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CONTINUOUS AND DISCRETE MECHANICS FOR
THE ATTITUDE DYNAMICS OF A RIGID BODY ON

SO(3)

LEONARDO COLOMBO AND FERNANDO JIMÉNEZ

Abstract. This review is devoted to the obtaining of the continu-
ous and discrete Euler-Lagrange equations for the attitude dynam-
ics of a rigid body in SO(3). On that purpose, we introduce basics
about Lagrangian mechanics, Hamilton’s principle, Lie groups, Lie
algebras, discrete Mechanics, geometric integration, Variational In-
tegratos and some of its geometric properties. We present, quite ex-
haustively, the development of both continuous and discrete Euler-
Lagrange equations for Lie group systems and, as particular cases,
that ones concerning the rigid body and SO(3).
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1. Introduction

In this review we try to present a quite exhaustive approximation to
how to develop a Variational Integrator for a Lagrangian system defined
on a Lie group. Furthermore, we will focus in the case of the attitude
dynamics of a rigid body, that is, a system whose configuration space is
the special orthogonal Lie group SO(3). Besides to the discrete setting,
we describe also the continuous one, specifying the procedure to obtain
the Euler-Lagrange equations from a Hamilton’s principle.

Some of the important topics that come out naturally when we
consider a variational approach to discrete mechanics are symplectic-
energy-momentum methods, error analysis, constraints, etc.

In the last few years this area has grown to be very large and active
area of research, with many points of view and many topics. As in
standard continuous mechanics, some things are easier from a Hamil-
tonian perspective. We will focus nevertheless in the Lagrangian point
of view as long as the course which these notes are based on did.

Geometric numerical integration deals with numerical integration
methods that preserve geometric properties of the flow of a differen-
tial equation, such as invariants, symplecticity and the structure of a
configuration manifold ([4], [5], [12], [17]).

Numerical methods that conserve energy, momentum or symplectic-
ity of mechanical systems have been developed ([9], [10], [19], [21]). But
the conservation property is often enforced by nonlinear constraints or
by a projection onto the manifold defined by the constant conserved
quantity.

For instance, there have been many works on symplectic integration,
largely done from other points of view than the variational one. For
an overview of symplectic integration, see [19] and [20].

Alternatively, a discrete-time mechanical system has been developed
according to Hamilton’s principle by [18] and [22]. The variational view
of discrete-time mechanics is further developed in [6], [7], [24] and an in-
trinsic form of discrete-time variational principle is established in [16].
The resulting geometric numerical integrators, referred to as Varia-
tional Integrators, have desirable properties: they are symplectic,
momentum preserving and they exhibit excellent energy conservation
property. A step ahead, an interesting extension of these ideas to more
involved geometries, such as that ones related to groupoids and alge-
broids, are presented in [23] and [13].
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For differential equations that evolve on a Lie group, a group ele-
ment can be updated by the corresponding group action so that the
group structure is preserved naturally. This is referred as a Lie group
method (see [4] and [5]). For mechanical methods evolving on a Lie
group, a discrete time Euler-Poincaré equation has been introduced
for a left-invariant Lagrangian system in [15], with application to the
free attitude dynamics of a rigid body. A similar work is presented for
the attitude dynamics of an axially symmetric rigid body acting under
gravitational potential in [3].

The main idea beneath the discrete Mechanics and the obtaining a
Variational Integrator is to replace the tangent space of a given mani-
fold with two copies of that manifold. Namely, consider a mechanical
system with configuration manifold Q. The velocity phase space is
then TQ and the Lagrangian map L : TQ → R. As just mentioned,
in discrete Mechanics the starting point is to replace TQ with Q × Q
and we regard, intuitively, two nearby points as being the discrete
analogue of a velocity vector. This defines the discrete Lagrangian
Ld : Q × Q → R as an approximation of the continuous action in-

tegral S =
∫ T

0
Ldt. Considering the discrete action sum as the

sum of the discrete Lagrangian along N points (we consider a time
grid of N + 1 points and time spacing h, such that tk = hk), and
applying the Hamilton’s principle to this action sum we finally obtain
the discrete Euler-Lagrange equations. Under some regularity hy-
potheses, these equations provide a discrete flow ΥLd

: Q×Q→ Q×Q
which has interesting symplectic-momentum conservation properties.

This technique is applicable to systems defined on Lie groups (actu-
ally a Lie group G can be considered as a differentiable manifold). If we
also consider an updating choice for our integrator that preserves the
group operation and preserves the structure of the configuration space
we are dealing with Lie Group Variational Integrators. The main
motivation for the development of integrators defined in a Lie group
is the existence of several systems that evolve in that groups: planes,
satellites, multibody systems, etc. In that sense, distinguised goups are
Rn, SO(3), SE(3), Sn, etc. Besides, there exist several features that
distinguish the Lie Group Variational Integrators with respect to the
usual symplectic integrators or Lie group methods. They are summa-
rized in the following table:

As shown, Lie Group Variational Integrators have both geometric
properties: symplecticity and group structure preservation. Further-
more, there are some computational reasons that make Lie Group Vari-
ational Integrators interesting, such as long time behavoir, accuracy, ef-
ficiency and computation time. For instance, a Lie Group Variational
Integrator requires 16 less CPU time than the Lie Group Integrator
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Methods Symplecticity Group Structure

Explicit Runge-Kutta X X

Symplectic Runge-Kutta © X

Lie Group Method X ©

Lie Group Variational Integrator © ©

and 98 less CPU time than the Symplectic Runge Kutta for similar
total energy error.

The review is strutured as follows. In Section 2 we present some
basics about Lagrangian mechanics, Hamilton’s principle, Lie groups
and Lie algebras in order to develop the Euler-Lagrange equations for
a Lagrangian problem defined on a general Lie group. In Section 3 we
introduce discrete Mechanics, Variational Integrators, its relation with
the continuous Lagrangian flow and its geometric properties. We de-
velop the discrete Euler-Lagrange equations for a Lagrangian problem
defined on a general Lie group. In Section 4 de obtain the continuous
Euler-Lagrange equations for the attitude dynamics of the rigid body
on SO(3) according to the Hamilton’s principle. As a final and dis-
crete conter part, in Section 5 we obtain the discrete Euler-Lagrange
equations for the rigid body problem in SO(3).

2. Continuous Euler-Lagrange equations for Lie groups

In this section we present some basic definitions about Lagrangian
Mechanics and the Hamilton’s principle. Besides, we show some basics
regarding Lie groups and Lie algebras in order to develop the Euler-
Lagrange equations for Lagrangian problems defined on Lie groups. Fi-
nally, we detail some important geometric properties of the Lagrangian
flow.

2.1. Basic definitions. Consider a configuration manifold Q, with
state space given by the tangent bundle TQ, and Lagrangian L : TQ→
R.

Given an interval [0, T ], define the path space to be

C(Q) = C([0, T ], Q) = {q : [0, T ]→ Q | q is a C2 − curve}
and the action map A : C(Q)→ R to be

A(q) =

∫ T

0

L(q(t), q̇(t))dt.
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It can be proved that C(Q) is a smooth manifold [1] and A as smooth
as L. The tangent space TqC(Q) to C(Q) at the point q is the set of
C2−maps vq : [0, T ]→ TQ such that πQ ◦ vq = q, where πQ : TQ→ Q
is the canonical projection.

We define the second-order submanifold of T (TQ) to be

T (2)Q ≡ {w ∈ T (TQ) | TπQ(w) = πTQ(w)} ⊂ T (TQ),

where πTQ : T (TQ) → TQ and πQ : TQ → Q are the canonical

projections. T (2)Q is the set of derivatives
d2q

dt2
(0) of curves q : R→ Q

which are elements of the form (q, q̇), (q̇, q̈).

2.2. Hamilton’s principle and Euler-Lagrange equations. The
Lagrangian formulation of the mechanics is based on the Newton’s law.
One choose a configuration space Q, with coordinates qi, i = 1, . . . , n;
that describes the configuration of the system under study. Then one
introduce the Lagrangian L(qi, q̇i), which is shorthand notation for
L(q1, . . . , qn, q̇1, . . . , q̇n). Usually, L is kinetic minus potential energy
of the system and one takes q̇i = d

dt
qi to be the system velocity.

The Hamilton’s principle states

(1) δ

∫ T

0

L(qi, q̇i)dt = 0,

where, we choose curves qi(t) joining two fixed points in Q over a fixed
interval [a, b].

Hamilton’s principle states that this function has a critical points at
a solution within the space of curves. If we let δqi be a variation, that
is, the derivative of a family of curves with respect to a parameter,
then (1) is equivalent to

n∑
i=1

∫ b

a

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)
dt = 0,

for all variations δqi, where δq̇i = d
dt
δqi.

Using this, integrating by parts, employing the boundary conditions
δqi = 0 at t = a and b and scince δqi is arbitrary we can obtain the
Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n.

2.3. Preliminaries on Lie groups. First, we give the basic defini-
tions and properties of Lie groups. A Lie group is a differentiable
manifold that has a group structure such that the group operation is
smooth. A Lie algebra is the tangent space of the Lie group G at the
identity of the group, e ∈ G, with the bracket [·, ·] : g× g → g that is
bilinear, skew symmetric and satisfies the Jacobi identity. For g, h ∈ G,
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the left-translation map is defined as Lh : G→ G, by Lhg = hg. Simi-
larly, the right-translation Rh : G → G is defined as Rhg = gh. Given
ξ ∈ g define a vector field Xξ : G→ TG such that Xξ(g) = TeLg ·ξ, and
let the corresponding unique integral curve passing through the iden-
tity e at t = 0 be denoted by γξ(t). The exponential map exp : g→ G is
defined by exp ξ = γξ(1). The application exp is a local diffeomorphism
from a neighborhood of zero in g onto a neighborhood of e ∈ G.

