPDiff equation (12.1) whose solutions admit peakon wave trains (12.5) may be derived by
taking the zero-dispersion limit of another equation obtained from Euler’s fluid equations by using as-
ymptotic expansions for shallow water waves [CH93]. Euler’s equations for irrotational incompressible
ideal fluid motion under gravity with a free surface have an asymptotic expansion for shallow water
waves that involves two small parameters, ε and δ2, with ordering ε ≥ δ2. These small parameters are
ε = a/h0 (the ratio of wave amplitude to mean depth) and δ2 = (h0/lx)2 (the squared ratio of mean
depth to horizontal length, or wavelength).

In one spatial dimension, EPDiff is the zero-dispersion limit of the Camassa–Holm (CH) equation
for shallow water waves, which is the b = 2 case of the following b-equation, that results from the
asymptotic expansion for shallow water waves,

(13.1) mt + c0ux + umx + bmux − γuxxx = 0 .

Here, m = u − α2uxx is the momentum variable, and the constants α2 and γ/c0 are squares of
length scales. At linear order in the asymptotic expansion for shallow water waves in terms of the
small parameters ε and δ2, one finds α2 → 0, so that m → u in (13.1). In this case, the famous
Korteweg–de Vries (KdV) soliton equation is recovered for b = 2,

(13.2) ut + 3uux = −c0ux + γuxxx .

Any value of the parameter except b = −1 may be achieved in eqn (13.1) by an appropriate near-
identity (normal form) transformation of the solution [DGH04]. The value b = −1 is disallowed in
(13.1) because it cancels the leading-order nonlinearity and, thus, breaks the asymptotic ordering.

Because of the relation m = u−α2uxx, the b-equation (13.1) is non-local. In other words, it is an
integral-partial differential equation. In fact, after writing eqn (13.1) equivalently as,

(13.3) (1− α2∂2
x)(ut + uux) = − ∂x

(
b

2
u2 +

3− b
2

α2u2
x

)
− c0ux + γuxxx .
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The b-equation may be expressed in hydrodynamic form as

(13.4) ut + uux = − px ,

with a ‘pressure’ p given by

(13.5) p = G ∗
(
b

2
u2 +

3− b
2

α2u2
x + c0u− γuxx

)
,

in which the convolution kernel is the Green’s function G(x, y) = (2α)−1e−|x−y|/α for the Helmholtz
operator (1− α2∂2

x).
One sees the interplay between local and non-local linear dispersion in the b-equation by linearizing

eqn (13.3) around u = 0 to find its phase-velocity relation,

(13.6)
ω

k
=
c0 + γ k2

1 + α 2k2
,

obtained for waves with frequency ω and wave number k. For γ/c0 > 0, short waves and long waves
travel in the same direction. Long waves travel faster than short ones (as required in shallow water)
provided γ/c0 < α2. Then, the phase velocity lies in the interval ω/k ∈ (γ/α 2, c0]. The parameters c0

and γ represent linear wave dispersion, which modifies and may eventually balance the tendency for
nonlinear waves to steepen and break. The parameter α, which introduces non-locality, also allows a
balance leading to a stable wave shape, even in the absence of c0 and γ.

The nonlinear effects of the parameter b on the solutions of eqn (13.1) were investigated in Holm
and Staley [HS03], where b was treated as a bifurcation parameter. In the limiting case when the
linear dispersion coefficients are absent, peakon solutions of eqn (13.1) are allowed theoretically for
any value of b. However, they were found numerically to be stable only for b > 1. These coherent
solutions are allowed, because the two nonlinear terms in eqn (13.1) may balance each other, even in
the absence of linear dispersion. However, the instability of the peakons found numerically for b < 1
indicates that the relative strengths of the two nonlinearities will determine whether this balance can
be maintained.

Proposition

13.1. A solution u of the b-equation (13.1) with c0 = 0 and γ = 0 vanishing at spatial in-
finity blows up in H1 if and only if its first-order derivative blows up, that is, if wave breaking
occurs.

Proof. This result is implied by Exercise 13.2. �

Lemma

13.2 (Steepening lemma for the b-equation with b > 1).
Suppose the initial profile of velocity u(0, x) has an inflection point at x = x to the right of its max-
imum, and otherwise it decays to zero in each direction. Assume that the velocity at the inflection
point remains finite. Then, the negative slope at the inflection point will become vertical in finite time,
provided b > 1.

