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Facultad de Ciencias ICMAT-CSIC

Departamento de F́ısica Teórica UAM-UC3M-UCM
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Perhaps my best years are gone. When there was a chance of happiness. But I wouldn’t
want them back. Not with the fire in me now.

Samuel Beckett, “Krapp’s Last Tape”.



Resumen

Durante la década de 1960, poderosas y sofisticadas técnicas provenientes de la geometŕıa
diferencial moderna y de la topoloǵıa fueron introducidas en el estudio de los sistemas
dinámicos (incluyendo los sistemas mecánicos). Este nuevo campo de investigación que refor-
muló la mecánica anaĺıtica clásica en lenguaje geométrico y atrajo nuevos métodos topológicos
y anaĺıticos es llamado actualmente Mecánica Geométrica.

Por otro lado, uno de los máximos objetivos del análisis numérico y de la matemática
computacional ha sido traducir los fenómenos f́ısicos en algoritmos que producen aproxima-
ciones numéricas suficientemente precisas, asequibles y robustas. En los últimos años de la
década de 1980, y durante todos los 90, el campo de la Integración Geométrica surgió con el
objetivo de diseñar y analizar métodos numéricos para ecuaciones diferenciales ordinarias y,
más recientemente, para ecuaciones diferenciales en derivadas parciales, que preservan tanto
como es posible la estructura geométrica subyacente.

La Mecánica Discreta, entendida como la confluencia de la Mecánica Geométrica y la
Integración Geométrica, es, al mismo tiempo, un área de investigación bien fundamentada
y una herramienta poderosa a la hora de entender los sistemas dinámicos y f́ısicos, más
concretamente aquéllos relacionados con la mecánica. Una herramienta clave en Mecánica
Discreta, ampliamente utilizada en este trabajo, son los integradores variacionales, i.e., inte-
gradores geométricos basados en la discretización de los principios variacionales. El trabajo
desarrollado en esta tesis se alinea con la Mecánica Discreta y su interralación con la teoŕıa
de algebroides y grupoides de Lie (considerados estos últimos como la generalización natural
de los espacios sobre los que se define la Mecánica Discreta).

Nuestra intención ha sido desarrollar integradores numéricos con propiedades de preser-
vación geométrica en distintas ramas de la mecánica. Más concretamente, hemos usado
técnicas de la Mecánia Geométrica con el objetivo de obtener resultados novedosos en tres
aspectos: la relación entre sistemas Lagrangianos con ligaduras y sistemas Hamiltonianos;
la integración geométrica de problemas de control óptimo; y la integración geométrica de
problemas mecánicos noholónomos.



Abstract

In the 1960’s, sophisticated and powerful techniques coming from modern differential
geometry and topology have been introduced in the study of dynamical systems (including
mechanical ones). This new field that eventually reformulated classical analytic mechanics in
geometric language and brought in new methods from topology and analysis is called today
Geometric Mechanics.

On the other hand, one of the main goals of numerical analysis and computational math-
ematics has been rendering physical phenomena into algorithms that produce sufficiently
accurate, affordable, and robust numerical approximations. In the late 1980’s, and through-
out the 1990’s, the field of Geometric Integration arose to design and to analyze numerical
methods for ordinary differential equations and, more recently, for partial differential equa-
tions, that preserve exactly as much of the underlying geometrical structures as possible

The Discrete Mechanics, understood as the confluence of Geometric Mechanics and Ge-
ometric Integration, is both a well-founded research area and a powerful tool in the under-
standing of dynamical and physical systems, more concretely of those related to mechanics.
A key tool of Discrete Mechanics, which has been widely used in this work, are the variational
integrators, i.e., geometric integrators for mechanical problems based on the discretization
of variational principles. The work developed in this thesis is in line with Discrete Mechan-
ics and its feedback with Lie groupoid and Lie algebroid theory (regarded these as natural
generalizations of the spaces where the Discrete Mechanics is defined on).

Our goal has been to develop numerical integrators with geometric preservation properties
in several branches of mechanics. More concretely, we have used the techniques from Dis-
crete Mechanics in order to obtain valuable results in three topics: the relationship between
constrained Lagrangian systems and Hamiltonian systems, geometric integration of optimal
control problems and geometric integration of mechanical nonholonomic problems.
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Introduction

Historically, the research in dynamical systems (including mechanical ones) had a major
impact on other areas of mathematics and physics as well as in the development of various
engineering technologies. Most of these advances have been based on applied numerical
and analytical methods. However, in the 1960’s more sophisticated and powerful techniques
coming from modern differential geometry and topology have been introduced in their study.
This new field that eventually reformulated quantum mechanics (topic which will not be
considered in this thesis) and classical analytic mechanics in geometric language and brought
in new methods from topology and analysis is called today Geometric Mechanics. It has
experienced a spectacular growth in the last 40 years impacting all adjacent mathematical
fields as well as mathematical physics and certain areas of engineering. The main guiding
idea in this development consists in applying the techniques and methods of differential
geometry to the study and description of mechanical systems (classical, field theoretical, or
quantum). Symplectic structures and their natural generalizations (like Poisson and Dirac
manifolds) turn out to be the natural framework in the description and study of various
phenomena that appear in classical (quantum) mechanics, among which we mention the
following: symmetry reduction (both for finite and infinite dimensional systems) in a classical
and quantum setting, Hamilton-Jacobi theory, mechanical systems that are subjected to
external (possibly non-holonomic) constraints, and the modeling of friction. We refer to the
following fundamental references ([1, 5, 108, 111, 123]) for additional history, references and
background on Geometric Mechanics.

On the other hand, one of the main goals of numerical analysis and computational math-
ematics has been rendering physical phenomena into algorithms that produce sufficiently
accurate, affordable, and robust numerical approximations. Numerical simulations are an
invaluable tool for exploring the dynamics of nonlinear differential equations. In the late
1980’s, and throughout the 1990’s, the field of Geometric Integration arose to design and to
analyze numerical methods for ordinary differential equations and, more recently, for partial
differential equations (PDEs), that preserve exactly (i.e. up to round-off error) as much of the
underlying geometrical structures as possible (see [61]). In this sense, Geometric Integration
is concerned with producing numerical approximations preserving the qualitative attributes
of the solution to the extent that it is possible (phase space, energy conservation, preser-
vation of integrability under discretization, reversibility, symplecticity, volume preservation,
etc) while not disregarding accuracy, affordability, and robustness. In particular, in many
problems arising from science and engineering (such as solar system or molecular dynamics)
the underlying geometric structure affects the qualitative behavior of solutions, and as such,

9



10 Introduction

numerical methods that preserve the geometry of a problem typically yield simulations that
are qualitatively more accurate.

As a synergic consequence of the intersection between these two disciplines, i.e. Geometric
Mechanics and Geometric Integration, Discrete Mechanics has earned significance in the last
years. A flavour of the power of Discrete Mechanics can be given by its capacity to generate
geometric variational integrators for mechanical problems.

It is well-known that the equations of motion of a mechanical system described by a
Lagrangian function L : TQ → R can be obtained applying calculus of variations to the
action integral

AL =

∫ T

0
L(q, q̇) dt.

These equations of motion are the so-called Euler-Lagrange equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (1)

For the particular Lagrangian function L(q, q̇) = 1
2 q̇

T M q̇ − V (q), i.e. a Lagrangian of
mechanical type, the Euler-Lagrange equations are just

Mq̈ = −∇V (q), (2)

which are Newton’s equations: mass times acceleration equals force. From the geometric
study of Lagrangian problems, it is well-known that the system described by the Euler-
Lagrange equations has many special properties. In particular, the flow on state space is
symplectic, meaning that it conserves a particular two-form, and if there are symmetry actions
on phase space then there are corresponding conserved quantities of the flow, known as
momentum maps.

In the last years, the variational approach in the construction of geometric integration for
mechanical systems has been of great interest within the framework of Geometric Integration
(see [124, 134]). This point of view is a clear consequence of a deeper insight into the geometric
structure of numerical methods (provided by the Geometric Integration) and the geometry
of the mechanical systems (provided by the Geometric Mechanics) that they approximate.
In particular, this effort has been concentrated on the case of discrete Lagrangian functions
Ld on the cartesian product Q×Q of a differentiable manifold. This cartesian product plays
the role of a discretized version of the standard velocity space TQ. Applying a natural
discrete variational principle and assuming a regularity condition, one obtains a second order
recursion operator FLd : Q × Q → Q × Q assigning to each input pair (qk, qk+1) the output
pair (qk+1, qk+2). When the discrete Lagrangian is an approximation of the the integral
action we obtain a numerical integrator which inherits some of the geometric properties of
the continuous Lagrangian (symplecticity, momentum preservation).

For instance, let consider the following discrete Lagrangian Ld : Q×Q→ R

Ld(q0, q1) =
h

2

(
q1 − q0

h

)T
M

(
q1 − q0

h

)
− hV (q0),
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where Q = Rn, which is the very simple approximation to the action integral AL using the
rectangle rule1. In the last expression, q0 ≈ q(0) and q1 ≈ q(h) shall be thought of as being
two points on a curve in Q at time h apart. Consider a discrete curve of points {qk}Nk=0,
also belonging to Q, and calculate the discrete action along this sequence by summing the
discrete Lagrangian on each adjacent pair, that is

ALd =
N−1∑
k=0

Ld(qk, qk+1),

which are the discrete counterpart of AL. Following the continuous derivation above, we
compute variations of this action sum with the boundary points q0 and qN held fixed. At the
end of the day, this gives the discrete Euler-Lagrange equations:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0,

which is the discrete counterpart of (1) and must hold for each k. For the particular Ld
chosen above, the discrete Euler-Lagrange equations give

M

(
q2 − 2q1 + q0

h2

)
= −∇V (q0).

This is clearly a discretization of Newton’s equations (2), using a simple finite difference rule
for the derivative. This kind of integrators are called variational integrators because of
its procedure of derivation. Furthermore, as mentioned above, and also due to its variational
nature, these integrators are symplectic (they preserve the same two-form on state space as
the true system) and have the property of conserving momentum maps arising from symmetry
actions.

Although this type of geometric integrators have been mainly considered for conservative
systems, the extension to geometric integrators for more involved situations is relatively
easy, since, in some sense, many of the constructions mimic the corresponding ones for the
continuous counterpart. In this sense, it has been recently shown how discrete variational
mechanics can include forced or dissipative systems, holonomic constraints, explicitly time-
dependent systems, frictional contact, nonholonomic constraints, etc. All these geometric
integrators have demonstrated, in worked examples, an exceptionally good longtime behavior
and obviously this research is of great interest for numerical and geometric considerations
([61, 153]). In addition, there are several extensions of variational integrators for systems
defined in spaces different from Q × Q, such as Lie algebras, reduced spaces, etc, which
are of great interest in realistic systems coming from physics, engineering and other applied
sciences. The generalization of variational integrators to more involved geometric scenarios
can be enshrined in the program initiated by Alan Weinstein, which will be detailed below.

From the point of view of history, the theory of discrete variational mechanics in the
form we shall use it has its roots in the optimal control literature of the 1960’s: see, for
example, Jordan and Polak ([80]), Hwang and Fan ([68]) and Cadzow ([24]). In the context of
mechanics early work was done, often independently, by Cadzow ([25]), Logan ([113]), Maeda

1More sophisticated quadrature rules lead to higher-accurate integrators.
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([115, 116, 117]), and Lee ([97, 98]), by which point the discrete action sum, the discrete
EulerLagrange equations and the discrete Noether’s theorem were clearly understood. This
theory was then pursued further in the context of integrable systems in Veselov ([160, 161])
and Moser and Veselov ([134]), and in the context of quantum mechanics (topic which will
not be considered in this thesis) in Jaroszkiewicz and Norton ([74, 75]) and Norton and
Jaroszkiewicz ([137]).

The variational view of discrete mechanics and its numerical implementation is further
developed in Wendlandt and Marsden ([167, 168]) and then extended in Kane, Marsden and
Ortiz ([84]), Marsden, Pekarsky and Shkoller ([121, 122]), Bobenko and Suris ([17, 18]) and
Kane, Marsden, Ortiz and West ([85]). A central reference big part of this thesis is based on
is the work by Marsden and West ([124]). The beginnings of an extension of these ideas to
a nonsmooth framework is given in Kane, Repetto, Ortiz and Marsden ([86]), and is carried
further in Fetecau, Marsden, Ortiz and West ([46]).