Define the inner automorphism Ig : G → G as Ig(h) = ghg−1. The
adjoint operator Adg : g→ g is the differential of Ig(h) with respect to
h at h = e along the direction η ∈ g, that is Adgη = TeIg · h. The ad
operator adξ : g→ g is obtained by differentiating Adgη with respect to
g at e in the direction ξ, that is adξη = Te(Adgη) · η. This corresponds
to Lie bracket (i,e; adξη = [ξ, η]).

We define the coadjoint operator Ad∗ : G× g∗ → g∗ from the paring
between vectors and covectors by 〈Ad∗gα, ξ〉 = 〈α,Adgξ〉 for α ∈ g∗. The
co-ad operator ad∗ : g× g∗ → g∗ is defined by 〈ad∗ηα, η〉 = 〈α, adηξ〉 for
α ∈ g∗.

2.4. The Euler-Lagrange equations on Lie Groups. Consider a
mechanical system evolving on a Lie group G. We derive the corre-
sponding Euler-Lagrange equations from a variational principle.

The configuration space is a Lie group G. We trivialize (by a left
trivialization) the tangent space TG as G×g. A tangent vector (g, ġ) ∈
TgG is expressed as

ġ = TeLg · ξ = gξ.

We recall that the left-translation can be use to trivialize the tangent
bundle TG and the cotangent bundle as follows

TG → G× g , (g, ġ) 7−→ (g, g−1ġ) = (g, TgLg−1 ġ) = (g, ξ),

T ∗G → G× g∗, (g, αg) 7−→ (g, T ∗e Lg(αg)) = (g, α).

In the same way, we have the following identifications: TTG ≡ G×
3g, T ∗TG = G×g×2g∗, TT ∗G = G×g∗×g×g∗ and T ∗T ∗G = G×3g∗.

In the sequel, we assume that the Lagrangian of the mechanical
system is given by L(g, ξ) : G× g→ R.

Define the action map as

A =

∫ tf

t0

L(g, ξ)dt, t0, tf ∈ [0, T ] ⊂ R.

As before, Hamilton’s principle states that the variation of the action
integral is equal to zero,

δA = δ

∫ tf

t0

L(g, ξ)dt = 0.

Now, let g(t) be a differential curve in G defined for t ∈ [t0, tf ]. The
variation is a differentiable mapping gε(t) : (−c, c)× [t0, tf ]→ 0 for c >
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0 such that g0(t) = g(t),∀t ∈ [t0, tf ] and gε(t0) = g(t0), gε(tf ) = g(tf )
∀ε ∈ (−c, c). We express the variation using the exponential map (see
[8], [14] for other approaches),

gε(t) = g exp εη(t),

for any arbitrary curve η(t) ∈ g. These variations are well defined for
some constant c because the exponential map is a local diffeomorphism
between g and G, and it satisfies the properties of the fixed points
η(t0) = η(tf ) = 0. Since this is obtained by a group operation, it is also
guaranteed that the variation lies on G for any η(t).

The infinitesimal variation of g is given by,

(2) δg(t) =
d

dt

∣∣∣
ε=0
gε(t) = TeLg(t)

d

dt

∣∣∣
ε=0

exp εη(t) = g(t)η(t).

for each t ∈ [t0, ff ], the infinitesimal variation δg(t) lies in the tan-
gent space Tg(t)G. Using this expression and ġ = gξ, the infinitesimal
variation of ξ(t) is obtained as follows (see [2], [11] for example).

(3) δξ(t) = η̇ + adξ(t)η(t).

The equations (2) and (3) are infinitesimal variations of (g(t), ξ(t)) :
[t0, tf ]→ G× g, respectively.

The variation of the Lagrangian is written as

δL(g, ξ) =
∂L

∂g
δg +

∂L

∂ξ
δξ,

where ∂L
∂g
∈ T ∗G denotes the derivative of L with respect to g, given

by

d

dε

∣∣∣
ε=0
L(gε, ξ) =

∂L

∂g
δg,

and ∂L
∂ξ

(g, ξ) ∈ g∗ is defined similarly.

Therefore,

δL(g, ξ) =

〈
∂L

∂g
(g, ξ), δg

〉
+

〈
∂L

∂ξ
(g, ξ), δξ

〉
=

〈
∂L

∂g
(g, ξ), (TeLg ◦ TgLg−1)δg

〉
+

〈
∂L

∂ξ
(g, ξ), δξ

〉
,
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because T (Lg ◦ Lg−1) = TLg ◦ TLg−1 is equal to the identity on TG.
Substituting (2) and (3) we have that

δL(g, ξ) =

〈
∂L

∂g
(g, ξ), TeLg · η

〉
+

〈
∂L

∂ξ
(g, ξ), η̇ + adξη

〉
=

〈
T ∗e Lg ·

∂L

∂g
(g, ξ) + ad∗ξ ·

∂L

∂ξ
(g, ξ), η

〉
+

〈
∂L

∂ξ
(g, ξ), η̇

〉
.

(4)

Therefore, the variation of the action integral is given by

δA =

∫ tf

t0

δL(g, ξ)dt.

Substituting (4) and using integration by parts, the variation of the
action integral is given by

δA =

∫ tf

t0

(〈
T ∗e Lg ·

∂L

∂g
(g, ξ) + ad∗ξ ·

∂L

∂ξ
(g, ξ), η

〉
+

〈
∂L

∂ξ
(g, ξ), η̇

〉)
dt

=

〈
∂L

∂ξ
(g, ξ), η

〉 ∣∣∣tf
t0
−
∫ tf

t0

〈
d

dt

∂L

∂ξ
(g, ξ), η

〉
dt

−
∫ tf

t0

〈
T ∗e Lg ·

∂L

∂g
(g, ξ) + ad∗ξ ·

∂L

∂ξ
(g, ξ), η

〉
dt.

Since η(t) = 0 at t = t0 and t = tf , the first term of the above equation
vanishes thus, we obtain

δA =

∫ tf

t0

(〈
T ∗e Lg ·

∂L

∂g
(g, ξ) + ad∗ξ ·

∂L

∂ξ
(g, ξ), η

〉
−
〈
d

dt

∂L

∂ξ
(g, ξ), η

〉)
dt.

(5)

From Hamilton’s principle δA = 0 ∀η ∈ g. Then, the corresponding
Euler-Lagrange equations for L : G× g→ R are given by

0 =
d

dt

∂L

∂ξ
(g, ξ)− ad∗ξ

∂L

∂ξ
(g, ξ)− (T ∗e Lg) ·

∂L

∂g
(g, ξ),(6)

ġ = gξ.(7)

If the Lagrangian is G−invariant the resulting equation is equivalent
to the Euler-Poincaré eqs. and (7) is the reconstruction equation (see
[14]). Therefore, both (6) and (7) can be considered as a generalization
of the Euler-Poincaré equations.
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Now, if we consider the identification of the tangent bundle TG with
G×g by a right-trivialization, the corresponding Euler-Lagrange equa-
tions for L : G× g→ R are given by

0 =
d

dt

∂L

∂ξ
(g, ξ) + ad∗ξ

∂L

∂ξ
(g, ξ)− (T ∗eRg) ·

∂L

∂g
(g, ξ),(8)

ġ = ξg.(9)

2.5. Legendre Transformation. As before, we identify the tangent
space TG with G × g using a left-trivialization. In the same way, we
can identify the cotangent bundle T ∗G with G × g∗. For the given
Lagrangian, the Legendre transformation FL : G × g → G × g∗ is
defined as

FL(g, ξ) = (g, µ),

where µ ∈ g∗ is given by µ = ∂L
∂ξ

(g, ξ).

If FL is a global diffeomorphism, the Lagrangian is called hyper-
regular, which induces a Hamiltonian system on G × g∗, that is, the
Legendre transformation yields Hamilton’s equation that are equivalent
to Euler-Lagrange equations.

0 =
d

dt
µ− ad∗ξµ− (T ∗e Lg) ·

∂L

∂g
(g, ξ),

ġ = gξ.

2.6. Lagrangian Flow and Momentum preservation. In this sub-
section we show two properties, the simplecticity and momentum preser-
vation of the Lagrangian flow.

i) Simplecticity
Let ΘL be the Lagrangian one-form

ΘL(g, ξ) · (δg, δξ) = 〈∂L
∂ξ

(g, ξ), g−1δg〉.

The Lagrangian symplectic 2-form is given by ΩL = −dΘL

and the flow map FL : (G× g)× [0, tf − t0]→ G× g as the flow
of the Euler-Lagrange equations for L : G× g→ R

Proposition 2.1. The lagrangian flow preserves the Lagrangian
symplectic 2-form,

(FTL)∗ΩL = ΩL

for T = tf − t0
ii) Noether’s Theorem

Suppose that a Lie group H with Lie algebra h acts on G. We
consider the left action Φ : H × G → G such that Φ(e, g) = g
and Φ(h,Φ(h′, g)) = Φ(hh′, g) for any g ∈ G and h, h′ ∈ H. The
left trivialization is given by φL : TG → G × g as φL(g, ġ) =
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(g, g−1ġ). The infinitesimal generators ζG : G → G × g and
ζG×g : G × g → T (G × g) ' G × g for the action where ζ ∈ h,
are given by

ζG(g) = φL ◦
d

dt

∣∣∣
ε=0

ΦexpH εζ(g),

ζG×g(g, ξ) =
d

dt

∣∣∣
ε=0
φL ◦ TgΦexpH εζ(g) · (φ−1

L (g, ξ)).