Proof. Consider the evolution of the slope at the inflection point x = x(t). Define s = ux(x(t), t).
Then, the b-equation (13.1) with c0 = 0 and γ = 0 may be rewritten in hydrodynamic form as, cf.
eqn (13.4),

(13.7) ut + uux = − ∂xG ∗
(
b

2
u2 +

3− b
2

α2u2
x

)
.
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The spatial derivative of this yields an equation for the evolution of s. Namely, using uxx(x(t), t) = 0
leads to

ds

dt
+ s2 = − ∂2

x(G ∗ p) with p :=

(
b

2
u2(x(t), t) +

3− b
2

α2s2

)
=

1

α2
(1− α2∂2

x)G ∗ p− 1

α2
G ∗ p

=
1

α2
p− 1

α2
G ∗ p .(13.8)

This calculation implies

ds

dt
=

1− b
2

s2 − 1

2α

∫ ∞
−∞

e−|x−y|/α
(
b

2
u2 +

3− b
2

α2u2
y

)
dy +

b

2α2
u2(x(t), t)

≤ 1− b
2

s2 +
b

2α2
u2(x(t), t) ,(13.9)

where we have dropped the negative middle term in the last step. Then, provided u2(x(t), t) remains
finite, say less than a number M , we have

ds

dt
≤ 1− b

2
s2 +

bM

2α2
,(13.10)

which implies, for negative slope initially and b > 1, that the slope remains negative and becomes
vertical in finite time. This proves the steepening lemma for the b-equation and identifies b = 1 as a
special value. �

Remark

13.3. One might wonder whether the dispersionless CH equation is the only shallow water b-equation
that both possesses peakon solutions and is completely integrable as a Hamiltonian system. Mikhailov
and Novikov [MN02] showed that among the b-equations only the cases b = 2 and b = 3 are completely
integrable as Hamiltonian systems. The case b = 3 is the Degasperis–Processi equation, whose peakon
solutions are studied in [DHH03].

Remark

13.4. Hereafter, we specialize the b-equation (13.1) to the case b = 2. If, in addition, c0 = 0 and
γ = 0, then the b-equation specializes to EPDiff.

13.1. Hamiltonian dynamics of EPDiff peakons. Upon substituting the peakon solution expres-
sions (12.5) for velocity u and eqn (12.6) for momentum m into the EPDiff equation,

(13.11) mt + umx + 2mux = 0 , with m = u− α2uxx ,

one finds Hamilton’s canonical equations for the dynamics of the discrete set of peakon parameters
pa(t) and qa(t). Namely,

(13.12) q̇a(t) =
∂HN

∂pa
and ṗa(t) = − ∂HN

∂qa
,

for a = 1, 2, . . . , N , with Hamiltonian given by [CH93],

(13.13) HN = 1
2

N∑
a,b=1

pa pb e−|qa−qb|/α .

The first canonical equation in eqn (13.12) implies that the peaks at the positions x = qa(t) in
the peakon-train solution (12.5) move with the flow of the fluid velocity u at those positions, since
u(qa(t), t) = q̇a(t). This means the positions qa(t) are Lagrangian coordinates frozen into the
flow of EPDiff. Thus, the singular momentum solution ansatz (12.6) is the map from Lagrangian
coordinates to Eulerian coordinates (that is, the Lagrange-to-Euler map) for the momentum.
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Remark

13.5. The peakon wave train (12.6) forms a finite-dimensional invariant manifold of solutions of the
EPDiff equation. On this invariant manifold of solutions for the partial differential equation (13.11),
the dynamics turns out to be canonically Hamiltonian as in eqn (13.12). This canonical Hamilton-
ian structure of the peakon solutions arises because the solution ansatz (12.6) for momentum m is a
momentum map [HoMa2004].

13.2. Pulsons: Singular solutions of EPDiff for other Green’s functions. The Hamiltonian
HN in eqn (13.13) depends on G, the Green’s function for the relation u = G ∗m between velocity u
and momentum m. For the Helmholtz operator on the real line this Green’s function is given by eqn
(12.4) as G(x) = e−|x|/α/2α. However, the singular momentum solution ansatz (12.6) is independent
of this Green’s function. Thus, we may conclude the following [FH01].

Proposition

13.6. The singular momentum solution ansatz

(13.14) m(x, t) =
N∑
a=1

pa(t) δ(x− qa(t)) ,

for EPDiff,

(13.15) mt + umx + 2mux = 0 , with u = G ∗m,

provides a finite-dimensional invariant manifold of solutions governed by canonical Hamiltonian
dynamics, for any choice of the Green’s function G(x) relating velocity u and momentum m.

Proof. The singular momentum solution ansatz (13.14) is independent of the Green’s function G. �

Remark

13.7. The pulson singular solutions (13.14) of the EPDiff equation (13.15) form an N -dimensional
invariant symplectic manifold, on which the EPDiff solution dynamics is governed by a canonical
Hamiltonian system for the conjugate pairs of variables (qa, pa) with a = 1, 2, . . . , N .

Perhaps surprisingly, these singular solutions will turn out to emerge from any smooth confined
initial distribution of momentum.