A step further, Alan Weinstein began the study of discrete mechanics on Lie groupoids.
His attention was called by the work by Moser and Veselov [134], where the authors study the
complete integrability of certain discrete dynamical systems. Moreover the authors describe
the Lagrangian and Hamiltonian formalisms for discrete mechanics in two different settings:
Q × Q and a Lie group. Therefore, in [165] Weinstein described versions of the Lagrangian
formalism for discrete and continuous time which are general enough to include both con-
structions used by Moser and Veselov, as well as a Lagrangian formalism on Lie algebras due
essentially to Poincaré [142]. In the discrete version, the Lagrangian function is defined on a
Lie groupoid.

A Lie groupoid G is a natural generalization of the concept of a Lie group, where now
not all elements are composable. The product g1g2 of two elements is only defined on the set
of composable pairs G(2) = {(g, h) ∈ G×G |β(g) = α(h)}, where α : G→ Q and β : G→ Q
are the source and target maps over a base manifold Q. This concept was introduced in
differential geometry by Ch. Ereshmann in the 1950’s. The infinitesimal version of a Lie
groupoid G is the Lie algebroid AG→ Q, which is the restriction of the vertical bundle of α
to the submanifold of the identities.

We may think a Lie algebroid A over a manifold Q, with projection τ : A → Q, as a
generalized version of the tangent bundle to Q. The geometry and dynamics on Lie algebroids
have been extensively studied during the past years. In particular, a geometric formalism of
mechanics similar to Klein’s formalism ([88]) was developed in [128], while, more recently, a
description of the Hamiltonian dynamics on a Lie algebroid was given in [107, 127, 144].

Finally, a complete description of the discrete Lagrangian and Hamiltonian mechanics on
Lie groupoids was given in the work by Marrero, Mart́ın de Diego and Mart́ınez [118].

The Discrete Mechanics, understood as the confluence of Geometric Mechanics and Ge-
ometric Integration, is both a well-founded research area and a powerful tool in the under-
standing of dynamical and physical systems, more concretely of those related to mechanics.
The work developed in this thesis is therefore in line with Discrete Mechanics and its feed-
back with Lie groupoid and Lie algebroid theory. For sake of precision, we have used the
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techniques from Discrete Mechanics in order to obtain valuable results in three different
topics: the relationship between constrained Lagrangian systems and Hamiltonian systems,
geometric integration of optimal control problems, and geometric integration of mechanical
nonholonomic problems. The following diagram shows the master lines followed in our work.

Geometric
Mechanics
§1,§2

$$
��

Geometric
Integration

||

Lie groupoids
&

Lie algebroids
§1

//

OO

Discrete
Mechanics
§3

��zz !!

oo

Lagrangian submanifolds
&

Symplectic integration
§4

Discrete
Optimal
Control
§5

Geometric
Nonholonomic

Integrators
§6

Lagrangian submanifolds and symplectic integration:

A central notion in symplectic geometry is the concept of Lagrangian submanifold (see
[164, 166]). This concept arises in several and different interpretations of physical, engineer-
ing and geometric phenomena. Regarding Geometric Mechanics, the theory of Lagrangian
submanifolds gives a geometric and intrinsic description of Lagrangian and Hamiltonian dy-
namics (see the work by W.M. Tulczyjew [157, 158]). Namely, if a mechanical system is
defined by a Lagrangian function L : TQ→ R, the Lagrangian dynamics will be “generated”
by the Lagrangian submanifold dL(TQ) ⊂ T ∗TQ. On the other hand, if the mechanical
system is defined by the Hamiltonian function H : T ∗Q→ R, the Hamiltonian dynamics will
be “generated” by the Lagrangian submanifold dH(T ∗Q) ⊂ T ∗T ∗Q. A way to perform the
relationship between these two formalisms is by the so-called Tulczyjew’s triple.:

T ∗TQ TT ∗Q
αQoo

βQ // T ∗T ∗Q,
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where αQ and βQ are both isomorphisms and T ∗TQ, TT ∗Q, T ∗T ∗Q, are double vector
bundles equipped with symplectic structures.

A proof of the power of this formalism is its capacity to describe constrained systems.
Roughly speaking, a constrained Lagrangian system can be defined by ` : C → R, where C
is a submanifold of TQ with inclusion iC : C ↪→ TQ. A Lagrangian submanifold Σ` ⊂ T ∗TQ
can be built as

Σ` = {µ ∈ T ∗TQ | i∗C µ = d`}.

Thus, we can obtain via αQ a new Lagrangian submanifold of the tangent bundle TT ∗Q
which completely determines the equations of motion of the constrained dynamics (see [54]),
which are, in a regular case, of Hamiltonian type. Taking this into account, it is clear that
constrained Lagrangian systems and Hamiltonian systems are closely related (relationship
which will be further studied in this work).

Hamiltonian systems form the most important class of ordinary differential equations in
the context of Geometric Integration, being one of its outstanding properties the symplectic-
ity of the flow. Hamiltonian theory operates in three different domains (equations of motion,
partial differential equations and variational principles) which are all interconnected. Each of
these viewpoints leads to the construction of methods preserving the symplecticity. Pioneer-
ing work on symplectic integration is due to De Vogelaŕe ([162]), Ruth ([150]) and Feng Kang
([43]). For an overview of symplectic integration, see Sanz-Serna ([152]) and Sanz-Serna and
Calvo ([153]). Qualitative properties of symplectic integration of Hamiltonian systems are
given in González, Highan and Stuart ([50]) and Cano and Sanz-Serna ([26]). Other inter-
esting references on the subject are [10, 57, 58, 59, 60, 147, 148, 156]. For other references
see the large literature on symplectic methods in molecular dynamics, such as [155], and for
various applications, see [9, 63, 102].

From the point of view of Geometric Integration and Discrete Mechanics, the connection
between constrained Lagrangian systems and Hamiltonian systems, mentioned above, be-
comes more interesting when dealing with the discrete formalism, which might be interpreted
as suitable Lagrangian submanifolds of the Cartesian product of two copies of T ∗Q. Since
the Hamiltonian flow F tH : T ∗Q→ T ∗Q can be seen as the graph of F tH , and consequently as
a submanifold of T ∗Q × T ∗Q, the treatment of this kind of systems from the point of view
of Geometric Mechanics, can enlighten the geometric structure of symplectic integrators.

Discrete optimal control:

The optimization and control of physical processes is of crucial importance in all modern
technological sciences. In particular, optimal control theory is a mathematical optimization
method for deriving control policies such that a certain optimality criterion is achieved. The
aim of optimal control is to guide or steer certain processes, arising in nature and engineering,
such that a given quantity, for example control effort or maneuver time is minimal. To be more
precise, a given cost functional has to be optimized by taking into account the dynamics
of the process described by a dynamical system.

From a purely mathematical point of view, optimal control problems are also variants of
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a class of problems of the calculus of variations. As in Hamilton’s principle, the problem is
to minimize an integral (the cost functional) which is now subject to constraints describing
the dynamical behavior of the underlying system. These constraints also determine the set of
admissible variations and are typically differential equations or, for mechanical systems, given
by the Lagrange-d’Alembert principle. Therefore, it seems natural to apply techniques from
calculus of variations for a better understanding of optimization processes. Moreover, besides
the importance in continuous mechanics, discrete calculus of variations and the correspond-
ing discrete variational principles play an important role in constructing efficient numerical
methodologies for the simulation of mechanical systems and for optimizing dynamical sys-
tems. Due to their common origin in theory as well as in computational approaches, the
combination of these two fields of research, Discrete Mechanics and Optimal Control Theory,
provides interesting insight into theoretical and computational issues and provides profitable
approaches to specific problems.

More concretely, the application of discrete variational principles already on the dynamical
level (namely the discretization of the Lagrange-d’Alembert principle) leads to structure-
preserving time-stepping equations which serve as equality constraints for the resulting finite
dimensional nonlinear optimization problem. The benefits of variational integrators could
be handed down to the optimal control context. For example, in the presence of symmetry
groups in the continuous dynamical system, also along the discrete trajectory the change in
momentum maps is consistent with the control forces. Choosing the cost function to represent
the control effort, which has to be minimized is only meaningful if the system responds exactly
according to the control forces.

Applications of discrete optimal control theory were firstly focused on space mission design
and formation flying ([81, 82, 83]). There are other applications to robotics and biomechanics
([87, 90, 92, 126, 141, 149]) and to image analysis ([131]). From the theoretical point of view,
considering the development of variational integrators, extensions of discrete optimal control
to mechanical systems with nonholonomic constraints or to systems with symmetries are
quite natural and have already been analyzed in [90, 92]. Extensions for hybrid systems can
be found in [126] and for constrained multi-body dynamics in [109, 110]. Discrete optimal
control related approaches are presented in [100, 101]. The authors discretize the dynamics
by a Lie group variational integrator. Rather than solving the resulting optimization prob-
lem numerically, they construct the discrete necessary optimality conditions via the discrete
variational principle and solve the resulting discrete boundary value problem (the discrete
state and adjoint system). The method is applied to the optimal control of a rigid body and
to the computation of attitude maneuvers of a rigid spacecraft.

Other application of discrete optimal control to systems defined on Lie groups can be
found in [91]. A wide introduction to optimal control on Lie algebroids and Lie groupoids
can be found in [36], while the application of geometric reduction in the context of optimal
control in [129].
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Geometric nonholonomic integrators:

Nonholonomic constraints have been a subject of deep analysis since the dawn of Analyt-
ical Mechanics. The origin of its study is nicely explained in the introduction of the book by
Neimark and Fufaev [136],

”The birth of the theory of dynamics of nonholonomic systems occurred at the
time when the universal and brilliant analytical formalism created by Euler and
Lagrange was found, to general amazement, to be inapplicable to the very simple
mechanical problems of rigid bodies rolling without slipping on a plane. Lindelöf ’s
error, detected by Chaplygin, became famous and rolling systems attracted the
attention of many eminent scientists of the time...”

Many authors have shown, in the last 25 years, a new interest in that theory and also in its
relationship to the new developments in control theory and robotics. The main characteristic
of this last period is that nonholonomic systems are studied from a geometric perspective (see
L.D. Fadeev and A.M. Vershik [159] as an advanced and fundamental reference). From this
perspective, nonholonomic mechanics forms part by its own right of Geometric Mechanics.

A nonholonomic system is a mechanical system subjected to constraint functions which
are, roughly speaking, functions on the velocities that are not derivable from position con-
straints. They arise, for instance, in mechanical systems that have rolling or certain kinds
of sliding contact. Traditionally, the equations of motion for nonholonomic mechanics are
derived from the Lagrange-d’Alembert principle which restricts the set of infinitesimal vari-
ations (or constrained forces) in terms of the constraint functions. In such systems, some
differences between unconstrained classical Hamiltonian and Lagrangian systems and non-
holonomic dynamics appear. For instance, nonholonomic systems are non-variational in the
classical sense, since they arise from the Lagrange-d’Alembert principle and not from Hamil-
ton’s principle. Moreover, when the nonholonomic constrains are linear in velocities, then
energy is preserved but momentum is not always preserved when a symmetry arises. Non-
holonomic systems are described by an almost-Poisson structure but not Poisson (i.e., there
is a bracket that together with the energy on the phase space defines the motion, but the
bracket generally does not satisfy the Jacobi identity); and finally, unlike the Hamiltonian
setting, volume may not be preserved in the phase space, leading to interesting asymptotic
stability in some cases, despite energy conservation

As mentioned above, the geometric perspective in the study of the nonholonomic systems
has been recently introduced (see [14, 16, 27, 34, 94, 104, 159]). On the other hand, recent
works (see [38, 42, 70, 132]) have introduced numerical integrators for nonholonomic sys-
tems with very good energy behavior and properties such as the preservation of the discrete
nonholonomic momentum map. In a similar spirit, the Geometric Nonholonomic Integrator
(GNI) and some of its properties were introduced in [44, 45, 93] (some of the results in these
references are further developed in this work). Therefore, we can conclude that Nonholo-
nomic Mechanics represents a research field where Discrete Mechanics, as a confluent tool
from both Geometric Mechanics and Geometric Integration, can extract new and interesting
results.
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Outline of the thesis

Here let us point out the organization of the present thesis and give a brief description of
every chapter:

• Chapters 1, 2 and 3 are devoted to introduce the fundamental concepts this thesis
is built upon. Specifically those concerning differential geometry, Lie groupoid and
Lie algebroid theory, continuous and discrete Lagrangian and Hamiltonian mechanics
and, finally, variational integrators. These chapters are included in order to make the
thesis project as self-consistent as possible. The ideas and results appearing in these
chapters can be found, in more detail and enlarged, in the following references: general
texts on differential geometry and other mathematical areas [2, 20, 33, 89, 99, 135],
texts on analytical and geometric mechanics [1, 5, 108, 111, 123], groupoid theory
[114], fibre bundles [67], texts on symplectic geometry [3, 12], nonholonomic mechanics
[14], numerical (geometric) integration [61, 62] and, finally, a fundamental reference on
variational integrators [124].