We define the momentum map JL : G× g→ h∗ as

J(g, ξ) · ζ = ΘL · ζG×g(g, ξ).

Proposition 2.2. Suppose that the Lagrangian is infinitesimal
invariant under the lifted action for any ζ ∈ h. Then, the La-
grangian flow preserves the momentum map

JL(FTL(g, ξ)) = JL(g, ξ).

3. Discrete Euler-Lagrange equations for Lie groups

In this section we introduce Discrete Mechanics and we define what
a Variational Integrator is, which is its relation with the continuous
Lagrangian flow and, besides, we enumerate some important geometric
properties of the discrete flow. Moreover, we develop the discrete Euler-
Lagrange equations for a Lagrangian problem defined in a Lie group
and present its main geometric properties.

3.1. Discrete mechanics and Variational integrators. In the fol-
lowing and along this section,we will summarize the main features
of variational integrators [16]. A discrete Lagrangian is a map
Ld : Q × Q → R, which may be considered as an approximation of
the integral action in a single time step h defined by a continuous La-
grangian L : TQ→ R:

Ld(q0, q1) ≈
∫ h

0

L(q(t), q̇(t)) dt

where q(t) is a solution of the Euler-Lagrange equations for L, where
q(0) = q0, q(h) = q1 and h > 0 is small enough.

Define the action sum Ad : QN+1 → R, corresponding to the La-
grangian Ld by

Ad =
N∑
k=1

Ld(qk−1, qk),

where qk ∈ Q for 0 ≤ k ≤ N and N is the number of steps. The
discrete variational principle states that the solutions of the discrete
system determined by Ld must extremize the action sum given fixed
endpoints q0 and qN . By extremizing Ad over qk, 1 ≤ k ≤ N − 1, we
obtain the system of difference equations

(10) D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0.
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or, in coordinates,

∂Ld
∂xi

(qk, qk+1) +
∂Ld
∂yi

(qk−1, qk) = 0,

where 1 ≤ i ≤ n, 1 ≤ k ≤ N − 1 and x, y are respectively the n-first
and n-second variables of the function L.

These equations are usually called the discrete Euler–Lagrange
equations. Under some regularity hypotheses (the matrix (D12Ld(qk, qk+1))
is regular), it is possible to define a (local) discrete flow ΥLd

: Q×Q→
Q×Q, by ΥLd

(qk−1, qk) = (qk, qk+1) from. Define the discrete Legendre
transformations associated to Ld as

F−Ld : Q×Q → T ∗Q

(qk, qk+1) 7−→ (qk,−D1Ld(qk, qk+1)),

F+Ld : Q×Q → T ∗Q

(qk, qk+1) 7−→ (qk+1, D2Ld(qk, qk+1)).

By means of these discrete Legendre transformation we can define the
discrete Hamilton’s equations as

pk = F−Ld(qk, qk+1) = −D1Ld(qk, qk+1),

pk+1 = F+Ld(qk, qk+1) = D2Ld(qk, qk+1),

which implicitly define a discrete flow ϕLd
: T ∗Q→ T ∗Q, by (qk, pk) 7→

(qk+1, pk+1).
Let define the discrete Poincaré–Cartan 2-form by

ωd = (F+Ld)
∗ωQ = (F−Ld)

∗ωQ, where ωQ is the canonical symplectic
form on T ∗Q. The discrete algorithm determined by ΥLd

preserves
the symplectic form ωd, i.e., Υ∗Ld

ωd = ωd. Moreover, if the discrete
Lagrangian is invariant under the diagonal action of a Lie group G,
then the discrete momentum map Jd : Q×Q→ g∗ defined by

〈Jd(qk, qk+1), ξ〉 = 〈D2Ld(qk, qk+1), ξQ(qk+1)〉

is preserved by the discrete flow. Therefore, these integrators are
symplectic-momentum preserving. Here, ξQ denotes the fundamental
vector field determined by ξ ∈ g, where g is the Lie algebra of G. (See
[16] for more details.)

Example 3.1. Let consider the usual mechanical Lagrangian L(q, q̇) =
1
2
q̇T M q̇ − V (q) and define the discrete Lagrangian by the usual Euler

A discretization [4]

Ld(qk, qk+1) = hL

(
qk+ 1

2
,
qk+1 − qk

h

)
,

where we have used the notation qk+ 1
2

:= qk+1+qk
2

. The resulting vari-

ational integrator, which defines the flow ΥLd
(qk−1, qk) = (qk, qk+1), is
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the following

M

(
qk+1 − 2qk + qk−1

h2

)
= −1

2

(
∇V (qk− 1

2
) +∇V (qk+ 1

2
)
)
.

This is clearly a discrete analog of the Newton’s second law Mq̈ =
−∇V (q).

3.2. Discrete-time Euler-Lagrange equations. We are going to
develop discrete-time Euler-Lagrange equations for a mechanical sys-
tem evolving on an abstract Lie group G. Besides that one given in
(2.3), a simple definition of Lie Group is the following: a Lie group is a
group G which is a differentiable manifold, and for which the internal
product G×G→ G is a differentiable mapping. Every Lie group G has
associated a Lie algebra g, which can be defined as the tangent vector
space of G at the identity element e ∈ G, that is g = TeG. Of special
interest in mathematics, physics and engeneering are the matrix Lie
groups. We summarize some of them in TABLE 1 below.

Table 1. Matrix Lie Groups and Lie Algebras

G g

GL(n) =
{
Y
∣∣∣ detY 6= 0

}
gl(n) =

{
A
∣∣∣ arbitrary matrix

}

SL(n) =
{
Y
∣∣∣ detY = 1

}
sl(n) =

{
A
∣∣∣ trA = 0

}

O(n) =
{
Y
∣∣∣Y TY = I

}
o(n) =

{
A
∣∣∣ A+ AT = 0

}

SO(n) =
{
Y ∈ O(n)

∣∣∣ detY = 1
}

so(n) =
{
A
∣∣∣ A+ AT = 0

}

Sp(n) =
{
Y
∣∣∣Y TJY = J

}
sp(n) =

{
A
∣∣∣ JA+ JAT = 0

}

Nevertheless, we recall that the following development is based on
an abstract group G. The Lie group method is explicitly adopted in
the context of a variational integrator to construct a unified geomet-
ric integrator (Lie group variational integrator). As variational
integrator, it preserves the geometric features of dynamics, such as
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symplecticity and any momentum map, as well as the geometry of
the configuration manifold (G) by automatically remaining on the Lie
group.

Consider a mechanical system evolving on G. The continuous prob-
lem is defined in the tangent bundle of the group, which, taking a left
trivialization, is isomorphic to a copy of the group times a copy of its
algebra. In other words L : G × g → R. The procedure is pure vari-
ational integration-kind: the discrete time trajectory is derived such
it minimizes the summation of the discrete Lagrangian, called, as we
have seen in the previous subsection, the action sum. The discrete
trajectory approximates the continuous one g(t) ∈ G in the following

way: {gk}Nk=0 ∈ G, where gk ' g(tk). Time is discretized in N steps
of h size like tk = hk, such that Nh = T . In this derivation, the
discrete Legendre transformation provides an alternative description
of mechanical systems referred to as discrete Hamiltonian mechanics.
The point is to discretize Hamilton’s principle, where the variations of
the group elements are expressed in terms of the Lie algebra g using
for instance the exponential map, and updating group elements using
group operations in order to remain in the group itself.

Consider the discrete space as G×G. Define fk ∈ G such that

(11) gk+1 = gkfk.

This is the kinematics or reconstruction equation, which provides gk+1

in terms of gk and fk. For sake of simplicity we will denote de group
product · : G × G → G, (g, h) 7→ g · h, just by gh. As mentioned
before, this guarantees that the discrete flow lies on G without extra
constrains or projections [5]. We choose Lg : G× G → R such that it
approximates the action integral along the exact solution of the Euler-
Lagrange equations over a single step (exact Lagrangian)

LEd (gk, fk) =

∫ h

0

L(g̃(t), g̃−1(t)˙̃g(t)) dt,

where g̃ : [0, h]→ G satisfies the continuous Euler-Lagrange equations
(see the continuous setting) over [0, h] with boundary conditions g̃(0) =
gk and g̃(h) = gkfk. The accuracy of the resulting variational integrator
is equal to the accuracy of the discrete Lagrangian (see [16]).

Define the action sum as

(12) Ad =
N−1∑
k=0

Ld(gk, fk).

Discrete Hamilton’s principle states that this action sum does not vary
to the first order for all possible variations of a curve in G. In other
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words:

δAd

N−1∑
k=0

δLd(gk, fk) = 0.

The variations of the sequence {gk}Nk=0 is expressed, similarly to the
continuous case, as

gεk = gkexp(εηk),

where exp is the usual exponential map, which is a diffeomorphism
between g and G. Here {ηk}Nk=0 is a sequence in g satisfying η0 = ηN =
0. The infinitesimal variation is given by

(13) δgk = gkηk,

where gkηk is a shorthand notation for Telgkηk.
Taking into account equation (11), the infinitesimal variation of fk

is given by

(14) δfk =
d

dε

∣∣∣
ε=0

(gεk)
−1 gεk+1 = Telfk

(
−Adf−1

k
ηk + ηk+1

)
.