The fluid velocity solutions corresponding to the singular momentum ansatz (13.14) for eqn (13.15)
are the pulsons. A pulson wave train is defined by the sum over N velocity profiles determined by
the Green’s function G, as

(13.16) u(x, t) =

N∑
a=1

pa(t)G
(
x, qa(t)

)
.

A solitary travelling wave solution for the pulson is given by

(13.17) u(x, t) = cG(x, ct) = cG(x− ct) with G(0) = 1 ,

where one finds G(x, ct) = G(x− ct), provided the Green’s function G is translation-invariant.

For EPDiff (13.15) with any choice of the Green’s function G, the singular momentum solution
ansatz (13.14) results in a finite-dimensional invariant manifold of exact solutions. The 2N parameters
pa(t) and qa(t) in these pulson-train solutions of EPDiff satisfy Hamilton’s canonical equations

(13.18)
dqa
dt

=
∂HN

∂pa
and

dpa
dt

= − ∂HN

∂qa
,



EULER-POINCARÉ THEORY FROM THE RIGID BODY TO SOLITONS 85

Figure 7. When the Green’s function G has a triangular profile, a train of trian-
gular pulsons emerges from a Gaussian initial velocity distribution as it evolves
under the EPDiff equation (12.1). The upper panels show the collisions that
occur as the faster triangular pulsons overtake the slower ones as they cross and
re-cross the periodic domain. The upper left panel shows the progress of the
pulsons by by showing offsets of the velocity profile at equal time intervals. The
upper right panel shows the pulson paths obtained by plotting their elevation
topography.

with N -particle Hamiltonian,

(13.19) HN =
1

2

N∑
a,b=1

pa pbG(qa, qb) .

The canonical equations for the parameters in the pulson train define an invariant manifold of singular
momentum solutions and provide a phase-space description of geodesic motion with respect to the
cometric (inverse metric) given by the Green’s function G. Mathematical analysis and numerical
results for the dynamics of these pulson solutions are given in [FH01] whose results show how the
results of collisions of pulsons (13.16) depend upon the shape of their travelling wave profile. The
effects of the travelling-wave pulse shape

u(x− ct) = cG(x− ct)

on the multipulson collision dynamics are reflected in the Hamiltonian (13.19) that governs this dy-
namics. For example, see Figure 7, in which the pulsons are triangular.

Exercise. Verify the hydrodynamic form of the b-equation in eqn (13.3). F

Exercise. Verify that the b-equation (13.1) with c0 = 0 and γ = 0 admits peakon-train
solutions of the form (12.5) for any value of b. F

Exercise. Verify that the b-equation (13.1) with c0 = 0 and γ = 0 satisfies

d

dt
‖u‖2H1 = (b− 2)

∫
u3
x dx ,
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for any value of b and for solutions that vanish sufficiently rapidly at spatial infinity
that no endpoint contributions arise upon integration by parts. F

Exercise. Prove a steepening lemma for the b-equation (13.1) with c0 = 0 and γ = 0
that avoids the assumption that u2(x(t), t) remains finite. That is, establish a necessary
and sufficient condition depending only on the initial data for blow-up to occur in finite
time. How does this condition depend on the value of b? Does this steepening lemma
hold for every value of b > 1? F

Exercise. Are the equations of peakon dynamics for the b-equation (13.1) with c0 = 0
and γ = 0 canonically Hamiltonian for every value of b? Hint: try b = 3. F

13.3. Peakons.

13.3.1. Pulson–Pulson interactions. The solution of EPDiff in 1D

∂tm+ umx + 2uxm = 0 ,(13.20)

with u = G ∗m for the momentum m = Qopu is given for the interaction of only two pulsons by the
sum of delta functions in eqn (13.14) with N = 2,

(13.21) m(x, t) =

2∑
i=1

pi(t) δ(x− qi(t)) .

The parameters satisfy the finite dimensional geodesic canonical Hamiltonian equations (13.12), in
which the Hamiltonian for N = 2 is given by

(13.22) HN=2(q1, q2, p1, p2) =
1

2
(p2

1 + p2
2) + p1p2G(q1 − q2) .

13.3.2. Conservation laws and reduction to quadrature. Provided the Green’s function G is symmetric
under spatial reflections, G(−x) = G(x), the two-pulson Hamiltonian system conserves the total
momentum

(13.23) P = p1 + p2 .

Conservation of P ensures integrability, by Liouville’s theorem, and reduces the 2-pulson system to
quadratures. To see this, we introduce sum and difference variables as

(13.24) P = p1 + p2 , Q = q1 + q2 , p = p1 − p2 , q = q1 − q2 .

In these variables, the Hamiltonian (13.22) becomes

(13.25) H(q, p, P ) =
1

4
(P 2 − p2)

(
1−G(q)

)
.