• In chapter 4 we study the relationship between Hamiltonian dynamics and constrained
variational calculus (Vakonomic mechanics). The main tools that we employ to de-
scribe both are Lagrangian submanifolds (of convenient symplectic manifolds) and the
Tulczyjew’s triple. The results are also extended to the case of discrete dynamics. In
this last sense, our final goal is the capacity of finding interesting applications to ge-
ometrical integration of Hamiltonian systems. We also analyze in parallel the case of
classical nonholonomic mechanics in the discrete and continuous cases.

Chapter 4 represents the first central block of the thesis; all its results can be found in
[77]. Some of its ideas were previously introduced in [79].

• Chapter 5 accounts for the development of numerical methods for optimal control of
mechanical systems in the Lagrangian setting. It extends the theory of discrete me-
chanics to enable the solutions of optimal control problems through the discretization
of variational principles. The key point is to solve the optimal control problem as a
variational integrator of a specially constructed higher-dimensional system. The devel-
oped framework applies to systems on tangent bundles, Lie groups, underactuated and
nonholonomic systems, and can approximate either smooth or discontinuous control
inputs. Special attention is paid to Lagrangian systems defined on tangent bundles and
Lie groups. The resulting methods inherit the preservation properties (see [118, 124]) of
variational integrators. These qualities are associated with numerical stability, robust-
ness and easy implementation, which motivate the development of practical algorithms
that can be applied to robotic or aerospace vehicles.

Chapter 5 is the second central block of this thesis; all its results can be found in [76].
The ideas concerning the extension of discrete optimal control to the Lie groupoid setup
were previously introduced in [78].

• Chapter 6 is devoted to develop the ideas concerning the Geometric Nonholonomic
Integrator (GNI) presented in [44, 45, 93]. GNI is a discretization scheme adapted to
nonholonomic mechanical systems through a discrete geometric approach. This method
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was designed to account for some of the special geometric structures associated to a
nonholonomic motion, namely preservation energy, preservation of constraints or the
nonholonomic momentum equation. In chapter 6 we present the GNI extensions of
Euler-symplectic methods (see [61]) and discuss some of their convergence properties
following the methodology developed in [45]. Additionally, we generalize the method
proposed for nonholonomic reduced systems, which represent an important subclass of
examples in nonholonomic dynamics. Moreover, we construct extensions of the GNI in
the cases of affine constraints and Lie groupoids. Several theoretical examples illustrate
the behavior of the proposed method.

Chapter 6 is the third central block of this thesis. Currently its results are a work in
progress in collaboration with David Mart́ın de Diego and Sebastián Ferraro (Univer-
sidad Nacional del Sur, Argentina).

• Chapter Conclusions exposes a summary of the main results presented in this thesis,
together with some conclusions and the future work which could come from it.

• Appendix A contains the set of Lemmae and proofs, involving the right-trivialized tan-
gent and inverse right-trivialized tangent of a general retraction map (definition 5.2.2),
necessary for the derivation of the algorithms obtained in §5. Interesting references in
regard to the derivation of the right-trivialized tangent (and its inverse) of a general
retraction map are [21, 22].

• Appendix B collects the explicit expression of the Cayley map, as well as its right-
trivialized tangent and inverse right-trivialized tangent, for some quadratic matrix Lie
groups, namely SO(3), SE(2) and SE(3). These expressions are useful for the practical
implementation of the algorithms derived in §5, and which simulations are shown in
Figures 5.1, 5.2 and 5.3. Interesting references in regard to matrix expression for Cayley
transforms are [61, 91].



Chapter 1

Mathematical background

This chapter gives a brief review of several differential geometric tools used throughout this
work. For a more thorough introduction we refer to [1, 2, 89, 108, 112, 123].

1.1 Differentiable manifolds, tangent and cotangent bundles

A minimum knowledge in linear algebra, topology and differential geometry is assumed in
the following. For further understanding in this topic, references [1, 2, 89, 135, 163] are very
useful.

The basic idea of a manifold is to introduce spaces which are locally like Euclidean spaces
and with structure enough so that differential calculus can be carried over. The manifolds
we deal with will be assumed to belong to the C∞-category. We shall further suppose that
all manifolds are finite-dimensional, paracompact and Hausdorff, unless otherwise stated.

Two interesting examples of manifolds which will be extensively used throughout this
dissertation are the tangent and cotangent bundles. Both are discussed next.

1.1.1 Tangent and cotangent bundles

There exist several approaches in order to define the tangent space to an abstract manifold.
In this work we will employ the curves approach, i.e., to abstract the idea that a tangent
vector to a surface is the velocity vector of a curve in the surface, which provides a geometric
notion of what the tangent space of a manifold is.

Definition 1.1.1. Let Q be a manifold and q ∈ Q. A curve at q is a C1 map c : I → Q
from an open interval I ⊂ R into Q with 0 ∈ I and c(0) = q. Let c1 and c2 be curves at q
and (U,ϕ) a local chart with x ∈ U . Then we say c1 and c2 are tangent at q with respect
to ϕ iff ϕ ◦ c1 and ϕ ◦ c2 are tangent at 0.

To understand this definition is necessary to briefly introduce the notion of tangency. Let
E, F be two (finite-dimensional) vector spaces with maps f, g : U ⊂ E → F , being U an

19
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open subset of E. We say that f and g are tangent at u0 ∈ U iff limu→u0

‖f(u)−g(u)‖
‖u−u0‖ = 0,

where ‖ · ‖ represents any norm on the appropiate space.

Regarding this, two curves are tangent with respect to ϕ if they have identical tangent
vectors (same direction and speed) in the chart ϕ.

Proposition 1.1.2. Let c1 and c2 be two curves at q ∈ Q. Suppose (Uβ, ϕβ) are local charts
with q ∈ Uβ, β = 1, 2. Then c1 and c2 are tangent at q with respect to ϕ1 iff they are tangent
at q with respect to ϕ2.

This proposition (see [1] for the proof) guarantees that the tangency of curves at q ∈M
is independent of the chart used. Following this idea, is quite evident that tangency at q ∈ Q
is an equivalent relation among curves at q. An equivalent class of such curves is denoted
[c]q, where c is a representative of the class.

Definition 1.1.3. For a manifold Q and q ∈ Q, the tangent space of Q at q is the set of
equivalence classes of curves at q, namely

TqQ =
{

[c]q

∣∣∣ c is a curve at q
}
.

We call TQ = ∪q∈QTqQ the tangent bundle of Q. The mapping τQ : TQ→ Q defined
by τQ([c]q) = q is the tangent bundle projection of M . We will denote by vq the elements
of TqQ.

If we have a tangent vector vq ∈ TqR
n, then we can define the notion of directional

derivative at q, which is a map Dvq : C∞(Rn) → R, f 7→ Dvq(f) = Df(q) · vq, where
f ∈ C∞(Rn). In the case of a general manifold Q, we can take the directional derivative to
be the map given by Dvq : C∞(Q)→ R

Dvq(f) =
d

dt
(f ◦ c)

∣∣∣
t=0

,

where f ∈ C∞(Q) and vq = [c]q.

If we choose local coordinates (qi) i = 1, ..., n for q ∈ Q in the chart (U,ϕ), the derivative
above can be expressed as (

∂f ◦ ϕ−1

∂qi

)(
dϕi(c(t))

dt

) ∣∣∣
t=0

.

Denoting ∂f◦ϕ−1

∂qi
by ∂f

∂qi
(which is an abuse of notation) and Xi = dϕi(c(t))

dt

∣∣∣
t=0

, we can rewrite

the directional derivative like

df (c(t))

dt

∣∣∣
t=0

= Xi ∂f

∂qi
≡ X[f ].

All the equivalence classes of curves at q ∈ Q, namely, all the tangent vectors at q, form
a vector space called the tangent space of Q at q and, as previously, denoted by TqQ. As

just mentioned, TqQ is a vector space with typical local coordinate basis ∂
∂qi

∣∣∣
q
, and

dim TqQ = dim Q.
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Adding up all the tangent spaces corresponding to all the points which belong to Q we
get the tangent bundle:

TQ =
⋃
q∈Q

TqQ.

The tangent bundle TQ is a 2n-dimensional manifold (recall that Q is an n-dimensional
manifold).

The canonical tangent projection assigns to each tangent vector its base point. Let define
the canonical tangent projection by τQ; τQ : TQ→ Q. As mentioned just before, for each base
point q in Q the tangent space TqQ is a R-vector space. Thus, we can consider the dual space
T ∗qQ, which is called the cotangent space at q of Q. T ∗qQ is the space of linear functions
from TqQ to R. In consequence, T ∗qQ has R-vector space structure too. The elements in
T ∗qQ are called covectors or momenta at the point q ∈ Q. As in the tangent case, we can
perform the union of all the cotangent spaces to construct the cotangent bundle of Q, i.e.:

T ∗Q =
⋃
q∈Q

T ∗qQ.

The canonical cotangent projection assigns to each covector its base point, πQ : T ∗Q →
Q. Since we have introduced some terminology regarding fibre bundles, namely, tangent
bundle, canonical projection, etc., maybe this is the precise point to refresh some basics
about this topic.

Basics on fibre bundles

A fibre bundle is, roughly speaking, a sort of generalized product. The notion of fibre
bundle will include as particular cases the tangent and cotangent bundles. For more insight
in fibre bundles we recommend [67].

Definition 1.1.4 (Bundle). A bundle is a triple (E, p,B), where p : E → B is a map.
The space B is called the base space, the space E is called the total space, and the map p
is called the projection of the bundle. For each b ∈ B, the space p−1(b) ∈ E is called the
fibre of the bundle over b ∈ B.

Definition 1.1.5. A bundle (E′, p′, B′) is a subbundle of (E, p,B) provided E′ is a subspace
of E, B′ is a subspace of B and p′ = p|E′ : E′ → B′.

Definition 1.1.6 (Sections). A section of a bundle (E, p,B) is a map s : B → E such
that p ◦ s = IdB, where IdB is the identity map on B.

In other words, a section is a map s : B → E such that s(b) ∈ p−1(b), the fibre over b, for
each b ∈ B. The set of sections is denoted Γ(p) or Γ(E) if there is no doubt about the fibre
bundle structure.

Let (E′, p′, B′) be a subbundle of (E, p,B), and let s ∈ Γ(p) be a section of (E, p,B).
Then s|B′ is a cross section of (E′, p′, B′) if and only if s|B′(b) ∈ E′ for each b ∈ B′.

From a more geometrical point of view, we can consider the bundle p : E → B as a
differentiable fiber bundle if E and B are differential manifolds and p is a surjective
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submersion such that it is locally trivial. That is, there exists a manifold F such that, for
every b ∈ B, there exists a neighborhood W of b and a diffeomorphism ϕ : p−1(W )→W ×F
such that pr1 ◦ ϕ = p, where pr1 : W × F → W . Moreover, given two fiber bundle charts
(W1, φ1) and (W2, φ2) adapted to p, the mapping φ1 ◦ φ−1

2 , called the transition function,
is a diffeomorphism. Here F is called the typical fiber.

Once we have defined what a fibre bundle is, we can establish the concept of bundle
morphisms, which, roughly speaking, are fibre preserving maps.

Definition 1.1.7. Let (E, p,B) and (E′, p′, B′) be two bundles. A bundle morphism
(u, f) : (E, p,B) → (E′, p′, B′) is a pair of maps u : E → E′, f : B → B′, such that
p′ ◦ u = f ◦ p.

The condition p′ ◦ u = f ◦ p is equivalent to the commutativity of the following diagram

E
u //

p

��

E′

p′

��
B

f // B′.

The bundle morphism condition p′ ◦ u = f ◦ p can also be expressed by the relation
u
(
p−1(b)

)
⊂ (p′)−1 (f(b)) for each b ∈ B; that is, the fibre over b is carried into the fibre

over f(b) by u. It should be observed that the map f is uniquely determined by u when p is
surjective (case we are considering for differentiable fibre bundles).

Definition 1.1.8. Let (E, p,B) and (E′, p′, B) be two bundles over B. A bundle morphism
over B u : (E, p,B)→ (E′, p′, B) is a map u : E → E′ such that p = p′ ◦ u.

The condition p = p′ ◦ u is equivalent to the commutativity of the following diagram

E
u //

p   

E′

p′~~
B.

The bundle morphism condition p = p′ ◦u can also be expressed by the relation u
(
p−1(b)

)
⊂

(p′)−1 (b) for each b ∈ B; that is, u is fibre preserving.