Both δgk and δfk belong to g. Following our program, now is necessary
to calculate the variation of the discrete Lagrangian, which is given by

δLd(gk, fk) = 〈DgkLd(gk, fk) , δgk〉+ 〈DfkLd(gk, fk) , δfk〉.

Employing properties of the cotangent bundle and the expressions (13)
and (14) we finally arrive to

δLd(gk, fk) = 〈T ∗e lgkDgkLd(gk, fk) , ηk〉
− 〈Ad∗

f−1
k

(T ∗e lfkDfkLd(gk, fk)) , ηk〉

+ 〈T ∗e lfkDfkLd(gk, fk) , ηk+1〉.
(15)

Introducing (15) in the summation and rearranging the sum index, the
variation of the action sum can be written as

δAd = 〈T ∗e lfN−1
DfN−1

Ld(gN−1, fN−1) , ηN−1〉

+ 〈T ∗e lg0Dg0Ld(g0, f0)− Ad∗
f−1
0

(T ∗e lf0Df0Ld(g0, f0)) , η0〉

+
N−1∑
k=1

〈T ∗e lgkDgkLd(gk, fk)− Ad∗
f−1
k

(T ∗e lfkDfkLd(gk, fk)) , ηk〉

+
N−1∑
k=1

〈T ∗e lfk−1
Dfk−1

Ld(gk−1, fk−1) , ηk〉.

Since η0 = ηN = 0, the two first terms vanish. From the discrete
Hamilton’s principle δAd = 0 for all possible variations, which yields
the discrete Euler-Lagrange equations on G:
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T ∗e lfk−1
Dfk−1

Ld(gk−1, fk−1) + T ∗e lgkDgkLd(gk, fk)

− Ad∗
f−1
k

(T ∗e lfkDfkLd(gk, fk)) = 0,

gk+1 = gkfk.

(16)

This set of equations (where we have added the reconstruction equation
(11)), provides the discrete flow FLd

(gk−1, fk−1) = (gk, fk).

3.2.1. Discrete Legendre transformation. : Sometimes is more useful
to express the discrete flow map in the cotangent bundle using the
discrete Legendre transformation.

Define the discrete Legendre transforms F+Ld,F
−Ld : G × G →

G× g∗ by:

F+Ld(gk, fk) = (gkfk, µk+1),

F−Ld(gk, fk) = (gk, µk),

where µk, µk+1 ∈ g∗ are given by

µk = −T ∗e lgkDgkLd(gk, fk) + Ad∗
f−1
k

(T ∗e lfkDfkLd(gk, fk)) ,

µk+1 = T ∗e lfkDfkLd(gk, fk).

These transformations are well defined since, as is clear, the discrete
Euler-Lagrange (16) equations can be expressed by means of the mo-
mentum matching equation

F+Ld(gk−1, fk−1) = F−Ld(gk, fk).

Combining both Legendre transforms we obtain the discrete Hamilton-
ian flow F̃Ld

: G× g∗ → G× g∗, F̃Ld
(gk, µk) = (gk+1, µk+1)

F̃Ld
= F+Ld ◦

(
F−Ld

)−1
.

In consequence, the discrete Hamiltonian flow map can be alternatively
written as

F̃Ld
= F±Ld ◦ FLd

◦
(
F±Ld

)−1
.

The discrete Hamiltonian equations can be explicitly written as follows:

Ad∗
f−1
k

(T ∗e lfkDfkLd(gk, fk)) = µk + T ∗e lgkDgkLd(gk, fk),

gk+1 = gkfk,

µk+1 = Ad∗fk (µk + T ∗e lgkDgkLd(gk, fk)) .
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3.2.2. Conservation properties of the discrete Lagrangian flow. : The
following developments can be considered as a special form of general
properties of discrete Lagrangian flows, applied to a Lie group config-
uration manifold (see [16] for deeper understanding):

i) Symplecticity: Let Θ+
Ld
, Θ−Ld

be the discrete Lagrangian one-
forms on G×G given by

〈Θ+
Ld

(gk, fk), (δgk, δfk)〉 = 〈T ∗
e lfkDfkLd(k) , f

−1
k δfk + Ad−1

fk
g−1
k δgk〉,

〈Θ−
Ld

(gk, fk), (δgk, δfk)〉 = −〈T ∗
e lgkDgkLd(k) −Ad∗

f−1
k

(
T ∗
e lfkDfkLd(k)

)
, g−1

k δgk〉.

From (14) we have that

ηk+1 = f−1
k δfk + Adf−1

k
g−1
k δgk.

Substituting in the definition of Θ±Ld
above, and comparing with

(15) it can be shown that dLd = Θ+
Ld
− Θ−Ld

. Since d2 = 0, it

follows that dΘ+
Ld

= dΘ−Ld
, which is defined to be the discrete

Lagrangian symplectic form ΩLd
on G×G:

ΩLd
= dΘ+

Ld
= dΘ−Ld

.

Proposition 3.1. The discrete Lagrangian flow preserves the
discrete Lagrangian two-form as follows

(17)
(
FN−1
Ld

)∗
ΩLd

= ΩLd
.

Proof. Define the solution space CLd
to be the set of solutions

{gk ∈ G}Nk=0 of the equations (16). Since an element of CLd
is

uniquely determined by the initial conditions (g0, f0), we can
identify CLd

with the manifold of initial conditions on G × G.

Define the restricted action map Ãd : G×G→ R by

Ãd(g0, f0) = Ãd({gk′}Nk ),

where {gk′}Nk ∈ CLd
is the solution of the discrete Euler-Lagrange

equations with the initial conditions (g0′, g1′) = (g0, g0f0). Since
this satisfies equations (16), the variation of the action sum re-
duces to

〈dÃd , w〉 = 〈
(
FN−1
Ld

)∗
Θ+
Ld
−Θ−Ld

, w〉,

for any w = (δgk, δfk) ∈ TG × TG. Taking the exterior deriv-
ative of the previous expression and taking into account that
pullbacks and exterior derivative commute, we obtain

d2Ãd =
((
FN−1
Ld

)∗
dΘ+

Ld
− dΘ−Ld

)
.

Since d2Ãd = 0 we finally arrive to (17) q.e.d. �

ii) Discrete Noether’s Theorem: Consider the action of a Lie
group H on G, Φ : H × G → G and consider the infinitesimal
generator ζG : G → G × g for ζ ∈ H defined by ζG(g) =
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d
dε

∣∣∣
ε=0

ΦexpH(εζ)(g). Here we define the infinitesimal generator

ζG×G : G×G→ TG× TG as

ζG×G(gk, fk) =
(
TelgkζG(gk) , Telfk(−Adf−1

k
ζG(gk) + ζG(gkfk))

)
.

We define two discrete Lagrangian momentum maps J+
Ld
, J−Ld

:
G×G→ h∗:

〈J+
Ld

(gk, fk), ζ〉 = 〈Θ+
Ld
, ζG×G(gk, fk)〉,

〈J−Ld
(gk, fk), ζ〉 = 〈Θ−Ld

, ζG×G(gk, fk)〉.

Proposition 3.2. Suppose that the discrete Lagrangian is in-
variant under the lifted action over the group, i.e., 〈dLd , ζG×G〉 =
0 for any ζ ∈ h. Then, the two Lagrangian momentum maps
are the same, J+

Ld
= J−Ld

(which is denoted by JLd
: G × G →

h∗), and the discrete Lagrangian flow preserves the discrete La-
grangian momentum map:

(18) JLd

(
FN−1
Ld

(g0, f0)
)

= JLd
(g0, f0).

This is called the discrete Noether’s theorem.

Proof. Since dLd = Θ+
Ld
−Θ−Ld

, we have

〈dLd , ζG×G〉 = 〈Θ+
Ld
−Θ−Ld

, ζG×G〉 = 〈J+
Ld
− J+

Ld
, ζ〉,

which is equal to 0 for any ζ ∈ h since the discrete Lagrangian is
invariant under the lifted action over the group. Consequently
J+
Ld

= J+
Ld

.
Since the action is the summation of the discrete Lagrangian,
〈dLd , ζG×G〉 implies that 〈Ad , ζG×G〉 = 0. We can restrict it to
the solution space to obtain

〈dÃd , ζG×G〉 = 0.

Thus

〈dÃd , ζG×G〉 = 〈(FN−1
Ld

)∗Θ+
Ld
−Θ−Ld

, ζG×G〉
= 〈J+

Ld
(FN−1

Ld
(gk, fk))− J−Ld

(gk, fk) , ζ〉

for any ζ ∈ h, which yields (18) q.e.d. �

4. Continuous Euler-Lagrange equations on SO(3)

In this section we develop the continuous Euler-Lagrange equations
for the attitude dynamics of the rigid body on the special orthogonal
group SO(3) according the Hamilton’s variational principle.
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4.1. Configuration manifold: Consider a rigid body that can freely
rotate a pivot point fixed in an element frame. The pivot point may
not be located at the mass center of the rigid body, and it is assumed
that there exists a potential field that depends on the attitude. We
consider a body fixed frame whose origin is located at the pivot point.