Likewise, the 2-pulson equations of motion transform to sum and difference variables as

dP

dt
= −2

∂H

∂Q
= 0 ,

dQ

dt
= 2

∂H

∂P
= P (1 +G(q)) ,

dp

dt
= −2

∂H

∂q
=

1

2
(p2 − P 2)G ′(q) ,

dq

dt
= 2

∂H

∂p
= − p(1−G(q)) .

Eliminating p2 between the formula for H and the equation of motion for q yields(
dq

dt

)2

= P 2
(
1−G(q)

)2 − 4H
(
1−G(q)

)
=: Z(G(q);P,H) ≥ 0 ,(13.26)

which rearranges into the following quadrature,

(13.27) dt =
dG(q)

G ′(q)
√
Z(G(q);P,H)

.
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For the peakon case, we have G(q) = eq so that G ′(q) = G(q) and the quadrature (13.27) simplifies
to an elementary integral. Having obtained q(t) from the quadrature, the momentum difference p(t)
is found from eqn (13.25) via the algebraic expression

(13.28) p2 = P 2 − 4H

1−G(q)
,

in terms of q and the constants of motion P and H. Finally, the sum Q(t) is found by a further
quadrature.

Upon writing the quantities H and P as

(13.29) H = c1c2, P = c1 + c2,
1

2
c2

1 +
1

2
c2

2 =
1

2
P 2 −H ,

in terms of the asymptotic speeds of the pulsons, c1 and c2, we find the relative momentum relation,

(13.30) p2 = (c1 + c2)2 − 4c1c2

1−G(q)
.

This equation has several implications for the qualitative properties of the 2-pulson collisions.

Definition

13.8. Overtaking, or rear-end, pulson collisions satisfy c1c2 > 0, while head-on pulson collisions
satisfy c1c2 < 0.

The pulson order q1 < q2 is preserved in an overtaking, or rear-end, collision. This follows, as

Proposition

13.9 (Preservation of pulson order). For overtaking, or rear-end, collisions, the 2-pulson
dynamics preserves the sign condition

q = q1 − q2 < 0 .

Proof. Suppose the peaks were to overlap in an overtaking collision with c1c2 > 0, thereby producing
q = 0 during a collision. The condition G(0) = 1 implies the second term in eqn (13.30) would diverge
if this overlap were to occur. However, such a divergence would contradict p2 ≥ 0. �

Consequently, seen as a collision between two ‘particles’ with initial speeds c1 and c2 that are
initially well separated, the separation q(t) reaches a non-zero distance of closest approach qmin in an
overtaking, or rear-end, collision that may be expressed in terms of the pulse shape, as follows.

Corollary

13.10 (Minimum separation distance).
The minimum separation distance reachable in two-pulson collisions with c1c2 > 0 is given by,

(13.31) 1−G(qmin) =
4c1c2

(c1 + c2)2
.

Proof. Set p2 = 0 in eqn (13.30). �

Proposition

13.11 (Head-on collisions admit q → 0).
The 2-pulson dynamics allows the overlap q → 0 in head-on collisions.

Proof. Because p2 ≥ 0, the overlap q → 0 implying g → 1 is only possible in eqn (13.30) for c1c2 < 0.
That is, for the head-on collisions. �
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Remark

13.12 (Divergence of head-on momentum).
Equation (13.30) implies that p2 →∞ diverges when q → 0 in head-on collisions. As we shall discuss,
this signals the development of a vertical slope in the velocity profile of the solution at the moment of
collision.

13.4. Pulson–anti-pulson interactions.

13.4.1. Head-on pulson–anti-pulson collision. In a completely anti-symmetric head-on collision of
a pulson and anti-pulson, one has p1 = −p2 = p/2 and q1 = −q2 = q/2 (so that P = 0 and Q = 0). In
this case, the quadrature formula (13.27) reduces to

(13.32) ± (t− t0) =
1√
−4H

∫ q(t)

q(t0)

dq ′(
1−G(q ′)

)1/2 ,
and the second constant of motion in eqn (13.25) satisfies

(13.33) − 4H = p2
(
1−G(q)

)
≥ 0 .

After the collision, the pulson and anti-pulson separate and travel apart in opposite directions; so
that asymptotically in time g(q)→ 0, p→ 2c, and H → −c2, where c (or −c) is the asymptotic speed
(and amplitude) of the pulson (or anti-pulson). Setting H = −c2 in eqn (13.33) gives a relation for
the pulson–anti-pulson (p, q) phase trajectories for any kernel,

(13.34) p = ± 2c(
1−G(q)

)1/2 .
Notice that p diverges (and switches branches of the square root) when q → 0+, because G(0) = 1.
The convention of switching branches of the square root allows one to keep q > 0 throughout, so the
particles retain their order. That is, the particles ‘bounce’ elastically at the moment when q → 0+ in
the perfectly anti-symmetric head-on collision in Figure 6.