In this subsection we have presented two bundles, namely, the tangent bundle τQ : TQ→
Q (in the above notation (TQ, τQ, Q)) and the cotangent bundle πQ : T ∗Q→ Q (in the above
notation (T ∗Q, πQ, Q)). Both are examples of vector bundles. A vector bundle is a bundle
with an additional vector space structure on each fibre. The concept arose from the study of
tangent vector fields to smooth geometric objects, e.g., spheres, projective spaces and, more
generically, manifolds.

Definition 1.1.9 (Vector bundle). A vector bundle is a fibre bundle p : E → B such
that:

1. Each fibre of the bundle is a vector space of fixed dimension, say k. The standard fibre
is therefore Rk.
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2. About each point of B there is a linear trivialization, that is, a local trivialization ϕ :
p−1(U) → U × Rk such that for each x ∈ U , the map ϕx : Ex → Rk defined by
ϕx = pr2 ◦ ϕ|Ex is a linear isomorphism of the vector spaces Ex and Rk.

Once we have introduced the concept of manifold, tangent bundle of a given mani-
fold and cotangent bundle of a given manifold, there exist other interesting geometrical
concepts, regarding these, which could be useful for the development of this thesis.

Given two manifolds Q and P , one may consider a smooth mapping between them f : Q→
P . The set of all these mappings is denoted by C∞(Q,P ). The tangent map of f is a mapping
between the tangent bundles of the previously defined manifolds, i.e., Df : TQ → TP . The
tangent map has a pointwise definition as follows: Dqf : TqQ → Tp=fq)P , where q ∈ Q and
p = f(q) ∈ P . When P = R, we shall denote the set of smooth real-valued functions on Q
by C∞(Q).

A vector field X on Q is a smooth mapping X : Q → TQ such that τQ ◦ X = IdQ
(in bundle terminology, a vector field is just a section of the vector bundle (TQ, τQ, Q)).
In other words, it assigns to each q ∈ Q the tangent vector X(q) ∈ TqQ. The set of all
vector fields on Q is denoted by X(Q). An integral curve of a vector field is a curve

γ on Q, that is γ : I → Q, satisfying γ̇(t) = X(γ(t)) (where γ̇(t) denotes d
dt
γ(t)). Given

an initial condition q0, there always exists a unique integral curve φXq0 : I → Q of X with
that initial condition because of the results about existence and uniqueness of solutions for
ordinary differential equations ([33]). The flow of X is a mapping φX : I × Q → Q, such
that φX(t, q0) = φXq0(t) and for every t ∈ I, φXt : Q → Q is a diffeomorphism on Q given by

φXt (q) = φX(t, q). Observe that φX0 = q for every x ∈ M and φXs+r = φXs ◦ φXr for s, r ∈ I,
wherever the composition is defined.

In a similar fashion to the definition of vector fields, a 1-form ω on Q is a mapping
ω : Q → T ∗Q such that πQ ◦ ω = IdQ (in bundle terminology, a 1-form is just a section
of the bundle (T ∗Q, πQ, Q)). In other words, it assigns to each point q ∈ Q a covector
ω(q) ∈ T ∗qQ. The set of all the 1-forms on Q is denoted by Ω1(Q). As is well established
in linear algebra, there always exists a bilinear natural pairing between a vector space V
and its dual vector space V ∗. Here 〈· , ·〉 denotes such a pairing: 〈· , ·〉 : V × V ∗ → R. In
consequence, one always can define a natural pairing between elements of the tangent and
contangent bundles; 〈· , ·〉q : TqQ× T ∗qQ→ R.

In fact, the vector fields and the 1-forms are particular cases of tensor fields on Q. Given
r, s ∈ N∪{0}, an r-contravariant and s-covariant tensor field t on Q is a C∞-section of
T rs (Q) = (TQ⊗ · · ·r · · · ⊗TQ)⊗ (T ∗Q⊗ · · ·s · · · ⊗T ∗Q); that is, it associates to each point
q ∈ Q an R-multilinear mapping:

t(q) :
(
T ∗qQ× · · ·r · · · T ∗qQ

)
× (TqQ× · · ·s · · · TqQ)→ R.

Such a geometric element is also called an (r, s)-tensor field on Q. Thus, a vector field is
a (1, 0)-tensor field and a 1-form is a (0, 1)-tensor field. The set of all tensor fields on Q is
denoted by T(Q). The skew-symmetric s-covariant tensor fields are called s-forms. The set
of all s-forms is denoted by Ωs(Q).
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The alternation map A : T k0 Q→ Ωk(Q) is defined by

A(t)(v1, ..., vk) =
1

k!

∑
σ∈Σk

sign(σ)t(vσ(1), ..., vσ(1)),

where Σk is the set of k−permutations. Is easy to see that A is linear, A
∣∣
Ωk(Q)

= Id and

A ◦A = A.

The wedge or exterior product between α ∈ Ωk(Q) and β ∈ Ωl(Q) is the form α∧β ∈
Ωk+l(Q) defined by

α ∧ β =
(k + l)!

k!l!
A(α⊗ β).

Some important properties of the wedge product are the following:

1. ∧ is bilinear and associative.

2. α ∧ β = (−1)klβ ∧ α, where α ∈ Ωk(Q) and β ∈ Ωl(Q).

The algebra of exterior differential forms, represented by Ω(Q), is the direct sum
of Ωk(Q), k = 0, 1, ..., together with its structure as an infinite-dimensional real vector space
and with the multiplication ∧.

When dealing with exterior differential forms, another important geometric object is
the exterior derivative, represented byd. It is defined as the unique family of mappings
dk(U) : Ωk(U)→ Ωk+1(U) (k = 0, 1, ... and U ⊂ Q open) such that (see [1, 163]):

1. d is a ∧-antiderivation, that is, d is R−linear and d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,
where α ∈ Ωk(Q) and β ∈ Ωl(Q).

2. df = p2 ◦Df , for f ∈ C∞(U), with p2 the canonical projection of TR ' R × R onto
the second factor.

3. d ◦ d = 0.

4. d is natural with respect to inclusions, that is, if U ⊂ V ⊂ Q are open, then d(α
∣∣
U

) =

d(α)
∣∣
U

, where α ∈ Ωk(Q).

Let f : Q→ N be a smooth mapping and ω ∈ Ωk(N). Define the pull-back f∗ω of ω by
f as

f∗ω(q)(v1, ..., vk) = ω(f(q))(Dqf(v1), ..., Dqf(vk)),

where vi ∈ TqQ. Note that the pull-back defines the mapping f∗ : Ωk(Q) → Ωk(Q). The
main properties related with the pull-back are the following:

1. (g ◦ f)∗ = f∗ ◦ g∗, where f ∈ C∞(Q,N) and g ∈ C∞(N,W ).

2. Id∗Q
∣∣
Ωk(Q)

= IdΩk(Q).

3. If f ∈ C∞(Q,N) is a diffeomorphism, then f∗ is a vector bundle isomorphism and
(f∗)−1 = (f−1)∗.
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4. f∗(α ∧ β) = f∗α ∧ f∗β, where f ∈ C∞(Q,N), α ∈ Ωk(N) and β ∈ Ωl(N).

5. d is natural with respect to mappings, i.e., for f ∈ C∞(Q,N), f∗dω = df∗ω.

Given a vector field X ∈ X(Q) and a function f ∈ C∞(Q) the Lie derivative of f with
respect to X, LXf ∈ C∞(Q), is defined as

LXf(q) = df(q)[X(q)].

The operation LX : C∞(Q) → C∞(Q) is a derivation, i.e. it is R−linear and LX(fg) =
LX(f)g + fLX(g), for any f, g ∈ C∞(Q).

Given two vector fields X,Y ∈ X(Q) we may define the R−linear derivation

[LX ,LY ] = LX ◦ LY − LY ◦ LX .

This enables us to define the Lie derivative of Y with respect to X, LXY = [X,Y ] as
the unique vector field that L[X,Y ] = [LX ,LY ]. Some important properties are:

1. LX is natural with respect to restrictions, i.e., for U ⊂ Q open, [X
∣∣
U
, Y
∣∣
U

] = [X,Y ]
∣∣
U

and (Lf)
∣∣
U

= LX
∣∣
U

(f
∣∣
U

), for f ∈ C∞(Q).

2. LX(f Y ) = (LXf)Y + f(LXY ), for f ∈ C∞(Q).

Indeed, the operator LX can be defined on the full tensor algebra of the manifold Q (see
[1, 2, 163]).

There is also another natural operator associated with a vector field X. Let ω ∈ Ωk(Q).
The inner product or contraction of X and ω, iXω ∈ ωk−1(Q), is defined by

iXω(q)(v1, ..., vk−1) = ω(q)(X(q), v1, ..., vk−1),

where vi ∈ TqQ. The operator iX is an ∧−antiderivation, namely, it is R−linear and iX(α ∧
β) = (iXα) ∧ β + (−1)kα ∧ (iXβ), where α ∈ Ωk(Q) and β ∈ Ωl(Q). Also, for f ∈ C∞(Q),
we have that i(f X)α = f(iXα).

Finally, we conclude this section by stating some relevant properties involving d, iX and
LX . For arbitrary X,Y ∈ X(Q), f ∈ C∞(Q) and α ∈ Ωk(Q), we have

1. dLXα = LXdα.

2. iXdf = LXf .

3. LXα = iXdα+ diXα.

4. L(f X)α = fLXα+ df ∧ iXα.

5. i[X,Y ]α = LXiY α− iY LXα.

Once we have introduced the concept of bundle, subbundle, tangent bundle and cotangent
bundle, is easy to present the concepts of distribution and codistribution, which will be
relevant when dealing with nonholonomic mechanics.
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Distributions and codistributions

Definition 1.1.10 (Distribution). A k-dimensional distribution D on a manifold Q,
dim Q = n, is a class of a k-dimensional subspace D(q) of TqQ for each q ∈ Q. D is smooth
if for each q ∈ Q there is a neighborhood U of q and there are k C∞ vector fields X1, ..., Xk

on U which span D at each point of U

In other words, for every q ∈ Q, Dq is a vector subspace of TqQ. The rank of D at
q ∈ Q is the dimension of the subspace Dq. The bundle nature of distributions is shown in
the following diagram:

D

τD ��

� � i // TQ

τQ}}
Q,

where (D, τD, Q) is a subbundle of (TQ, τQ, Q) and i represents the inclusion map (we recall
that if A ⊂ B, where A and B are general sets, the inclusion map i : A ↪→ B is defined
by i(a) = a for any a ∈ A. In the sequel ↪→ will denote an inclusion map.) Some other
interesting definitions related to distributions are:

1. A submanifold S ↪→ Q is said to be an integral manifold of a smooth distribution
D ↪→ TQ if TS = D along the points of S.

2. Let D be a smooth distribution on Q such that through each point of Q there passes
by an integral manifold of D. Then D is completely integrable.

3. A smooth distribution D is involutive if [X,Y ] ∈ Γ(τD) for every X,Y ∈ Γ(τD), that
is, it is closed under the Lie bracket.

Theorem 1.1.11 (Frobenius’ Theorem). A smooth distribution D is completely integrable
if and only if it is involutive.

In a equivalent fashion as for distributions, it is possible to define codistributions, that
is: Let Q be a manifold. A smooth regular codistribution D∗ on T ∗Q is a subbundle of
T ∗Q with k-dimensional fiber. Its bundle nature is shown in the diagram:

D∗

πD∗   

� � i // T ∗Q

πQ}}
Q,

where (D∗, πD∗ , Q) is a subbundle of (T ∗Q, πQ, Q). Given the concept of codistribution, is
possible to define the annihilator of a distribution. Let D ↪→ TQ be a distribution. The
annihilator of D is a codistribution given by:

ann(Dx) = D0
x =

{
α ∈ T ∗qQ | α(v) = 〈α, v〉 = 0, ∀v ∈ Dq

}
for every q ∈ Q.
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1.2 Riemannian geometry

Some good references for more insight in Riemannian Geometry are [20, 30, 99].

Definition 1.2.1 (Riemannian metric). Let Q be a n-dimensional differentiable manifold.
A Riemannian metric G on Q is a (0, 2) tensor field on Q which satisfies the following at
each point q ∈ Q:

1. G(vq, wq) = G(wq, vq), where vq, wq ∈ TqQ, (symmetry).

2. G(vq, vq) ≥ 0, where the equality holds only when vq = 0, (positive-definite).

In short, the Riemannian metric G is a symmetric positive-definite bilinear form at each
q ∈ Q.