The configuration manifold for the attitude dynamics of a rigid body
is the special orthogonal group SO(3), defined as

SO(3) = {R ∈ R3×3 | RTR = I, detR = 1}.
A rotation matrix R ∈ SO(3) is a linear transformation from a repre-
sentation of a vector in the body fixed frame into a representation of
the vector in the inertial frame.

The attitude kinematics equations are given by

(19) Ṙ = RΩ̂,

where the angular velocity represented in the body fixed frame is de-
noted by Ω ∈ R3, and the hat map ·̂ : R3 → so(3) is an isomorphism
between R3 and the set of skew-symmetric matrices, the Lie algebra
so(3), defined by

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0


for Ω = [Ω1,Ω2,Ω3] ∈ R3. The Lie bracket on so(3) corresponds to

cross product on R3, that is, [Ω̂, Ω̂′] = Ω× Ω′ for Ω,Ω′ ∈ R3.
Using these kinematics equations, the tangent bundle TSO(3) can

be identified with SO(3)× so(3) after a left trivialization.
In the following, we give some properties of the hat map.

Proposition 4.1. The hat map ·̂ : R3 → so(3) satisfies the following
properties,

• x̂y = x× y = −y × x = −ŷx,

• x̂T x̂ = (xTx)I − xxT ,

• x̂ŷx̂ = −(yTx)x̂,

• −1
2
tr(x̂ŷ) = xTy,

• x̂× y = x̂ŷ − ŷx̂ = yxT − xyT ,

• tr(x̂A) = 1
2
tr
(
x̂(A− AT )

)
,

• Âx = x̂
(

1
2
tr(A)I − A

)
+
(

1
2
tr(A)I − A

)T
x̂.

• x̂A+ AT x̂ = ((tr(A)I3×3 − A)x̂)
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for any x, y ∈ R3 and A ∈ R3×3.

The proof of this proposition is straightforward by using the defini-
tion of the hat isomorphism and some matrix properties.

4.2. The Lagrangian function: As we say before, the tangent bun-
dle of the Lie group SO(3) can be left-trivialized as SO(3) × so(3).
Then we can define the Lagrangian function L over SO(3)× so(3).

The Lagrangian L : SO(3) × so(3) → R is the difference between
the kinetic energy T : SO(3)× so(3)→ R and the attitude dependent
potential U : SO(3)→ R.

L(R,Ω) = T (R,Ω)− U(R).

Let ρ ∈ R3 be the vector form the pivot to a mass element represented
in the body fixed frame. The mass element has a velocity Ω× ρ. Thus,
the kinematic energy is given by

(20)
1

2

∫
B

‖Ω̂ρ‖2dm(ρ),

where the region of the body is denoted by B. Since Ω̂ρ = −ρ̂Ω, the
equation (20) can be written as

T (Ω) =
1

2

∫
B

‖ρ̂Ω‖2dm(ρ) =

∫
B

(ρ̂Ω)T (ρ̂Ω)dm(ρ)

=
1

2

∫
B

ΩT ρ̂T ρ̂Ωdm(ρ) =
1

2
ΩTJΩ,

where the moment of inertia matrix J ∈ R3 is defined as J =
∫
B
ρ̂T ρ̂dm.

Alternatively, using the property ‖x‖2 = xTx = tr(xxT ) for any
x ∈ R3, equation (20) can be written as

T (Ω) =
1

2

∫
B

tr
(

Ω̂ρρT Ω̂T
)
dm(ρ),(21)

=
1

2
tr
(

Ω̂JdΩ̂
T
)
,(22)

where a nonstandard moment of inertia matrix is defined as Jd =∫
B
ρρTdm.
In summary, the kinetic energy can be written in the standard form

(21) or in a non-standard form (22). In (21), the kinetic energy is
expressed as a function of the angular moment of inertia matrix, and
in (22), it is expressed as a function of the Lie algebra with the non-
standard momenta of inertia matrix. In this review we use the non-
standard form. The Lagrangian function of the attitude dynamics of
the rigid body is given by

(23) L(R,Ω) =
1

2
tr
(

Ω̂JdΩ̂
T
)
− U(R).
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Before proceeding to the next step, we are going to study the relation-
ship between the moment of inertia matrix J and the non-standard mo-
ment of inertial matrix Jd. If we express ρ in coordinates as ρ = [x, y, z],
the inertia momenta are given by

J =
∫
B

 y2 + z2 −xy −zx
−xy z2 + x2 −yz
−zxx −yz x2 + y2

 dm,

Jd =
∫
B

 x2 xy zx
xy y2 yz
zx yz z2

 dm.

Using the property ρ̂T ρ̂ = (ρTρ)I3×3 − ρρT , it can be shown that

(24) Jd =
1

2
tr(J)I3×3 − J.

Furthermore, the following equation is satisfied for any Ω ∈ R3.

(25) ĴΩ = Ω̂Jd + JdΩ̂.

4.3. The Action integral: Using the expression of the Lagrangian
function, the action integral is defined as,

A =

∫ tf

t0

L(R,Ω)dt

=

∫ tf

t0

(
1

2
tr
(

Ω̂JdΩ̂
T
)
− U(R)

)
dt.

Hamilton’s principle states that this action integral does not vary to
the first order for all possible variations of a curve in SO(3).

(26) δA = δ

∫ tf

t0

(
1

2
tr
(

Ω̂JdΩ̂
T
)
− U(R)

)
dt = 0.

4.4. Variations. Let R(t) be a differentiable curve in SO(3) defined
for t ∈ [t0, tf ]. The variation is a differentiable mapping Rε(t) : (−c, c)×
[t0, tf ]→ SO(3) for c > 0 such thatR0(t) = R(t), Rε(t0) = R(t0), Rε(tf ) =
R(tf ) for any ε ∈ (−c, c). The infinitesimal variation is given by

δR(t) =
d

dt

∣∣∣
ε=0
Rε(t) ∈ TR(t)SO(3).

The variation determines a family of neighboring curves for R(t) that
have the same end points parameterized by a single variable ε. The
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infinitesimal variation of the rotation matrix using the exponential map
as

Rε(t) = R(t) exp εη̂(t),

where η(t) is defined as a differentiable curve in R3 so that η̂ is a
differentiable curve in so(3). This is well defined since the exponential
map ia a local diffeomorphism between so(3) and SO(3). Thus for any
η(t), there exists a constant c > 0 such that this variation is defined
for any ε ∈ (−c, c). The corresponding infinitesimal variation is given
by

δR(t) =
d

dt

∣∣∣
ε=0
Rε(t) = R(t)

∞∑
i=0

d

dt

1

i!
εiη̂i
∣∣∣
ε=0

= R(t)η̂(t) ∈ TR(t)SO(3).

(27)

Since differentiation and the variation commute, we obtain

δṘ(t) =
d

dt
(δR(t)) = Ṙ(t)η̂(t) +R(t)ˆ̇η(t).

The infinitesimal variation of the angular velocity can be obtained from
the kinematic equation (19) as

δΩ̂(t) = δ(RT (t)Ṙ(t)) = δRT (t)Ṙ(t) +RT (t)δṘ(t)

= −η̂(t)Ω̂(t) + Ω̂(t)η̂(t) + ˆ̇η(t).
(28)

Since x̂ŷ − ŷx̂ = x̂× y for any x, y ∈ R3, this can be written as

(29) δΩ(t) = η̇(t) + Ω(t)× η(t).

4.5. Euler-Lagrange equation. Now, we find the infinitesimal vari-
ation of the action integral using (27) and (28) as follows,

δA =

∫ tf

t0

1

2
tr(δΩ̂JdΩ̂

T ) +
1

2
tr(Ω̂JdδΩ̂

T )− δU(R)dt

=

∫ tf

t0

(
−1

2
tr
(

(ˆ̇η + Ω̂η̂ − η̂Ω̂)JdΩ̂
)

+
1

2
tr
(

Ω̂Jd(−ˆ̇η + η̂Ω̂− Ω̂η̂)
)
− δU(R)

)
dt

=

∫ tf

t0

(
−1

2
tr
(

ˆ̇η(JdΩ̂ + ΩĴd)
)

+
1

2
tr
(
η̂Ω̂(JdΩ̂ + Ω̂Jd)− η̂(JdΩ̂ + Ω̂Jd)Ω̂

))
dt

−
∫ tf

t0

δU(R) dt,

where we use the property tr(AB) = tr(BA) for any matrices A,B ∈
Rn×n repeatedly. Substituting (25), we obtain

δA =

∫ tf

t0

(
−1

2
tr
(

ˆ̇ηĴΩ
)

+
1

2
tr
(
η̂(Ω̂ĴΩ− ĴΩΩ̂)

)
− δU(R)

)
dt

=

∫ tf

t0

(
−1

2
tr
(

ˆ̇ηĴΩ
)

+
1

2
tr
(
η̂(Ω× JΩ)̂

)
− δU(R)

)
dt.

(30)

The infinitesimal variation of the potential energy is given by
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δU(R) =
d

dε
U(Rε)

∣∣∣
ε=0

=
3∑

i,j=1

∂U

∂[R]ij

∂[R exp εη̂]ij
∂ε

∣∣∣
ε=0

=
3∑

i,j=1

∂U

∂[R]ij
[Rη̂]ij = −tr

(
η̂RT ∂U

∂R

)(31)

where [A]ij denotes the (i, j)-th element of a matrix A, and ∂U
∂R
∈ R3×3

is defined such that
(
∂U
∂R

)
ij

= ∂U(R)
∂[R]ij

. Substituting (30) and (31) and

using integration by parts, we obtain

(32) δA =

∫ tf

t0

1

2
tr

[
η̂

(
(JΩ̇ + Ω× JΩ)̂ + 2RT ∂U

∂R

)]
dt.