Remark

13.13 (Preservation of particle identity in collisions).

• The relative separation distance q(t) in pulson–anti-pulson collisions is determined by following a
phase point along a level surface of the Hamiltonian H in the phase space with coordinates (q, p).

• Because H is quadratic, the relative momentum p has two branches on such a level surface, as
indicated by the ± sign in eqn (13.34). At the pulson–anti-pulson collision point, both q → 0+ and
either 1/p → 0+ or p → 0+, so following a phase point through a collision requires that one must
choose a convention for which branch of the level surface is taken after the collision.

• Taking the convention that p changes sign (corresponding to a bounce), but q does not change
sign (so the particles keep their identity) is convenient, because it allows the phase points to be
followed more easily through multiple collisions. This choice is also consistent with the pulson–pulson
and anti-pulson–anti-pulson collisions. In these other rear-end collisions, as implied by eqn (13.30),
the separation distance always remains positive and again the particles retain their identity.

Theorem

13.14 (Pulson–anti-pulson exact solution).
The exact analytical solution for the pulson–anti-pulson collision for any symmetric G may be
written as a function of position x and the separation between the pulses q for any pulse shape or
kernel G(x) as

(13.35) u(x, q) =
c(

1−G(q)
)1/2 [G(x+ q/2)−G(x− q/2)

]
,
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where c is the pulson speed at sufficiently large separation and the dynamics of the separation q(t)
is given by the quadrature (13.32) with

√
−4H = 2c.

Proof. The solution for the velocity u(x, t) in the head-on pulson–anti-pulson collision may be ex-
pressed in this notation as

(13.36) u(x, t) =
p

2
G(x+ q/2)− p

2
G(x− q/2) .

In using eqn (13.34) to eliminate p this solution becomes eqn (13.35). �

Exercise. According to eqn (13.32), how much time is required for the head-on pulson–

anti-pulson collision, when G(q) = e−q
2/2 is a Gaussian? F

Exercise. For the case that G(x) = e−|x|, which is Green’s function for the Helmholtz
operator in 1D with α = 1, show that solution (13.36) for the peakon–anti-peakon
collision yields

(13.37) q = − log sech2(ct) , p =
±2c

tanh(ct)
,

so the peakon–anti-peakon collision occurs at time t = 0 and eqn (13.36) results in

m(x, t) = u− α2uxx

=
2c

tanh(ct)

[
δ
(
x− 1

2
q(t)

)
− δ
(
x+

1

2
q(t)

)]
.(13.38)

Discuss the behaviour of this solution. What happens to the slope and amplitude of
the peakon velocity just at the moment of impact? F

Figure 8. Velocity profile (13.35) for the head-on collision of the triangular peakon–
anti-peakon pair as a function of separation between the peaks [FH01].
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14. Integrability of EPDiff in 1D

In the previous section, we discussed the CH equation for unidirectional shallow-water waves derived
in [CH93], as a special case of the b-equation (13.1) with b = 2,

(14.1) mt + umx + 2mux = −c0ux + γuxxx , m = u− α2uxx .

This partial differential equation (PDE) describes shallow-water dynamics at quadratic order in the
asymptotic expansion for unidirectional shallow-water waves on a free surface under gravity. The
previous chapter discussed its elastic particle-collision solution properties in the dispersionless case
for which the linear terms on the right side of eqn (14.1) are absent. These elastic-collision solution
properties hold for any Green’s function G(x) in the convolution relation u = G∗m between velocity u

and momentum m. For the CH equation G(x) = e−|x|/α is the Green’s function for the 1D Helmholtz
operator on the real line with homogeneous boundary conditions.

This section explains the noncanonical Hamiltonian properties of the CH equation (14.1) in one
spatial dimension. In fact, the CH equation has two compatible Hamiltonian structures, so it is
bi-Hamiltonian. In this situation, Magri’s lemmas for bi-Hamiltonian PDE in 1D imply sys-
tematically that CH arises as a different compatibility condition for an isospectral eigenvalue
problem and a linear evolution equation for the corresponding eigenfunctions in the case when
G(x) = e−|x|/α. The properties of being bi-Hamiltonian and possessing an associated isospectral
problem are ingredients for proving the one-dimensional CH equation (14.1) is completely inte-
grable as a Hamiltonian system and is solvable by the inverse scattering transform (IST)
method.