The pair (Q,G), where G is a Riemannian metric, is called Riemannian manifold. Just
as in Euclidean geometry, and as its extension, we define the length or norm of any tangent
vector vq ∈ TqQ to be ‖ vq ‖= G(vq, vq)

1
2 . In addition, the metric defines the natural musical

isomorphisms
]G : Ω1(Q)→ X(Q), [G : X(Q)→ Ω1(Q),

where the mapping [G is defined by [G(X) = G(X, ·) : X(Q) → R, such that [G(X)(Y ) =

G(X,Y ). On the other hand, ]G is its inverse, i.e., ]G =
(
[G
)−1

. If f ∈ C∞(Q), we define its
gradient as grad f =] G(df) ∈ X(Q).

If (Q,G) and (Q′,G′) are Riemannian manifolds, a diffeomorphism φ from Q to Q′ is called
an isometry if φ∗ G′ = G. If any such isometry exists, then we say that the manifolds are
isometric. Is easy to check that being isometric is an equivalence relation on the class of
Riemannian manifolds.

In a local chart (U,ϕ) and local coordinates (qi) for Q, the metric has the form

G = Gij dqi ⊗ dqj .

A Riemannian manifold (Q,G) has associated an affine connection, that is, a mapping

∇ : X(Q)× X(Q) → X(Q)

(X,Y ) 7→ ∇(X,Y ) = ∇XY,

where X,Y ∈ X(Q), which satisfies the following properties:

1. it is R-bilinear,

2. ∇f XY = f ∇XY , where f ∈ C∞(Q),

3. ∇Xf Y = f ∇XY + (LXf)Y , where f ∈ C∞(Q).
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The mapping ∇XY is called the covariant derivative of Y with respect to X. Given
local coordinates (qi) on Q, the Christoffel symbols for the affine connection are given
by:

∇
(
∂

∂qr
,
∂

∂qj

)
= ∇ ∂

∂qr

∂

∂qj
= Γir j

∂

∂qi
.

From the above properties of the affine connection and for two vector fields defined by X =
Xi ∂

∂qi
and Y = Y i ∂

∂qi , we have the coordinate expression for the covariant derivative:

∇XY =

(
Xj ∂Y

i

∂qj
+ Γij rX

j Y r

)
∂

∂qi
.

Given a curve in a manifold Q, we may define the parallel transport of a vector along
the curve. Let c : I → Q be that curve (for sake of simplicity we assume that the image is
covered by a single chart (U,ϕ) with local coordinates qi). Let X be a vector field defined
(at least) along c(t)

X|c(t) = Xi (c(t))
∂

∂qi

∣∣∣
c(t)
.

If X satisfies the condition
∇VX = 0, for any t ∈ I

X is said to be parallel transported along c(t), where V is the tangent vector to c(t). In
components, the previous condition is written as

dXi

dt
+ Γij r

dqj

dt
Xr = 0,

where qi are the local components of the curve c(t). If the vector V itself is parallel transported
along c(t), namely if ∇V V = 0, then the curve c(t) is called a geodesic. Geodesics are, in
a sense, the straightest possible curves in a Riemannian manifold. In components, the
geodesic equations becomes

d2qi

dt2
+ Γij r

dqj

dt

dqr

dt
= 0,

where, as before, qi are the coordinates of the curve c(t) (see [30]).

We have considered the affine connection∇X as a mapping between two vector fields on Q.
On the other hand, it can be considered as a derivation and consequently one can naturally
wonder about the definition of such a derivative on function and tensors. The covariant
derivative of f ∈ C∞(Q) is the ordinary directional derivative, namely ∇Xf = X[f ]. Then
the condition

∇X(f Y ) = f ∇XY + (LXf)Y,

can be exactly rewritten as the Leibniz rule

∇X(f Y ) = f ∇XY + (∇Xf)Y.

We require this to be true for any product of tensors,

∇X(t1 ⊗ t2) = (∇Xt1)⊗ t2 + t1 ⊗ (∇Xt2),
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where t1 and t2 are tensor fields of arbitrary types. With these requirements we can compute
the covariant derivative of a one-form ω ∈ Ω1(Q). Since 〈ω, Y 〉 ∈ C∞(Q) for Y ∈ X(Q), we
should have

X[〈ω, Y 〉] = ∇X [〈ω, Y 〉] = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉.

In coordinates we find the expression

(∇Xω)i = Xj ∂ωi
∂qj
−XjΓrj iωr,

which is easily generalizable to any kind of tensor field.

There exists a natural connection on each Riemannian manifold that is particularly suited
to computations in Riemannian geometry. In order to define it is necessary to introduce some
extra concepts. Let (Q,G) be a Riemannian (or pseudo-Riemannian) manifold. A affine
connection ∇ is said to be compatible with G is it satisfies the following product rule for
all vector fields X,Y, Z ∈ X(Q)

∇X(G(Y,Z)) = G(∇XY, Z) + G(Y,∇X , Z).

Lemma 1.2.2. The following conditions are equivalent for a connection ∇ on a Riemannian
manifold

a) ∇ is compatible with G.

b) ∇G ≡ 0.

See [20, 99] for the proof. It turns out that requiring a connection to be compatible
with the metric is not enough to determine a unique connection, so we turn to another key
property. It involves the torsion tensor of the connection, which is the (2, 1) tensor field
τ : X(Q)× X(Q)→ X(Q) defined by

τ(X,Y ) = ∇XY −∇YX − [X,Y ].

A connection is said to be symmetric if its torsion vanishes identically, that is, if

∇XY −∇YX = [X,Y ].

Theorem 1.2.3 (Fundamental Lemma of Riemannian Geometry). Let (Q,G) be a
Riemannian manifold. There exists a unique connection ∇ on Q that is compatible with G

and symmetric.

See [20, 30, 99] for the proof. This connection is called the Riemannian connection
or the Levi-Civita connection of G. In the Levi-Civita case, the Christoffel symbols are
given in terms of the components of the metric as follows:

Γij r =
1

2
Gil
(
∂Gl j
∂qr

+
∂Gl r
∂qj

− ∂Gj r
∂ql

)
.
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1.3 Lagrangian submanifolds

Due to its close relation with symplectic manifolds, perhaps is necessary to introduce sym-
plectic algebra and geometry before going deeper into Lagrangian submanifolds. While Rie-
mannian geometry is based on the study of smooth manifolds that are endowed with a non-
degenerate symmetric tensor, i.e. the metric, symplectic geometry covers the study of smooth
manifolds equipped with a non-degenerate skew-symmetric tensor. For deeper understanding
see [1, 12, 111].

1.3.1 Symplectic algebra and symplectic geometry

Let V be a finite-dimensional R vector space with dim V = l. We say that V is a symplectic
vector space if it is equipped with a symplectic form Ω.

Definition 1.3.1 (Symplectic form). A symplectic form

Ω : V × V → R

is an skew-symmetric and non-degenerate bilinear form; that is it satisfies Ω(v, v) = 0 for all
v ∈ V , and if Ω(v, w) = 0 for all v ∈ V , then w = 0, w ∈ V .

In the case of real vector spaces, it is possible to completely describe a skew-symmetric
bilinear form.

Proposition 1.3.2. If Ω is an anti-symmetric bilinear form of rank r, then r = 2n (where
n is a positive integer) and there is a basis of V relative to which

Ω =

 0 In×n 0
−In×n 0 0

0 0 0

 ,

where In×n is the unit matrix.

From the definition of symplectic form follows that the skew-symmetric form of a sym-
plectic space is full rank, and consequently the dimension of a symplectic space should be
even, i.e., if dim V = l then l = 2n and

Ω =

(
0 In×n

−In×n 0

)
. (1.1)

In other words, there exists a basis
{
ei
}2n

i=1
of V ∗ such that

∑n
i=1 e

i ∧ ei+n. The pair (V,Ω)
is called symplectic vector space. Once the symplectic vector spaces are defined, we can
classify their subspaces. Let W be a linear subspace of (V,Ω). We define its skew-orthogonal
space by

W⊥ := {v ∈ V , Ω(v, w) = 0 for all w ∈W} .

The subspaces of a symplectic manifold are classified in the following definition.
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Definition 1.3.3. 1. A subspace W ⊂ V such that Ω|W = 0 is called isotropic subspace
of (V, ω).

2. A subspace W ⊂ V with Ω|W non degenerate is called a symplectic subspace of V .

3. A subspace W ⊂ V with W⊥ isotropic is called coisotropic.

4. A subspace L ⊂ V which is both isotropic and coisotropic (L⊥ = L) is called a La-
grangian subspace.

Symplectic geometry arises from the globalization of the symplectic algebra. The central
concept is that of a symplectic manifold. In what follows we will assume that P is a smooth
manifold of dimension l and assume as well that it is real.

Definition 1.3.4. P is called a symplectic manifold if there is defined on P a closed nonde-
generate 2-form ΩP ; that is an ΩP ∈ Ω2 (P ) such that

i) dΩP = 0,

ii) on each tangent space TpP , p ∈ P , if ΩP |p (X,Y ) = 0 for all Y ∈ TpP , then X = 0.

From now on, if P is a symplectic manifold its associated symplectic 2-form will be
denoted by ΩP . In addition, if the particular symplectic manifold is the cotangent bundle of
an arbitrary manifold M , that is P = T ∗M , then the associated symplectic 2-form will be
denoted by ΩM . Definition 1.3.4 means that the restrictions of ΩP to each p ∈ P make the
tangent space TpP into a symplectic vector space. From the fact that the dimension of its
tangent space is equal to that of a given manifold, it is already clear that for P a symplectic
manifold dim P = l = 2n. It can be shown (see [12]), that all symplectic manifolds of
the same dimension are locally the same. This is in sharp contrast to the situation in
Riemannian geometry, and indicates that symplectic geometry is essentially a global theory.

Given two symplectic manifolds (P,ΩP ) and (P ′,ΩP ′), let φ : P → P ′ be a smooth map.

Definition 1.3.5. The map φ is called symplectic, or a morphism of symplectic man-
ifolds, so long as

φ∗ΩP ′ = ΩP .

Given a symplectic diffeomorphism φ, φ−1 is also symplectic, and φ is called symplec-
tomorphism. Sp(P ) denotes the group of symplectomorphisms from P to itself.

A main result in symplectic geometry is that of Darboux’s theorem. In its simplest form, it
has the following formulation. To every point p of a symplectic manifold (P,ΩP ) of dimension
2n, there correspond an open neighborhood U of p and a smooth map

φ : U → R2n, with φ∗Ω = ΩP

∣∣
U
,

where Ω0 is the standard symplectic form on R2n (in other words, the form given in propo-
sition (1.3.2) just by considering V = R2n). It follows immediately that for an appropriate
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choice of symplectic coordinates p = (x, y), x = (x1, ..., xn) and y = (y1, ..., yn), ΩP can
be written on U in the manner

ΩP =
n∑
i=1

dxi ∧ dyi.

Proofs of this theorem are given in [3, 12, 56].

From the definition of symplectic manifold and the classification of the subspaces of a
symplectic space given in definition (1.3.3), we arrive to different submanifolds:

Definition 1.3.6. Let (P,ΩP ) be a symplectic manifold and i : L ↪→ P an immersion. We
say L is an isotropic (symplectic, coisotropic) immersed submanifold of (P,ΩP ) if
(Txi) (TxL) ⊂ Ti(x)P is an isotropic (symplectic, coisotropic) subspace for each x ∈ L. The
same terminology applies for submanifolds of P and for subbundles of TP over submanifolds
of P .

A submanifold L ⊂ P is called Lagrangian if it is isotropic and there is an isotropic
subbundle E ⊂ TP

∣∣
L

such that TP
∣∣
L

= TL⊕ E.

Remark 1.3.7. Notice that i : L→ P is isotropic if and only if i∗ΩP = 0. Also note that if
L ⊂ P is Lagrangian, dim L = 1

2dim P and (TxL)⊥ = TxL.

This remark provides us with an alternative way to define a Lagrangian submanifold:

Proposition 1.3.8. Let (P,ΩP ) be a symplectic manifold, L ⊂ P a submanifold and i : L ↪→
P an immersion. Then L is Lagrangian if and only if i∗ΩP = 0 and dim L = 1

2dim P .

See [1] for the proof.

An interesting kind of Lagrangian submanifolds is the following. Let (P,ΩP ) be a sym-
plectic manifold and g : P → P a diffeomorphism. Denote by Graph (g) the graph of g, that
is Graph (g) = {(x, g (x)) , x ∈ P} ⊂ P ×P , and by pri : P ×P → P , i = 0, 1., the canonical

projections. It is well known that
(
P × P, Ω̃P

)
, where Ω̃P = pr∗1 ΩP −pr∗0 ΩP , is a symplectic

manifold. Let ig : Graph (g) ↪→ P × P be the inclusion map, then

i∗gΩ̃P = (pr0)∗ (g∗ΩP − ΩP ) .