From Hamilton’s principle, the above equation should be zero for all
variations η̂ ∈ so(3). Given that η̂ is skew-symmetric, the expression in
the braces should be symmetric. Thus, we obtain the Euler-Lagrange
equation

(JΩ̇ + Ω× JΩ)̂ =
∂UT

∂R
R−RT ∂U

∂R
,

or equivalently,

JΩ̇ + Ω× JΩ = M

where M ∈ R3 is determined by S(M) = ∂UT

∂R
R − RT ∂U

∂R
. More explic-

itly, it can be shown that the moment due to the attitude-dependent
potential is given by

(33) M = r1 × u1 + r2 × u2 + r3 × u3,

where ri, ui ∈ R1×3 are the i-th row vectors of R and ∂U
∂R
, respectively.

M̂ =
∂UT

∂R
R−RT ∂U

∂R

=
(
uT1 uT2 uT3

) r1

r2

r3

− ( rT1 rT2 rT3
) u1

u2

u3


= (uT1 r1 − rT1 u1) + (uT2 r2 − rT2 u2) + (uT3 r3 − rT3 u3).

Since (uT r − rTu)̂ = r̂ × u, we have

M̂ = (r1 × u1 + r2 × u2 + r3 × u3)̂,

which is equivalent to (33).
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The Legendre transformation FL : (SO(3) × so(3)) → (SO(3) ×
so∗(3)) is defined as

FL(R, Ω̂) · η̂ =
d

dt

∣∣∣
ε=0
L(R, Ω̂ + εη̂)

=
d

dt

∣∣∣
ε=0

1

2
tr[(Ω̂ + εη̂)TJd(Ω̂ + εη̂)]

=
1

2
tr[ĴΩ

T
η̂] = ĴΩ · η̂

This gives the expression for the angular momenta expressed in the

body fixed frame Π̂ = FL(R, Ω̂) = ĴΩ and from Π = ∂L
∂Ω

= JΩ ∈ R3

we obtain the Hamilton’s equations

Π̇ + J−1Π× Π = M.

Example 4.1. A 3D pendulum is a rigid body supported by a friction-
less pivot acting under uniform gravitational potential. Let ρc ∈ R3

be the vector from the pivot to the mass center represented in the body
fixed frame, and let e3 = [0, 0, 1] ∈ R3 be the gravity direction in the
inertial frame. The gravitational potential energy is given by

U(R) = −mgeT3Rρc.

The derivative of the potential is

∂U

∂R
= −mge3ρ

T
c ,

therefore the potential is M = mgρc × RT e3 becouse u1 = u2 = 0, u3 =
−mge3ρ

T
c .

5. Discrete Euler-Lagrange equation on SO(3)

In this section, we are going to develop the discrete Euler-Lagrange
equations of a rigid body on the special orthogonal group SO(3). This
is also referred to a Variational Integrator as it is obtained by the
discrete Hamilton’s principle applied to Lie groups. The procedure
to derive the discrete Euler-Lagrange equations are presented in (3.1).
However, we summarize them here. We will finish the section, as a kind
of summary, with a comparative table between a SO(3) and a general
Variational Integrators.

In the continuous setting, a mechanical problem is usually defined
in the tangent bundle of a configuration manifold Q which we consider
n-dimensional (with n finite). Let L : TQ → R be the Lagrangian
function. Furthermore, we select (q, q̇) as local coordinates for TQ. The
continuous action integral is defined as the integral of the Lagrangian

function between the initial and final time points A =
∫ T

0
L(q, q̇) dt.
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Applying the Hamilton’s principle to the action integral we obtain the
Euler-Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0.

Again, if the discrete Lagrangian is regular, that is D1,2Ld is invertible,
these equations define a discrete flow on Q, that is ΥLd

: Q × Q →
Q × Q such that ΥLd

(qk−1, qk) = (qk, qk+1). Defining the Legendre
transformation FL : TQ → T ∗Q, where T ∗Q is the cotangent bundle
of the configuration space (phase space), p = FL(q, q̇) ∈ T ∗Q (which

is a local diffeomorphism if L is regular, that is, the matrix ∂2L
∂q∂q̇

is

invertible), we arrive to the Hamilton’s equations:

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
,

where H : T ∗Q→ R is the Hamiltonian function.
In the discrete setting, we substitute the tangent bundle of the con-

figuration manifold for two copies Q × Q with no loss of informa-
tion. Now, we define the discrete Lagrangian Ld : Q × Q → R as
an approximation of the action integral in a single time step, that

is Ld(qk, qk+1) '
∫ h

0
L(q, q̇) dt. Defining the discrete action sum as

Ad =
∑N−1

k=0 Ld(qk, qk+1) we can apply the discrete Hamilton’s princi-
ple in order to obtain the discrete Euler-Lagrange equations:

D1Ld(qk, qk+1) +D2Ld(qk−1, qk−1) = 0.

By means of the discrete Legendre transforms F±Ld : Q × Q → T ∗Q,
we finally arrive to the discrete Hamilton’s equations

pk = F−Ld(qk, qk+1) = −D1Ld(qk, qk+1),

pk+1 = F+Ld(qk, qk+1) = D2Ld(qk, qk+1).

We realize that both procedures are quite parallel.

We follow the discrete program to obtain the discrete Euler-Lagrange
equation for the attitude dynamics of a rigid body on SO(3). Let h > 0
be a fixed time stepsize. The label k denotes the value of a variable at
tk = hk. The integer N is defined such that tf = Nh.

5.1. Configuration Manifold. The continuous-time attitude kine-
matics equation

Ṙ = R Ω̂,

ensures that its solution evolves on SO(3), which is our Configuration
Manifold, and given that the attitude matrix belongs to SO(3), the
equation just above can be expressed by the relation d

dt

(
RT R

)
= 0 (we

recall that RT R = I, where I is the identity). A numerical integrator
is a discrete approximation of the exact solution. In the following we
define Rk as an approximation of the exact solution R(t) at time hk,
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where h is the time step and k an integer, i.e. Rk ' R(hk). The
natural way to define an integrator would be

Rk+1 = Rk + ∆Rk,

but recalling that we deal with elements of SO(3) the summation might
not be well defined. Hence, we choose the discrete update map in
such a way the approximation does not cause any deviation from the
configuration manifold. More explicitly, define Fk ∈ SO(3) as Fk =
RT
k Rk+1. Thus, we have

(34) Rk+1 = Rk Fk.

The rotation matrix Fk represents the relative attitude update between
two integration steps, and by requiring that Fk ∈ SO(3), we guarantee
that the discrete flow Rk for k ∈ {0, ..., N} evolves on SO(3) automat-
ically.

5.2. Discrete Lagrangian. The Lagrangian L : SO(3) × so(3) → R

of the attitude dynamics of the rigid body is given by

L(R, Ω̂) =
1

2
tr[Ω̂ Jd Ω̂T ]− U(R),

for an attitude dependent potential U : SO(3) → R. The matrix
Jd ∈ R3×3 is the nonstandard moment of inertia matrix defined as
Jd = 1

2
tr[J ]I −J , for the standard moment of inertia matrix J ∈ R3×3.

Using the kinematics equation Ṙ = R Ω̂ and (34), Ω̃k can be approx-
imated as

(35) Ω̂k = RT
k Ṙk '

1

h
RT
k (Rk+1 −Rk) =

1

h
(Fk − I) ,

where we have chosen the easiest approximation for the first derivative
of Rk, namely, Ṙk ' 1

h
(Rk+1 −Rk) and the fact that Rk ∈ SO(3).

As mentioned in the previous chapter, the continuous action integral
is defined as de time integral of the Lagrangian function, i.e:

A =

∫ t

0

L(R,Ω) dt.

The discrete Lagrangian is just an arbitrary approximation of this ac-
tion integral. Despite it is arbitrary, we can choose it in a suitable
way, that is, the more accurate the discrete Lagrangian is as approxi-
mation of the action integral, the more accurate will be the numerical
integrator at the end of the day.

From the trapezoidal rule (which is a second order approximation
of the action integral), we choose the following form of the discrete
Lagrangian Ld : SO(3)× SO(3)→ R:

Ld(Rk, Ω̂k) =
h

2
L(Rk, Ω̂k) +

h

2
L(Rk+1, Ω̂k),
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which in terms of Fk can be rewritten as:

Ld(Rk, Fk) =
h

2
L

(
Rk,

1

h
(Fk − I)

)
+
h

2
L

(
Rk+1,

1

h
(Fk − I)

)
=

1

2h
tr[FkJdF

T
k − FkJd − JdF T

k + Jd]−
h

2
U(Rk)−

h

2
U(Rk+1).

Since the trace operation obeys the properties

tr[ABC] = tr[CAB] = tr[BCA],

tr[AT ] = tr[A],

and Jd is a symmetric matrix, we arrive to our final discrete Lagrangian:

(36) Ld(Rk, Fk) =
1

h
tr[(I − Fk)Jd]−

h

2
U(Rk)−

h

2
U(Rk+1).

5.3. Action Sum. Using the expression for the discrete Lagrangian
(36), the action sum (that is, the discrete counter part of the action
integral) is defined as:

Ad =
N−1∑
k=0

Ld(Rk, Fk)

=
N−1∑
k=0

1

h
tr[(I − Fk)Jd]−

h

2
U(Rk)−

h

2
U(Rk+1).

(37)

The discrete Hamilton’s principle states that this action sum does
not vary to the first order for all possible curves in SO(3), that is:

δAd = δ

N−1∑
k=0

Ld(Rk, Fk) =
N−1∑
k=0

δLd(Rk, Fk) = 0.