14.1. The CH equation is bi-Hamiltonian. The CH equation is bi-Hamiltonian. This means
that eqn (14.1) may be written in two compatible Hamiltonian forms, namely as

(14.2) mt = −B2
δH1

δm
= −B1

δH2

δm
,

where B1 and B2 are Poisson operators. For the CH equation, the pairs of Hamiltonians and Poisson
operators are given by

H1 =
1

2

∫
(u 2 + α 2u 2

x ) dx ,

B2 = ∂xm+m∂x + c0∂x + γ ∂3
x ,(14.3)

H2 =
1

2

∫
u 3 + α 2uu 2

x + c0u
2 − γ u 2

x dx ,

B1 = ∂x − α 2∂3
x .(14.4)

These bi-Hamiltonian forms restrict properly to those for KdV when α 2 → 0, and to those for EPDiff
when c0, γ → 0. Compatibility of B1 and B2 is assured, because (∂xm + m∂x), ∂x and ∂3

x are
all mutually compatible Hamiltonian operators. That is, any linear combination of these operators
defines a Poisson bracket,

(14.5) {f, h}(m) = −
∫

δf

δm
(c1B1 + c2B2)

δh

δm
dx ,

as a bilinear skew-symmetric operation that satisfies the Jacobi identity. (In general, the sum of
the Poisson brackets would fail to satisfy the Jacobi identity.) Moreover, no further deformations of
these Hamiltonian operators involving higher-order partial derivatives would be compatible with B2,
as shown in [Olv00]. This fact was already known in the literature for KdV, see [Fuc96].

14.2. Magri’s lemmas. The property of compatibility of the two Hamiltonian operators for a bi-
Hamiltonian equation enables the construction under certain conditions of an infinite hierarchy of
Poisson-commuting Hamiltonians. The property of compatibility was used by Magri [Mag78] in prov-
ing the following important pair of lemmas (see also [Olv00] for a clear discussion of Magri’s lemmas):
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Lemma

14.1 (Magri 1978). If B1 and B2 are compatible Hamiltonian operators, with B1 non-degenerate,
and if

(14.6) B2
δH1

δm
= B1

δH2

δm
and B2

δH2

δm
= B1K ,

for Hamiltonians H1, H2, and some function K, then there exists a third Hamiltonian functional H
such that K = δH/δm.

To prove the existence of an infinite hierarchy of Hamiltonians, Hn, n = 1, 2, . . . , related to the two
compatible Hamiltonian operators B1, B2, we need to check that the following two conditions hold:

: (i) There exists an infinite sequence of functions K1, K2, . . . satisfying

(14.7) B2Kn = B1Kn+1 ;

: (ii) There exist two functionals H1 and H2 such that

(14.8) K1 =
δH1

δm
, K2 =

δH2

δm
.

It then follows from Lemma 14.1 that there exist functionals Hn such that

(14.9) Kn =
δHn

δm
, for all n ≥ 1 .

Lemma

14.2 (Magri 1978). Let { · , · }1 and { · , · }2 denote the Poisson brackets defined, respectively, by B1

and B2, which are assumed to be compatible Hamiltonian operators. Let H1, H2, . . . be an infinite se-
quence of Hamiltonian functionals constructed from eqns (14.7) and (14.9). Then, these Hamiltonian
functionals mutually commute under both Poisson brackets:

(14.10) {Hm, Hn }1 = {Hm, Hn }2 = 0 , for all m,n ≥ 1 .

Definition

14.3. A set of functionally independent Hamiltonians that Poisson-commute among themselves is
said to be in involution.

Remark

14.4. The condition for a canonical Hamiltonian system with N degrees of freedom to be completely
integrable is that it possess N constants of motion in involution. The bi-Hamiltonian property is
important because it produces the corresponding condition for an infinite-dimensional system. The
infinite-dimensional case introduces additional questions, such as the completeness of the infinite set
of independent constants of motion in involution. However, such questions are beyond our present
scope.

14.3. Applying Magri’s lemmas. The bi-Hamiltonian property of eqn (14.1) allows one to con-
struct an infinite number of Poisson-commuting conservation laws for it by applying Magri’s lemmas.
According to [Mag78], these conservation laws may be constructed for non-degenerate B1 by defining
the transpose operator RT = B−1

1 B2 that leads from the variational derivative of one conservation
law to the next,

(14.11)
δHn

δm
= RT

δHn−1

δm
, n = −1, 0, 1, 2, . . . .

The operator RT = B−1
1 B2 recursively takes the variational derivative of H−1 to that of H0, to that of

H1, then to that ofH2, etc. The next steps are not so easy for the integrable CH hierarchy, because each
application of the recursion operator introduces an additional convolution integral into the sequence.
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Correspondingly, the recursion operator R = B2B
−1
1 leads to a hierarchy of commuting flows,

defined by Kn+1 = RKn, for n = 0, 1, 2, . . . ,

m
(n+1)
t = Kn+1[m] = −B1

δHn

δm

= −B2
δHn−1

δm
= B2B

−1
1 Kn[m] .(14.12)

The first three flows in the ‘positive hierarchy’ when c0, γ → 0 are

(14.13) m
(1)
t = 0 , m

(2)
t = −mx , m

(3)
t = − (m∂ + ∂m)u ,

the third being EPDiff. The next flow is too complicated to be usefully written here. However, by
Magri’s construction, all of these flows commute with the other flows in the hierarchy, so they each
conserve Hn for n = 0, 1, 2, . . . .