It is quite clear that dim (Graph g) = 1
2 dim(P ×P ). Moreover, if g is a symplectomorphism

besides a diffeomorphism, then g∗ΩP = ΩP and consequently i∗gΩ̃P = 0. Finally we can
conclude that if g is a symplectomorphism then Graph g is a Lagrangian submanifold of
P × P .

Let consider now g = ϕ, P = T ∗Q the cotangent bundle of a given manifold Q and ΩP =
ΩQ. As seen in the previous paragraph, every symplectomorphism ϕ : T ∗Q→ T ∗Q generates
a Lagrangian submanifold Graph ϕ ⊂ (T ∗Q×T ∗Q, Ω̃Q), with Ω̃Q = pr∗1 ΩQ− pr∗0 ΩQ. These
Lagrangian submanifolds are generically called canonical relations refering to the map ϕ
(this development is again used in §2.2.2 in order to define the generating function of a
symplectomorphism).
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1.4 Lie groups and Lie algebras

In this section, we will recall the definition of Lie group and Lie algebra.

1.4.1 Lie group

Roughly speaking, a Lie group is a manifold on which the group operations, product and
inverse, are defined. Lie groups play an extremely important role in the theory of fibre
bundles an also find vast applications in physics, being a crucial notion in the concept of
symmetry (see §2.1.3 and §2.2 for further details).

Definition 1.4.1. A Lie group G is a differentiable manifold which is endowed with a group
structure such that the group operations

1. · : G×G→ G; (g1, g2) 7→ g1 · g2,

2. −1 : G→ G; g 7→ g−1,

are differentiable.

Remark 1.4.2. It can be shown that G has a unique analytic structure with which the product
and the inverse operations are written as convergent power series.

The unit element of a Lie group is written as e. The dimension of a Lie group G is
defined to be the dimension of G as a manifold. The product symbol may be omitted and
g1 · g2 is usually written as g1g2.

Let G be a Lie group and H ⊂ G a Lie subgroup of G. Define the equivalence relation
∼ by g ∼ g′ if there exists an element h ∈ H such that g′ = gh. An equivalence class [g] is
a set {gh |h ∈ H}. The coset space G/H is a manifold (not necessarily a Lie group) with
dim G/H = dim G− dim H. G/H is a Lie group if H is a normal subgroup of G, that
is, if ghg−1 ∈ H for any g ∈ G and h ∈ H. In fact, take equivalence classes [g], [g′] ∈ G/H
and construct the product [g][g′] = [gg′]. If the group structure is well defined in G/H, the
product must be independent of the choice of the representatives. Let gh and g′h′ be the
representatives of [g] and [g′] respectively. Then ghg′h′ = gg′h′′h′ ∈ [gg′] where the equality
follows since there exists h′′ ∈ H such that hg′ = g′h′′.

1.4.2 Lie algebra

Definition 1.4.3. A Lie algebra over R is a real vector space g together with a bilinear
operation [·, ·] : g× g→ g such that, for all ξ1, ξ2, ξ3 ∈ g,

1. [ξ1, ξ2] = −[ξ2, ξ1].

2. [ξ1, [ξ2, ξ3]] = [ξ3, [ξ1, ξ2]] = [ξ2, [ξ3, ξ1]].

There exists a Lie algebra g associated to a Lie group G. We will perform this relationship
by means of the following definition:



34 Lie groups and Lie algebras

Definition 1.4.4. Let h and g be elements of a Lie group G. The right-translation Rh :
G→ G and the left-translation Lh : G→ G are defined by

Rh(g) = gh, Lh(g) = hg. (1.2)

By definition, Rh and Lh are diffeomorphisms from G to G. Hence, the maps Lh : G→ G
and Rh : G → G induce TgLh : TgG → ThgG and TgRh : TgG → TghG. Since these
translations give equivalent theories, we are concerned mainly with the left-translation in the
following. The analysis based on the right-translation can be carried out in a similar manner.

Given a Lie group G, there exists a special class of vector fields characterized by an invari-
ance under group action (on the usual manifold there is no canonical way of discriminating
some vector fields from the others).

Definition 1.4.5. Let X be a vector field on a Lie group, that is X ∈ X(G). X is said to be
a left-invariant vector field if

TgLhX(g) = X(hg).

A vector ξ ∈ TeG defines a unique left-invariant vector field
←−
ξ throughout G by

←−
ξ (g) = TeLgξ, g ∈ G.

In fact, it is possible to verify that
←−
ξ (hg) = TeLhgξ = Te(Lh ◦ Lg)ξ = (TeLh) ◦ (TeLg)ξ =

TgLh
←−
ξ (g). Conversely, a left-invariant vector field

←−
ξ defines a unique vector ξ =

←−
ξ (e) ∈

TeG. Let us denote the set of left-invariant vector fields on G by g. The map TeG → g

defined by ξ 7→
←−
ξ is a isomorphism, and it follows that the set of left-invariant vector fields

is a vector space isomorphic to TeG. In particular, dim g = dim G. Moreover, the following
property holds

[
←−
ξ ,←−η ] =

←−−
[ξ, η],

that is, the Lie bracket of two left-invariant vector fields is itself a left-invariant vector field.

Since g is a set of vector fields, it is a subset of X(G) and the Lie bracket is also defined
in g. We show now that g is closed under the Lie bracket. Take two points g and hg = Lh(g)
in G. If we apply TgLh to the Lie bracket [ξ, η] of ξ, η ∈ g, we have that

TgLh

(←−−
[ξ, η](g)

)
= [TgLh

←−
ξ (g), TgLh

←−η (g)] =
←−−
[ξ, η](hg),

where the left-invariance of
←−
ξ ,←−η has been used. Thus [ξ, η] ∈ g, i.e. g is closed under the

Lie bracket. Finally, the Lie algebra is defined as the set of left-invariant vector fields g
with the Lie bracket.

Definition 1.4.6. The set of left-invariant vector fields g with the Lie bracket [·, ·] : g×g→ g
is called the Lie algebra of a Lie group G.

We denote the Lie algebra of a Lie group by the corresponding lower-case German gothic
letter. For instance, so(3) is the Lie algebra of the Lie group SO(3), which is widely used in
§5.
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1.4.3 The adjoint representation

Definition 1.4.7. Take any h ∈ G and define a homomorphism Adh : G → G by the
conjugation

Adh(g) = Lh ◦Rh−1g = hgh−1,

for g ∈ G. This homomorphism is called the adjoint action of G on G.

Roughly speaking, the adjoint action measures the non-commutativity of the multiplica-
tion of the Lie group: if G is Abelian, then the adjoint action Adh is simply the identity
mapping on G. In addition, when considering motion along non-Abelian Lie groups, a choice
must be made as to whether to represent translation by left or right multiplication. The
adjoint action provides the transition between these two possibilities.

Definition 1.4.8. The adjoint action of G on g is defined as the map Ad : G × g → g
given by

Ad(h, ξ) = Adhξ = Th−1Le(TeRg−1ξ),

for h ∈ G and ξ ∈ g

Definition 1.4.9. The adjoint action of g on g is given by the map ad : g× g→ g defined
by

ad(ξ, η) = adξη = [ξ, η] =
d

dt

∣∣∣
t=0

(Adexp(tξ)η),

for ξ, η ∈ g.

1.4.4 Action of a Lie group on a manifold

Let Q be a manifold and let G be a Lie group. A (left) action of a Lie group G is a smooth
mapping Φ : G×Q→ Q such that

i) Φ(e, q) = q for all q ∈ Q, and

ii) Φ(g,Φ(h, q)) = Φ(gh, q) for all g, h ∈ G and q ∈ Q.

A right action is a smooth mapping Ψ : Q × G → Q that satisfies Ψ(q, e) = q and
Ψ(Ψ(q, g), h) = Ψ(q, gh) for all g, h ∈ G and q ∈ Q.

The notion of action of a Lie group on a manifold leads to the definition of infinitesimal
generator.

Definition 1.4.10. Suppose Φ : G×Q→ Q is an action. For ξ ∈ g, the map Φξ : R×Q→ Q,
defined by Φξ(t, q) = Φ(exp(tξ), q), where exp : g → G is the usual exponential map defined
below, is an R−action on Q. In other words, Φexp(tξ) : Q → Q is a flow on Q. The
corresponding vector field ξQ ∈ X(Q), given by

ξQ(q) :=
d

dt

∣∣
t=0

Φ(exp(tξ), q),

is called the infinitesimal generator of the action Φ corresponding to ξ.
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To complete this subsection is necessary to introduce the definition of exponential map.

Definition 1.4.11. Let G be a Lie group and g its associated Lie algebra. For all ξ ∈ g, let

γξ : R→ G denote the integral curve of the left-invariant vector field
←−
ξ induced by ξ, which

is defined uniquely by claiming

←−
ξ (e) = ξ, γξ(0) = e, γ′ξ(t) =

←−
ξ (γξ(t)) for all t ∈ R.

The map
exp : g→ G, exp(ξ) = γξ(1)

is called the exponential map of the Lie algebra g in the Lie group G.

1.5 Lie algebroids and Lie groupoids

In this section, we will recall the definition of a Lie algebroid and of the differential calculus
associated to them. Moreover, we illustrate the theory with several examples

1.5.1 Lie algebroids

Definition 1.5.1. A Lie algebroid A over a manifold Q is a vector bundle τ : A → Q
together with a Lie bracket [[·, ·]] on the space Γ(A) of the global cross sections of τ : A → Q
and a bundle map ρ : A → TQ, called the anchor map, such that if we also denote by
ρ : Γ(A)→ X(Q) the homomorphism of C∞(Q,R)- modules induced by the anchor map then

[[X, fY ]] = f [[X,Y ]] + ρ(X)(f)Y,

for X,Y ∈ Γ(A) and f ∈ C∞(Q,R). The triple (A, [[·, ·]], ρ) is called a Lie algebroid over
M (see [114, 145] for further details).

Remark 1.5.2. If (A, [[·, ·]], ρ) is a Lie algebroid over Q then the anchor map ρ : Γ(A)→ X(Q)
is an homomorphism between the Lie algebras (Γ(A), [[·, ·]]) and (X(Q), [·, ·]).

Given local coordinates (qi) in the base manifold and a local basis of sections (eα) of A,
then local coordinates of a point a ∈ A are (qi, yα) where a = yαeα(τ(a)). In local form,
the Lie algebroid structure is determined by the local functions ρiα and Cγαβ on Q. Both are
determined by the relations:

ρ(eα) = ρiα
∂

∂qi
,

[[eα, eβ]] = Cγαβeγ ,

and they satisfy the following equations

ρjα
∂ρiβ
∂qj
− ρjβ

∂ρiα
∂qj

= ρiγC
γ
αβ,

∑
cyclic (α,β,γ)

(
ρα
∂Cνβγ
∂qi

+ CµβγC
ν
αµ

)
= 0.

We present some usual examples of Lie algebroids:
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1. Real Lie algebras of finite dimension: Let g be a Lie algebra. Then it is clear that g is
a Lie algebroid over a single point.

2. The tangent bundle: Let TQ be the tangent bundle of a manifold Q. Then, the triple
(TQ, [·, ·], Id) is a Lie algebroid over Q, where Id : TQ→ TQ is the identity map.

Lie algebroids morphisms

Let (A, [[·, ·]], ρ) (respectively, (A′, [[·, ·]]′, ρ′) )be a a Lie algebroid over a manifold Q (respec-
tively, Q′) and suppose that Ψ : A→ A′ is a vector bundle morphism over a map Ψ0 : Q→ Q′.
Then, the following diagram is commutative

A
Ψ //

��

A′

��
Q

Ψ0 // Q′

Now, if X ∈ Γ(A) then

Ψ ◦X =
∑
i

fi(X
′
i ◦Ψ0),

for suitable fi ∈ C∞(Q,R) and X ′i ∈ Γ(A′). We refer to the previous relation as the
Ψ−decomposition of X.