The variation of the discrete Lagrangian will be calculated after-
wards.

5.4. Variation. Similar to the continuous time case, a variation of a
discrete curve {Rk}Nk=0 is expressed as

Rε
k = Rkexp(εη̃k),

for k ∈ {0, ..., N}, where {ηk}Nk=0 is a discrete curve on R3 satisfying
η0 = ηN = 0. As was mentioned before, ·̂ : R3 → so(3) is an isomor-
phism, where so(3) is the Lie algebra corresponding to SO(3), namely,
if (ω1, ω2, ω3) ∈ R3 then

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3).
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The elements η̂k of so(3) are skew-symmetric 3 × 3 matrices, and,
consequently, exp : so(3) → SO(3). The corresponding infinitesimal
variation is given by:

δRk =
d

dε

∣∣∣
ε=0

Rkexp(εη̃k) = Rkη̂k ∈ TRk
SO(3).

The infinitesimal variation of Fk is obtained using the chain rule and
the above relation:

(38) δFk = δ
(
RT
k Rk+1

)
= −η̂kFk + Fkη̂k+1.

5.5. Discrete Euler-Lagrange equation. The variation of the dis-
crete Lagrangian is given by

(39) δLd(Rk, Fk) = −1

h
tr[δFk Jd]−

h

2
δU(Rk)−

h

2
δU(Rk+1).

Recall that the variation of the potential can be written as

(40) δU(Rk) = −tr[η̂kR
T
k

∂Uk
∂Rk

],

where Uk is a shorthand notation for U(Rk). Now, substituting (38)
and (40) into (39), we obtain:

δLd(Rk, Fk) = tr[η̂k

{
1

h
FkJd +

h

2
RT
k

∂Uk
∂Rk

}
]+

+ tr[η̂k+1

{
−1

h
JdFk +

h

2
RT
k+1

∂Uk+1

∂Rk+1

.

}
]

(41)

Therefore, the variation of the action sum is given by

δAd =
N−1∑
k=0

δLd(Rk, Fk)

= tr[η̂0

{
1

h
F0Jd +

h

2
RT

0

∂U0

∂R0

}
] + tr[η̂N

{
−1

h
JdFN−1 +

h

2
RT
N

∂UN
∂RN

}
]

+
N−1∑
k=1

tr[η̂k

{
1

h
(FkJd − JdFk−1) + hRT

k

∂Uk
∂Rk

}
].

Since η̂0 = η̂N = 0, we arrive to

(42) δAd =
N−1∑
k=1

tr[η̂k

{
1

h
(FkJd − JdFk−1) + hRT

k

∂Uk
∂Rk

}
].

Since η̂k belongs to so(3), it is skew-symmetric δAd vanishes if and only
if the expression into braces is symmetric. Thus we obtain the discrete



ATTITUDE DYNAMICS ON SO(3) 29

Euler-Lagrange equation as

1

h

(
Fk+1Jd + JdF

T
k+1 − JdFk − F T

k Jd
)

= h

(
∂UT

k+1

∂Rk+1

Rk+1 +RT
k+1

∂Uk+1

∂Rk+1

)
.

(43)

The expression in the parentheses in the right hand side is equal to the
definition of the moment due to a potential M̂ evaluated at t = hk.
In summary, the discrete Euler-Lagrange equations on SO(3) are given
by:

1

h

(
Fk+1Jd + JdF

T
k+1 − JdFk − F T

k Jd
)

= hM̂k+1,

Rk+1 = Rk Fk.

If the potential vanishes, i.e., U = 0 the equations simplify

1

h

(
Fk+1Jd + JdF

T
k+1 − JdFk − F T

k Jd
)

= 0,(44)

Rk+1 = Rk Fk.(45)

For given (R0, R1) and F0 = RT
0R1, we solve the implicit equation (44)

to find F1. Then R2 is straightforward obtained by means of (45).
This yields the discrete map (R0, R1)→ (R1, R2). If our initial data is
(Rk, Fk), we can obtain Rk+1 from equation (45) and Fk+1 implicitly
from equation (44), which yields the discrete Lagrangian flow map
FDEL : (Rk, Fk)→ (Rk+1, Fk+1).

5.6. Discrete Hamilton’s equations. The discrete Legrendre trans-
formation yields a discrete Hamilton’s equation. In that sense, we need
to introduce the cotangent space. Let Q be a smooth manifold and let
q ∈ Q. The cotangent space of Q at q, namely, T ∗qQ, is the dual space
of the tangent space TqQ. More explicitly, an element of the cotangent
space p is a linear function on TqQ, i.e. p : TqQ → R. Similar to
the tangent bundle, the cotangent bundle is the disjoint union of the
cotangent space, T ∗Q =

⋃
q∈Q T

∗Q.

Using the left-trivialization we identify TSO(3) with SO(3)× so(3)
(in general, we can identify by this trivization TG, where G is a Lie
group, with the cartesian product G × g, where g is the Lie algebra
corresponding to G). Furthermore, we can make the identification
SO(3)× so(3) with SO(3)×R3 by means of the isomorphism ·̂ : R3 →
so(3) described above. Therefore: T ∗SO(3) ' SO(3)×R3 since (R3)

∗

is identified with R3 using the standar inner product on (R)3, i.e. for
Π ∈ (R3)

∗
and Ω ∈ R3, Π · Ω = ΠTΩ. Taking this into account,

the cotangent bundle T ∗SO(3) is further identified with SO(3)× so(3)

using the identity ΠTΩ = −1
2
tr[Π̂Ω̂]. In summary, for given (R, Ω̂) ∈

TSO(3) ' (SO(3)× so(3)) and (R, Π̂) ∈ T ∗SO(3) ' (SO(3)× so(3)),
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the pairing between the tangent vector and cotangent vector is given
by 〈Π̂ , Ω̂〉 = −1

2
tr[Π̂Ω̂].

Given the Lagrangian L : (SO(3)× so(3))→ R, the Legendre trans-
formation FL : (SO(3)× so(3))→ (SO(3)× so(3)) is defined as

〈FL(R, Ω̂) , η̂〉 =
d

dε

∣∣∣
ε=0

L(R, Ω̂ + εη̂) =
d

dε

∣∣∣
ε=0

1

2
tr[(Ω̂ + εη̂)TJd(Ω̂ + εη̂)]

=
1

2
tr[−(JdΩ̂ + Ω̂Jd)η̂] =

1

2
tr[ĴΩ

T
η̂] = 〈ĴΩ , η̂〉.

This gives the expression for the momentum Π̂ = FL(R, Ω̂) = ĴΩ in
the continuous time as a cotangent vector, which, phisically, is a skew
form of the angular momentum expressed in the body fixed frame.

The discrete Legendre transformation provides a relationship be-
tween the momentum evaluated at t = hk, namely, '̂ΠkΠ̂(hk), and
the discrete variables (Rk, Fk), which is given by

〈Π̂k , η̂k〉 =
d

dε

∣∣∣
ε=0
Ld(R

ε
k, (R

ε
k)
TRk+1) = tr

[
η̂k

{
1

h
FkJd +

h

2
RT
k

∂Uk
∂Rk

}]
.

Since tr[η̂A] = 1
2
tr[η̂(A − AT )] (due to trace properties and skew-

symmetric matrices) this can be written as

〈Π̂k, η̂k〉 = −tr
[
η̂k

{
1

h
(FkJd − JdF T

k )− h

2
Mk

}]
= 〈1

h
(FkJd−JdF T

k ), η̂k〉.

Thus, we obtain the first Hamilton’s equation:

(46) Π̂k =
1

h
(FkJd − JdF T

k )− h

2
M̂k.

Similarly, the second Hamilton’s equation is given by

〈Π̂k+1 , η̂k+1〉 =
d

dε

∣∣∣
ε=0
Ld(Rk, R

T
kR

ε
k+1) =

=
1

2
tr
[
η̂k+1

{
−1

h
(JdFk − F T

k Jd)−
h

2
M̂k+1

}]
=

= 〈1
h

(JdFk − F T
k Jd) +

h

2
M̂k+1, η̂k+1〉.

Therefore, we obtain

(47) Π̂k+1 =
1

h
(JdFk − F T

k Jd) +
h

2
M̂k+1.

Substituting (46) in (47) we have

Π̂k+1 = F T
k (Π̂k +

h

2
M̂k)Fk +

h

2
M̂k+1.

We can eliminate the hat map at every term to obtain a vector form

of the equation, using the fact that F T Π̂F = F̂ TΠ for any Π ∈ R3
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and F ∈ SO(3). Assuming U = 0, consequently M̂ = 0, the discrete
Hamilton’s equations on SO(3) are given by:

Πk =
1

h
(FkJd − JdF T

k )(48)

Rk+1 = RkFk(49)

Πk+1 = F T
k Πk(50)

For given (R0,Π0), we solve the implicit equation (48) to find F0. Then
R1 is obtained by (49) and finally Π1 is straightforwardly obtained
by (50). This procedure yields de discrete Hamiltonian flow FDH :
(R0,Π0)→ (R1,Π1).