The recursion operator can also be continued for negative values of n. The conservation laws
generated in this way do not introduce convolutions, but care must be taken to ensure the conserved
densities are integrable. All the Hamiltonian densities in the negative hierarchy are expressible in
terms of m only and do not involve u. Thus, for instance, the second Hamiltonian in the negative
hierarchy of EPDiff is given by

(14.14) mt = B1
δH−1

δm
= B2

δH−2

δm
,

which gives

(14.15) H−2 =
1

2

∫ ∞
−∞

[
α2

4

m2
x

m5/2
− 2√

m

]
.

The flow defined by eqn (14.14) is

(14.16) mt = −(∂ − α2∂3)

(
1

2
√
m

)
.

For m = u− α2uxx, this flow is similar to the Dym equation,

(14.17) uxxt = ∂3

(
1

2
√
uxx

)
,

which is also a completely integrable soliton equation [AS06].

14.4. The CH equation is isospectral. The isospectral eigenvalue problem associated with eqn
(14.1) may be found by using the recursion relation of the bi-Hamiltonian structure, following a
standard technique due to Gelfand and Dorfman [GD79]. Let us introduce a spectral parameter λ
and multiply by λn the nth step of the recursion relation (14.12), then taking the sum yields

(14.18) B1

∞∑
n=0

λn
δHn

δm
= λB2

∞∑
n=0

λ(n−1) δHn−1

δm
,

or, by introducing the squared-eigenfunction ψ2

(14.19) ψ2(x, t;λ) :=

∞∑
n=0

λn
δHn

δm
,

one finds, formally,

(14.20) B1ψ
2(x, t;λ) = λB2ψ

2(x, t;λ) .

This is a third-order eigenvalue problem for the squared-eigenfunction ψ2, which turns out to be
equivalent to a second-order Sturm–Liouville problem for ψ.

Proposition

14.5. If ψ satisfies

(14.21) λ
(1

4
− α 2∂ 2

x

)
ψ =

(
c0

4
+
m(x, t)

2
+ γ ∂ 2

x

)
ψ ,
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then ψ2 is a solution of eqn (14.20).

Proof. This is is straightforward computation. �

Now, assuming that λ will be independent of time, we seek, in analogy with the KdV equation, an
evolution equation for ψ of the form,

(14.22) ψt = aψx + bψ ,

where a and b are functions of u and its derivatives. These functions are determined from the require-
ment that the compatibility condition ψxxt = ψtxx between eqns (14.21) and (14.22) implies eqn
(14.1). Cross-differentiation shows

(14.23) b = − 1

2
ax , and a = − (λ+ u) .

Consequently,

(14.24) ψt = − (λ+ u)ψx +
1

2
uxψ ,

is the desired evolution equation for the eigenfunction ψ.

Summary of the isospectral property of eqn (14.1).
The Gelfand–Dorfman theory [GD79] determines the isospectral problem for integrable equations via
the squared-eigenfunction approach. Its bi-Hamiltonian property implies that the nonlinear shallow-
water wave equation (14.1) arises as a compatibility condition for two linear equations. These are the
isospectral eigenvalue problem,

(14.25) λ
(1

4
− α 2∂ 2

x

)
ψ =

(
c0

4
+
m(x, t)

2
+ γ ∂ 2

x

)
ψ ,

and the evolution equation for the eigenfunction ψ,

(14.26) ψt = −(u+ λ)ψx +
1

2
ux ψ .

Compatibility of these linear equations (ψxxt = ψtxx) together with isospectrality (dλ/dt = 0) imply
the CH equation,

(14.27) mt + umx + 2mux = −c0ux + γuxxx , m = u− α2uxx .

Remark

14.6 (Implications of Isospectrality).

• The isospectral eigenvalue problem (14.25) for the nonlinear CH water-wave equation (14.27) re-
stricts to the isospectral problem for KdV (namely, the Schrödinger equation) when α 2 → 0.

• The evolution equation (14.26) for the isospectral eigenfunctions in the cases of KdV and CH are
identical.

• The isospectral eigenvalue problem and the evolution equation for its eigenfunctions are two linear
equations whose compatibility implies a nonlinear equation for the unknowns in the KdV and CH
equations.

• This formulation for the KdV equation led to the famous method of the inverse scattering trans-
form (IST) for the solution of its initial-value problem, reviewed, e.g., in [AS06].