The pair (Ψ,Ψ0) is said to be a Lie algebroid morphism if

ρ′ ◦Ψ = TΨ0 ◦ ρ,

Ψ ◦ [[X,Y ]] =
∑
i,j

figj([[X
′
i, Y

′
j ]]) +

∑
j

ρ(X)(gj)(Y
′
j ◦Ψ0)

−
∑
i

ρ(Y )(fi)(X
′
i ◦Ψ0), (1.3)

for X,Y ∈ Γ(A), where TΨ0 : TQ→ TQ′ is the tangent map of Ψ0 and

Ψ ◦X =
∑
i

fi(X
′
i ◦Ψ0), Ψ ◦ Y =

∑
i

gi(Y
′
i ◦Ψ0),

are Ψ−decompositions of X and Y respectively. The right hand side of (1.3) is independent
of the Ψ−decompositions of X and Y (for more details, see [64])

If Q = Q′, Ψ0 is the identity map. Then Ψ ◦X is a section of A′. In consequence, (1.3)
is equivalent to the condition

Ψ ◦ [[X,Y ]] = [[Ψ ◦X,Ψ ◦ Y ]]′,

for X,Y ∈ Γ(A).
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The prolongation of a Lie algebroid over a fibration

Let (A, [[·, ·]], ρ) be a Lie algebroid over a manifold Q and π : P → Q be a fibration. We
consider the subset of A× TP

TAp P = {(b, v) ∈ Aq × TpP | ρ(b) = Tpπ(v)} ,

where Tπ : TP → TQ is the tangent map to π, p ∈ Pq and π(p) = q ∈ Q. We will frequently
use the redundant notation (p, b, v) to denote the element (b, v) ∈ TAp P . TAP , the union of

TAp P over all p′s, is a vector bundle over P and the vector bundle projection τAP is just the

projection over the first factor. The anchor of TAP is the projection onto the third factor,
that is, the map ρπ : TAP → TP given by ρπ(p, b, v) = v. The projection onto the second
factor will be denoted by Tπ : TπP → A, and it is a morphism of Lie algebroids over π.
Explicitly Tπ(p, b, v) = b.

An element z ∈ TAP is said to be vertical if it projects to zero, that is Tπ(z) = 0.
Therefore it is of the form (p, 0, v), with π−vertical vector tangent to P at p.

Given local coordinates (qi, uE) (here E is just a super(sub)-index) on P and a local basis
{eα} of sections of A, we can define a local basis {Xα,ΦE} of sections of TAP by

Xα(p) =

(
p, eα(π(p)), ρiα

∂

∂qi

∣∣∣
p

)
, ΦE(p) =

(
p, 0,

∂

∂uE

∣∣∣
p

)
.

If z = (p, b, v) is an element of TAP , with b = zαeα, then v is of the form v = ρiαz
α ∂
∂qi

+vE ∂
∂uE

,
and we can write

z = zαXα(p) + vEΦE(p).

Vertical elements are linear combinations of {ΦE}.
The anchor map φπ applied to a section Z of TAP with local expression Z = ZαXα +

V EΦE is the vector field on P whose coordinate expression is

ρπ(Z) = ρiαZ
α ∂

∂qi
+ V E ∂

∂uE
.

Next, we will see that it is possible to induce a Lie bracket structure on the space of sections
of TAP . For that, we say that a section Ỹ of τAP : TAP → P is projectable if there exists a
section Y of τ : A → M and a vector field U ∈ X(P ) which is π−projectable to the vector
field ρ(X) and such that Ỹ (p) = (Y (π(p), U(p))), for all p ∈ P . For such projectable section
Ỹ , we will use the following notation Ỹ ≡ (Y,U). It is easy to prove that one may chose a
local basis of projectable sections Γ(τAP ).

The Lie bracket of two projectable sections Z1 = (Y1, U1) and Z2 = (Y2, U2) is that given
by

[[Z1, Z2]]π(p) = (p, [[Y1, Y2]](x), [U1, U2](p)), p ∈ P, q = π(p).

Since any section of TAP can be locally written as a linear combination of projectable sections,
the definition of a Lie bracket for arbitrary sections of TAP follows. In particular, the Lie
bracket of the elements of the basis are

[[Xα, Xβ]]π = CγαβXγ , [[Xα,ΦE ]]π = 0, [[ΦE ,ΦB]]π = 0,
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and, therefore, the exterior differential is determined by

dqi = ρiαX
α, duE = ΦE ,

dXγ = −1
2C

γ
αβX

α ∧Xβ, dΦE = 0,

where
{
Xα,ΦE

}
is the dual basis of {Xα,ΦE}.

The Lie algebroid TAP is called the prolongation of A over π or the A−tangent
bundle to π. For further details see [64, 105, 127].

1.5.2 Lie groupoids

The global objects corresponding to Lie algebroids are Lie groupoids. We recall the definition
of a Lie groupoid and some generalities about them are explained (for more details see [114]).
We also discuss some examples which will be interesting in the sequel.

Definition 1.5.3. A groupoid, denoted by G ⇒ Q, consists of two sets G and Q, called
respectively the groupoid and the base, together with two maps α and β from G to Q, called
respectively the source and target projections, a map ε : Q → G , called the inclusion, a
partial multiplication m : G(2) = {(g, h) ∈ G×G/α(g) = β(g)} → G and a map i : G →
G, called the inversion, satisfying the following conditions:

i) α(m(g, h)) = α(h) and β(m(g, h)) = β(g), for all (g, h) ∈ G(2) (which is called the set
of composable pairs),

ii) m(g,m(h, k)) = m(m(g, h), k), for all g, h, k ∈ G such that α(g) = β(h) and α(h) =
β(k),

iii) α(ε(q))=β(ε(q)) = q, for all q ∈ Q,

iv) m(g, ε(α(g))) = g and m(g, ε(β(g))) = g, for all g ∈ G,

v) m(g, i(g)) = ε(β(g)) and m(i(g), g) = ε(α(g)), for all g ∈ G.

If G and Q are manifolds, G⇒ Q is a Lie groupoid if:

i) α and β are differentiable submersions,

ii) m, ε, i are differentiable maps.

From the last two conditions, it follows that m is a submersion, ε is an immersion and i is a
diffeomorphism. In fact, i2 = Id. From now on, we will usually write gh for m(g, h) and g−1

for i(g). Moreover, if q ∈ Q then Gq = α−1(q) (resp., Gq = β−1(q)) will be said the α−fiber
(resp., the β−fiber) of q. Furthermore, since ε is an immersion, we will identify M with ε(Q).

Given a Lie groupoid G⇒ Q and an element g ∈ G, we can define the left-translation
Lg : Gβ(g) → Gα(g) and right-translation Rg : Gα(g) → Gβ(g) by g defined as

Lg(h) = m(g, h) = gh, Rg(h) = m(h, g) = hg. (1.4)
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Using these translations, and imitating the case of Lie groups, one may introduce the notion
of a left (right)-invariant vector field in a Lie groupoid. Given a Lie groupoid G ⇒ Q, a
vector field ξ ∈ X(G) is left-invariant if ξ is α−vertical and (ThLg)(ξ(h)) = ξ(gh) for all
(g, h) ∈ G(2). Similarly, ξ is right-invariant if ξ is β−vertical and (ThRg)(ξ(h)) = ξ(hg) for
all (h, g) ∈ G(2).

Under these considerations, we may consider the vector bundle AG→ Q, whose fiber at
a point q ∈ Q is AqG = Tε(q)G. It is easy to prove that there exists a bijection between the
space Γ(AG) and the set of left-invariant (respectively, right-invariant) vector fields on G. If
X is a section of AG, the corresponding left-invariant (respectively, right-invariant) vector

field on G will be denoted by
←−
X (respectively,

−→
X ). Using the above facts, we may introduce

a Lie algebroid structure ([[·, ·]], ρ) on AG, which is defined by

←−−−−
[[X,Y ]] = [

←−
X,
←−
Y ], ρ(X)(q) = Tε(q)α(X(q)),

for X,Y ∈ Γ(AG) and q ∈ Q. Note that

−−−−→
[[X,Y ]] = −[

−→
X,
−→
Y ], [

−→
X,
←−
Y ] = 0.

As a corollary, we can conclude that it is always possible to find a Lie algebroid AG associated
to a Lie groupoid G⇒ Q in the manner we have just showed (the converse is not true [40]).

We introduce now some examples of Lie groupoids:

1. Lie groups: Any Lie group G is a Lie groupoid over {e}, the identity element of G. The
Lie algebroid associated with G is just the Lie algebra g of G.

2. The banal groupoid: Let Q be a differentiable manifold. The product manifold Q×Q
is a Lie groupoid over M in the following way: α is the projection onto the second
factor and β is the projection onto the first factor; ε(q, q) = (q, q) for all q ∈ Q and
m((q, q′), (q′, q′′)) = (q, q′′). Q ×Q ⇒ Q is called the banal groupoid. Its associated
Lie algebroid is the tangent bundle TQ of Q.

3. The direct product of Lie groupoids: If G1 ⇒ Q1 and G2 ⇒ Q2 are Lie groupoids, then
G1 ×G2 ⇒ Q1 ×Q2 is a Lie groupoid in a natural way.

4. Reduced systems: Consider the set (Q × Q) × G, where G is a Lie group and Q a
differentiable manifold. The Lie group structure (Q×Q)×G⇒ Q is given by

· α
(
((q, q′), g)

)
= q,

· β
(
((q, q′), g)

)
= q′,

· m
(
((q, q′), g), ((q′, q′′), h)

)
= ((q, q′′), gh),

· ε(q) = ((q, q), e),

· i
(
((q, q′), g)

)
= ((q′, q), g−1).
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Lie groupoid morphisms

Given two Lie groupoids G⇒ Q and G′ ⇒ Q′, a morphism of Lie groupoids is a smooth
map Φ : G→ G′ such that if (g, h) ∈ G(2) then (Φ(g),Φ(h)) ∈ G′(2) and Φ(gh) = Φ(g)Φ(h).
A morphism of Lie groupoids Φ induces a smooth map Φ0 : Q → Q′ in such a way that
α′ ◦Φ = Φ0 ◦ α, β′ ◦Φ = Φ0 ◦ β and Φ ◦ ε = ε′ ◦Φ0; α, β and ε (resp., α′, β′ and ε′) being the
projections and the inclusion in the Lie groupoid G ⇒ Q (resp., G′ ⇒ M ′). If (Φ,Φ0) is a
morphism between the Lie groupoids G⇒ Q and G′ ⇒ Q′, and AG→ Q (resp., AG′ → Q′)
is the Lie algebroid associated to G (resp., G′) then (Φ,Φ0) induces, in a natural way, a
morphism (A(Φ),Φ0) between the Lie algebroids AG and AG′ (see [64, 114])

The prolongation of a Lie groupoid over τ∗ : A∗G→ Q

An interesting example of Lie groupoid is the prolongation of a Lie groupoid over the
vector bundle τ∗ : A∗G→ Q, which will be used in §5. Given a Lie groupoid G⇒ Q we may
construct the associated Lie algebroid τ : AG −→ Q, and its dual bundle τ∗ : A∗G −→ Q.
Consider the set

Pτ
∗
G = A∗G τ∗×α G β×τ∗ A∗G .

In Reference [118] (see also [154]) this set is called the prolongation of G over τ∗. Pτ
∗
G

is a Lie groupoid over A∗G with structure maps

· ατ∗ : Pτ
∗
G→ A∗G; ατ

∗
(µ, g, µ′) = µ,

· βτ∗ : Pτ
∗
G→ A∗G; βτ

∗
(µ, g, µ′) = µ′,

· ετ∗ : G→ Pτ
∗
G; ετ

∗
(µ) = (µ, ε(τ∗(µ)), µ),

· mτ∗ : (Pτ
∗
G)(2) → Pτ

∗
G; mτ∗ ((µ, g, µ′), (µ′, h, µ′′)) = (µ, gh, µ′′),

· iτ∗ : Pτ
∗
G −→ Pτ

∗
G; iτ

∗
((µ, g, µ′)) = (µ′, g−1, µ).

In the particular case when G is a Lie group we obtain the Lie groupoid g∗ ×G× g∗ ⇒ g∗.

Now, denote by τ : AG −→ Q the Lie algebroid associated to G, and by A(Pτ
∗
G)→ A∗G

the Lie algebroid associated to Pτ
∗
G. It is easy to show that

Aµ(Pτ
∗
G) ≡ {(aε(τ∗(µ)), Yµ) ∈ Aτ∗(µ)G× TµA∗G |

(Tµτ
∗)(Yµ) = (Tε(τ∗(µ))β)(aε(τ∗(µ)))},

where, obviously, aε(τ∗(µ)) ∈ Aτ∗(µ)G and µ ∈ A∗G. A section Z ∈ Γ(A(Pτ
∗
G)) is expressed

as
Z(µ) = (X(τ∗(µ)), Y (µ)),

where X ∈ Γ(AG) and Y ∈ X(A∗G) verify that Tβ(X) = Tτ∗(Y ).