As was mentioned before, the continuous Legendre transformation
relates the continuous velocity space TSO(3) ' SO(3) × so(3) with

the phase space T ∗SO(3) ' SO(3)× so(3) by Π̂ = FL(R, Ω̂) = ĴΩ. In
the discrete case there exist two Legendre transformations which relate
the discrete velocity and phase space in the following way: F±Ld :
SO(3)×SO(3)→ SO(3)× (R3)

∗ ' SO(3)× (R3) ' SO(3)× so(3). In
addition, the Legendre transforms relate the discrete Lagrangian and
Hamiltonian flows. Graphically it can be shown as:

(Rk, Fk)

F+Ld

$$HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

FDEL //

F−Ld

��

(Rk+1, Fk+1)

F−Ld

��
(Rk,Πk)

FDH

// (Rk+1,Πk+1)

5.7. Computational approach. The implicit equations given by (44)
and (48) have the following structure: for given g ∈ R3 and Jd ∈ R3×3

find F ∈ SO(3) satisfying

(51) ĝ = F Jd − Jd F T .

5.7.1. Cayley transformation. : Among others, the Cayley transfor-
mation is a local diffeomorphism between the Lie group and the cor-
responding Lie algebra. In particular, it is defined for quadratic Lie
groups, that is, groups defined by

G =
{
Y ∈ GL(n,R)

∣∣∣ Y T P Y = P
}
,
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with P ∈ GL(n,R) a given matrix (where GL(n,R) is the group of
n× n matrices with real entrances). The corresponding Lie algebra is

g =
{

Ω ∈ gl(n,R)
∣∣∣ PΩ + ΩP = 0

)
.

It is clear that the special ortogonal group SO(n) is a particular case
of quadratic Lie group with P = Id. Thus, the Cayley transformation
is a local diffeomorphism between skew symmetric matrices (i.e. so(3))
and rotation matrices (i.e. SO(3)).

We can explicitly write down the equations for the Cayley transform
in the case of SO(3) matrices, namely, cay : so(3)→ SO(3):

F = cay(f) = (I + f̂)(I − f̂)−1 = (I − f̂)−1(I + f̂) =

=
1

1 + fTf

(
(1− fTf)I + 2f̂ + 2ffT

)
,

where, as we have defined above, f ∈ R3, f̂ ∈ so(3) and F = cay(f) ∈
SO(3). This represents a rotation of a rigid body along the direction
f
‖f‖ with rotation angle θ determined by ‖ f ‖= tan

(
θ
2

)
.

Another possibility to transform elements on the algebra to elements
on the group is the exponential map. It is given by

F = exp(v) = I +
sin ‖ v ‖
‖ v ‖

v̂ +
1− cos ‖ v ‖
‖ v ‖2

v̂2,

where again v ∈ R2, v̂ ∈ so(3) and F = cay(v) ∈ SO(3). This repre-
sents a rotation along the direction v

‖v‖ with rotation angle θ determined

by ‖ v ‖. It can be shown that

exp(v) = cay

(
tan
‖ v ‖

2

v

‖ v ‖

)
.

Consequently, the Cayley transform can be considered as a different
form of the exponential map, where the rotation angle is encoded in
a different way. However, the Cayley transformation has a numer-
ical advantage over the exponential map since it does not contain
computationally-expensive sin and cos terms.

For further details regarding isomorphisms between the algebra and
the group see [8]

5.7.2. Implicit Equations: Using the Cayley transformation, we trans-
form the implicit equations (51) into an equivalent vector equation
where the rotation angle is less than π. This is reasonable since the
rotation matrix F represents a relative update betwen two consecutive
integration steps. We expect the rotation angle of F to be small.

Since the two matrices (I + f̂) and (I − f̂)−1 commute, we can, for
convenience and with some abusse of notation, in the following form

F = cay(f) =
I + f̂

I − f̂
.
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Substituting this into (51), we obtain

ĝ =

(
I + f̂

I − f̂

)
Jd − Jd

(
I − f̂
I + f̂

)
,

where we recall here that F ∈ SO(3) and consequently its inverse is

equal to its transpose matrix. Multiplying the last expression by (I−f̂)

at the left side and by (I + f̂) at the right side, we have

(I − f̂)ĝ(I + f̂) = (I + f̂)Jd(I + f̂)− (I − f̂)Jd(I + f̂),

ĝ + ĝ × f − f̂ ĝf̂ = 2f̂Jd + 2Jdf̂ ,

where ”×” is the usual vectorial product between two elements belong-
ing to R3. Taking into account the following identities:

f̂ × g = f̂ ĝ − ĝf̂ , Ĵf = Jdf̂ + f̂Jd, f̂ ĝf̂ = −(gTf)f̂ ,

we arrive to the equation

̂(f + g × f + f(gTf)) = 2Ĵf .

Finally, for a given g ∈ R3, let define G : R3 → R3 as

(52) G(f) = f + g × f + f(gTf)− 2Jf.

We realize that the vector equation G(f) = 0 is equivalent to (51) near
zero. The important point to remark is that we have transformed a
matricial implicit equation (51) into a vector equation.

5.7.3. Computatinal approach: Despite we have arrived to a vector
equation (less computationally expensive than a matricial one) we have
to find out an efficient way to solve it. This is reached by using either
a fixed point iteration. A fixed point iteration gives the following equa-
tion

fk+1 =
1

2
J−1(fk + g × fk + fk(gTfk)),

where k is the iteration label. Similary, the Newton iteration gives

fk+1 = fk −∇G(fk)−1G(fk),

where the Jacobian is defined by

∇G(fk) = ĝ + (gTfk)I + fkgT − 2J.

To run these numerical methods, an initial guess is iterated untill
‖ fk+1 − fk ‖< ε for a given tolerance ε.
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5.8. General Setting. In the last part of these notes we have de-
veloped numerical methods to approximate the solutions for the dy-
namics of a rigid body on the special orthogonal group SO(3). More
concretely, we have obtained a variational integrator referred to a Lie
group by means of the discrete Hamilton’s principle. The scenario is
very specific, i.e., the problem is defined in a concrete group. Never-
theless, as was detailed (3.1), the procedure can be extrapolated to a
general group G. We summarize the paralell process in the table below
(the left column is referred to the SO(3) setting and the right one to
the G setting).

In general scenario, the dynamical problem would be defined in the
tangent bundle of a Lie group (configuratin manifold) G, that is, L :
TG → R. Taking a left trivialization, we can rewrite the Lagrangian
as a function of the group and the algebra associated to that group
L : G × g → R. In the i)-row we select the discrete update map in
such a way the approximation does not cause any deviation from the
configuration manifold G. The update map is fk, which represents the
relative update between two integration steps, is also an element of the
group G. Since fk is composed on the left with gk, the discrete flow
gk ∈ G for 0 ≤ k ≤M evolves on the group automatically.

In the ii)-row we define a discrete Lagrangian which depends on the
configuration manifold and the update map as an approximation of the
continuous integral action. Once this discrete Lagrangian is defined,
we fix de discrete action sum as

Ad =
N−1∑
k=0

Ld(gk, fk).

A difference between the introduction and the last equation shows
clearly up: we select Ld for the discrete Lagragian in the G setting
because the notation Ld has been fixed in the previous section for the
SO(3) problem. The update map (Fk in the SO(3) case, fk in the G
case) will depend on the elements of the algebra (so(3) and g respec-
tively). We have seen that the Cayley map or the exponential map are
suitable choices in the case of the rigid body. In the iii) and iv)-rows
we show the dependence of the variations of both group elements and
update map on the algebra elements ηk.

Once we have all these ingrediets we are ready to apply the Hamil-
ton’s principle to the discrete action sum Ad, obtaining consequently
the discrete Euler-Poincaré equations for a general group G. We
present again these equations as a final corollary of these notes (T ∗e l :
g∗ → g∗ represents the cotangent map of the usual left action of the
group lg : G → G, h 7→ gh, and D is the derivative of the discrete
Lagrangian function with respect of one of its arguments):
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Table 2. General Group

SO(3) G

i) Rk+1 = RkFk gk+1 ◦ fk fk ∈ G

ii) Ld(Rk, Fk) Ld(gk, fk)

iii) δRk = Rkη̂k δgk = gkηk

iv) δFk = −η̂kFk + Fkη̂k+1 δfk = fk (ηk − Adfkηk)

T ∗e lfk−1
Dfk−1

Ld(gk−1, fk−1)− Ad∗
f−1
k

(T ∗e lfkDfkLd(gk, fk)) +

+T ∗e lgkDgkLd(gk, fk) = 0,

gk+1 = gk ◦ fk,
which again are equations (16). This setting provides the discrete flow
(gk, fk) ⇒ (gk+1, fk+1) in G × G. On the other hand we have the
Hamiltonian version in G× g∗

Ad∗
f−1
k

(T ∗e lfkDfkLd(gk, fk)) = µk + T ∗e lgkDgkLd(gk, fk),

gk+1 = gk ◦ fk,
µk+1 = Ad∗fk (µk + T ∗e lgkDgkLd(gk, fk)) .

This setting provides the discrete flow (gk, µk)⇒ (gk+1, µk+1).
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and F. Jiménez want to thank the GMC network for the organization of
the Young Researchers Worshop on Geometry, Mechanics and Control



36 LEONARDO COLOMBO AND FERNANDO JIMÉNEZ
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