• The CH equation also admits the IST solution approach, but for a different isospectral eigenvalue
problem that limits to the Schrödinger equation when α 2 → 0. The isospectral eigenvalue problem
(14.25) for CH arises in the study of the fundamental oscillations of a non-uniform string under
tension.
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EPDiff(H1) is the dispersionless case of CH. In the dispersionless case c0 = 0 = γ, the shallow-
water equation (14.1) becomes the 1D geodesic equation EPDiff(H1)

(14.28) mt + umx + 2mux = 0 , m = u− α2uxx .

The solitary travelling-wave solution of 1D EPDiff (14.28) in this dispersionless case is the peakon,

u(x, t) = cG(x− ct) =
c

2α
e−|x−ct|/α .

The EPDiff equation (12.1) may also be written as a conservation law for momentum,

(14.29) ∂tm = −∂x
(
um+

1

2
u2 − α2

2
u2
x

)
.

Its isospectral problem forms the basis for completely integrating the EPDiff equation as a Hamiltonian
system and, thus, for finding its soliton solutions. Remarkably, the isospectral problem (14.25) in the
dispersionless case c0 = 0 = Γ has a purely discrete spectrum on the real line and the N -soliton
solutions for this equation may be expressed as a peakon wave train,

(14.30) u(x, t) =
N∑
i=1

pi(t)e
−|x−qi(t)|/α .

As before, pi(t) and qi(t) satisfy the finite-dimensional geodesic motion equations obtained as Hamil-
ton’s canonical equations

(14.31) q̇i =
∂HN

∂pi
and ṗi = − ∂HN

∂qi
,

where the Hamiltonian is given by,

(14.32) HN =
1

2

N∑
i,j=1

pi pj e−|qi−qj |/α .

Thus, we have proved the following.

Theorem

14.7. CH peakons are an integrable subcase of EPDiff pulsons in one dimension for the
choice of the H1 norm.

Remark

14.8. The discrete process of peakon creation via the steepening lemma 12.2 is consistent with the
discreteness of the isospectrum for the eigenvalue problem (14.25) in the dispersionless case, when
c0 = 0 = γ.

These discrete eigenvalues correspond in turn to the asymptotic speeds of the peakons. The dis-
creteness of the isospectrum means that only peakons will emerge in the initial-value problem for
EPDiff(H1) in 1D.

Constants of motion for integrable N-peakon dynamics. One may verify the integrability of
the N -peakon dynamics by substituting the N -peakon solution (14.30) (which produces the sum of
delta functions (12.6) for the momentum m) into the isospectral problem (14.25). This substitution
reduces (14.25) to an N ×N matrix eigenvalue problem.

In fact, the canonical equations (14.31) for the peakon Hamiltonian (14.32) may be written directly
in Lax matrix form,

(14.33)
dL

dt
= [L,A] ⇐⇒ L(t) = U(t)L(0)U †(t) ,

with A = U̇U †(t) and UU † = Id. Explicitly, L and A are N ×N matrices with entries

(14.34) Ljk =
√
pjpk φ(qi − qj) , Ajk = −2

√
pjpk φ

′(qi − qj) .
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Here, φ′(x) denotes derivative with respect to the argument of the function φ, given by φ(x) =

e−|x|/2α = 2αG(x/2). The Lax matrix L in eqn (14.33) evolves by time-dependent unitary trans-
formations, which leave its spectrum invariant. Isospectrality then implies that the traces trLn,
n = 1, 2, . . . , N of the powers of the matrix L (or, equivalently, its N eigenvalues) yield N constants
of the motion. These turn out to be functionally independent, non-trivial and in involution under
the canonical Poisson bracket. Hence, the canonically Hamiltonian N -peakon dynamics (14.31) is
completely integrable in the finite-dimensional (Liouville) sense.

Exercise. Verify that the compatibility condition (equality of cross derivatives ψxxt =
ψtxx) obtained from the eigenvalue equation (14.25) and the evolution equation (14.26)
do indeed yield the CH shallow-water wave equation (14.1) when the eigenvalue λ is
constant. F

Exercise. Show that the peakon Hamiltonian HN in (14.32) may be expressed as a
function of the invariants of the matrix L, as

(14.35) HN = −trL2 + 2(trL)2 .

Show that evenness of HN implies

1. The N coordinates qi, i = 1, 2, . . . , N keep their initial ordering.

2. The N conjugate momenta pi, i = 1, 2, . . . , N keep their initial signs.

This means that no difficulties arise, either due to the non-analyticity of φ(x), or the
sign in the square roots in the Lax matrices L and A. F

Hunter–Saxton equation. Retrace the progress of this chapter for the EPDiff
equation

(14.36) mt + umx + 2mux = 0 , with m = −uxx .
This integrable Hamiltonian partial differential equation arises in the theory of liquid
crystals. Its peakon solutions are the compactly supported triangles in Figure 7 and
Figure 8. It may also be regarded as the α → ∞ limit of the CH equation. For more
results and discussion of this equation, see [HZ94]. F
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