Therefore, it is easy to show, from the definition of mτ∗ that

←−
Z (µ, g, µ′) = (−Y (µ),

←−
X (g),0µ′)

−→
Z (µ, g, µ′) = (0µ,

−→
X (g), Y (µ′))
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Chapter 2

Continuous Lagrangian and
Hamiltonian mechanics

Classical mechanics deals with the dynamics of particles, rigid bodies, continuous media
(fluid, plasma, and solid mechanics), and other fields (such as electromagnetism, gravity,
etc.) This theory also plays a crucial role in quantum mechanics, in control theory and
other areas of physics, engineering and even chemistry and biology. It begins with a long
tradition of qualitative investigation culminating with Kepler and Galileo. Following this
is the period of quantitative theory, represented by the works of Newton, Euler, Lagrange,
Laplace, Hamilton and Jacobi. The neoqualitative period began with Poincaré and lasts to
the present. It consists primarily in the amplification of the geometric methods of Poincaré,
the application of these methods to the qualitative questions of the previous period and the
consideration of new qualitative questions that could not previously be asked.

Throughout history, mechanics has also played a key role in the development of mathemat-
ics. Starting with the creation of calculus stimulated by Newton’s mechanics, it continues
today with exciting developments in group representations, geometry and topology; these
mathematical developments in turn are being applied to interesting problems in physics and
engineering. An instance of this role is the mentioned work by Poincaré, which culminated
in modern differential geometry and topology.

Mechanics has two main branches, Lagrangian mechanics and Hamiltonian mechan-
ics. In one sense, Lagrangian mechanics is more fundamental since it is based on variational
principles and it is what generalizes most directly to the general relativistic context. In an-
other sense, Hamiltonian mechanics is more fundamental, since it is based directly on the
energy concept and it is what is more closely tied to quantum mechanics. Fortunately, in
many cases these branches are equivalent.

This chapter is devoted to develop both branches from geometrical and variational per-
spectives.

43
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2.1 Lagrangian mechanics

The Lagrangian formulation of mechanics is for simplicity set in a finite dimensional manifold
(the infinite dimensional case is treated for instance in [65, 123]), which will be denoted by
Q, called the configuration space, whose tangent bundle TQ describes the states (position
and velocity) of the system. Due to the important role that TQ is going to play in this
representation of mechanics, we detail in §2.1.1 the basics of its geometry.

2.1.1 The geometry of tangent bundle

Through this subsection, Q denotes an n-dimensional smooth manifold. Local coordinates in
Q are denoted

(
qi
)
, i = 1, ..., n, and the induced adapted coordinates of TQ and TTQ (we

recall here that TQ is also a manifold and consequently we can consider its tangent bundle)
are denoted (qi, vi) and (qi, vi, q̇i, v̇i) respectively. If we restrict our system to TQ, along this
thesis the coordinates vi will be also denoted by q̇i making no difference. According to this,
vectors vq ∈ TqQ and Vq ∈ Tvq(TQ) are of the form

vq = vi
∂

∂qi

∣∣∣
q

and Vq = q̇i
∂

∂qi

∣∣∣
vq

+ v̇i
∂

∂qi

∣∣∣
vq
.

As was established before τQ : vq ∈ TqQ 7→ q ∈ Q denotes the natural projection of
TQ onto Q. Then, given a tangent vector Vq ∈ TvqTQ, we have that τTQ(Vq) = vq. The
commutative projection structure is defined by the following diagram:

TTQ
TτQ //

τTQ

��

TQ

τQ

��
TQ τQ

// Q,

which can be expressed in local coordinates as:

τQ(qi, vi) = (qi), τTQ(qi, vi, q̇i, v̇i) = (qi, vi) and TτQ(qi, vi, q̇i, v̇i) = (qi, q̇i).

Definition 2.1.1. Let vq ∈ TqQ. The vertical lift of vq at wq ∈ TqQ is the tangent vector
v∨wq ∈ TwqTQ given by

v∨wq(f) =
d

dt
f(wq + tvq)|t=0, ∀f ∈ C∞(TqQ).

Given a smooth function g ∈ C∞(Q),

(TwτQ)
(
v∨w
)

(f) = v∨w(g ◦ τq)

=
d

dt
(g ◦ τQ)(w + tv)|t=0

=
d

dt
g(q)|t=0

= 0,
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where, for convenience, we have omitted the subscript q in the elements belonging to TqQ.
The vertical lift may also be seen as a morphism X ∈ X(Q) 7→ X∨ ∈ X∨(TQ), where X∨(TQ)
is the module of vector fields over TQ that are vertical with respect to the projection τQ. In
local coordinates, if v = (qi, vi) and w = (qi, wi), then

v∨w = (qi, wi, 0, vi)

for the induced adapted local coordinates of TTQ.

Definition 2.1.2. The vertical endomorphism is the linear map S : TTQ→ TTQ that,
for any vector V ∈ TTQ, gives the value

S(V ) = ((TvτQ) (V ))∨ ,

where v = τTQ(V ) ∈ TQ.

In adapted coordinates (qi, vi) of TQ, the vertical endomorphism has the local expression

S = dqi ⊗ ∂

∂vi
or S(qi, vi, q̇i, v̇i) = (qi, vi, 0, q̇i).

Definition 2.1.3. The Liouville or dilation vector field is the vector field 4 ∈ X(TQ)
defined by

4v =
(
v∨
)
v
,

for any v ∈ TQ.

Another way to define the Liouville vector field is as the infinitesimal generator of the
1-parameter group of transformations φt : v ∈ TQ 7→ etv ∈ TQ. This definition can be easily
translated to any vector bundle.

Definition 2.1.4 (SODE). A second order vector field or differential equation (usu-
ally abbreviated SODE) is a vector field X ∈ X(TQ) such that TτQ ◦X = IdTQ.

In adapted coordinates (qi, vi) of TQ, a SODE is a vector field

X = Xi ∂

∂qi
+ Y i ∂

∂vi
such that Xi = vi.

Thus, neither the Liouville vector field nor the vertical lift of a vector field are SODEs.
Nevertheless, SODEs are characterized by the equation

S(X) = 4.

Definition 2.1.5. Given a smooth curve c : I → Q, its first lift to TQ is the smooth curve
c(1) : I → TQ such that (

c(1)(t0)
)

(f) =
d

dt
(f ◦ c)|t=t0 .

In local adapted coordinates c(1) = (ci, dci
dt

). Sometimes we will use the notation c(1) = ċ.
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Proposition 2.1.6. A vector field X ∈ X(TQ) is a SODE if and only if the integral curves
of X are lifts of their own projections to Q; that is, if c̃ is an integral curve of X, then

c̃ = (τQ ◦ c̃)(1) .

The curve c = τQ ◦ c̃ : I → Q is called a base integral curve of X or a solution of the
SODE given by X. In that sense, the previous equation can be rewritten as c̃ = c(1).

If c̃ : I → TQ is an integral curve of a SODE X ∈ X(TQ) locally given by X =
(qi, vi, vi, ai) and c : I → Q denotes its base integral curve, then along c̃(t) X satisfies
the following:

qi = ci, vi =
dci

dt
and ai =

d2ci

dt2
.

Alternatively, the base integral curve c of c̃ satisfies the system of second order differential
equations

d2ci

dt2
= ai(ci,

dci

dt
),

which intrinsically can be defined by

dc̃

dt
= X(c̃(t)),

where X is a SODE.

2.1.2 Variational approach to Lagrangian formalism

The main objective of classical mechanics is to seek for trajectories that describe the motion
of our system. It is well-known that there exists a variational procedure to obtain these
trajectories. Thus, we will consider twice differentiable curves c : [0, T ]→ Q joining two fixed
points q0, q1 ∈ Q. The set of such curves is denoted by

C2([0, T ], Q, q0, q1) =
{
c ∈ C2([0, T ], Q) | c(0) = q0 , c(T ) = q1

}
, (2.1)

or C2(q0, q1) as a shorthand notation. Given c ∈ C2(q0, q1), denote by c(1) its lift to TQ
(see definition 2.1.5). If (qi, vi) are adapted coordinates to TQ, then c(1)(t) = (qi(t), vi(t)).
Locally,

c(1)(t) = (ci(t), ċi(t)),

where ci(t) = (qi ◦ c(1))(t) and ċi(t) = (vi ◦ c(1))(t) = (dci/dt)(t).

One of the main ingredients of Lagrangian mechanics is, obviously, the Lagrangian func-
tion L : TQ→ R, which is a smooth function defined usually as the kinetic energy minus the
potential energy of the system. Given the Lagrangian function, two fixed points q0, q1 ∈ Q
and a fixed time interval [0, T ], the associated action integral is the real valued map AL

defined on C2([0, T ], Q, q0, q1) given by

AL(c) =

∫ T

0
L(c(1)(t)) dt =

∫ T

0
L(qi(t), vi(t)) dt. (2.2)
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As will be presented soon, the equations of motion of a system described by the Lagrangian
function L are obtained by variational methods. Therefore, we must describe how AL changes
under small variations of c and what these variations are. It can be shown that C2(q0, q1)
may be endowed with a infinite-dimensional smooth manifold structure (see [13] for more
details). Namely

TcC
2(q0, q1) =

{
δc ∈ C1([0, T ], TQ) | τQ ◦ δc ≡ c, δc(0) = δc(T ) = 0

}
. (2.3)

Definition 2.1.7. Let c ∈ C2(q0, q1), a variation of c is a curve cs ∈ C2(q0, q1), s ∈ [−ε, ε]
for ε > 0 belonging to R, such that c0 ≡ c. An infinitesimal variation of c is a vector field
δc along c which vanishes at the endpoints δc(0) = δc(T ) = 0.

Taking into account this definition, the tangent space TcC
2(q0, q1) at a curve c ∈ C2(q0, q1)

is the set of infinitesimal variations δc of c, which are induced by variations cs of c. More
precisely,

δc(t) =
dcs(t)

ds

∣∣
s=0

,

where t ∈ [0, T ] is fixed.

Definition 2.1.8. Let F : C2(q0, q1)→ R be a functional of class C1. A critical point of F
is a curve c ∈ C2(q0, q1) such that

d(F ◦ cs)
ds

∣∣
s=0

= 0,

for any variation cs of c.

Equivalently, c is a critical point of F if and only if dF(c) · δc = 0 for any infinitesimal
variation δc.

Under these considerations, we are able to formulate the variational Hamilton’s principle,
which states that the dynamics of our physical system is determined from the variational
problem related to the integral action AL:

Theorem 2.1.9 (Continuous Hamilton’s principle). The motion of a particle in the
physical system defined by the Lagrangian function L : TQ → R is a critical point of the
action integral AL, that is, a curve c ∈ C2(q0, q1) such that δAL(c) = 0.

An easy calculation helps us to write the Hamilton’s principle in terms of the Lagrangian
function, giving also the well-known Euler-Lagrange equations.

Theorem 2.1.10. Consider a given Lagrangian system where L ∈ C2(TQ). A twice differ-
entiable curve c : [0, T ] → Q joining q0, q1 ∈ Q is a motion of the system if and only if the
lift c(1) of c satisfies the differential equations

∂L

∂qi
◦ c(1) − d

dt

(
∂L

∂vi
◦ c(1)

)
= 0, (2.4)

where (qi, vi) are adapted local coordinates in a neighborhood of c(1).

The proof will be shown in §2.4 within the context of constrained systems. See [1, 123]
for further details.
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2.1.3 Geometric approach to Lagrangian formalism

Definition 2.1.11. The Poincaré-Cartan 1-form is the pullback of the differential of the
Lagrangian function by the vertical endomorphism S (see definition 2.1.2), namely

ΘL = S∗(dL). (2.5)

The Poincaré-Cartan 2-form is then given by

ΩL = −dΘL. (2.6)

In local and adapted coordinates, the Poincaré-Cartan 1-form reads

ΘL =
∂L

∂vi
dqi,

while the Poincaré-Cartan 2-form

ΩL =
∂2L

∂vi∂qj
dqi ∧ dqj +

∂2L

∂vi∂vj
dqi ∧ dvj .

The Poincaré-Cartan 2-form is exact by definition and hence closed. It is non-degenerate if

and only if the Lagrangian function is regular, that is, when the Hessian matrix
(

∂2L
∂vi∂vj

)
is

invertible.

Definition 2.1.12. The Lagrangian energy is the smooth function EL ∈ C∞(TQ) defined
by

EL = ∆L− L,

where ∆ denotes the Liouville vector field given in definition 2.1.3.

Definition 2.1.13. Any vector field XL ∈ X(TQ) that satisfies the following equation

iXLΩL = dEL, (2.7)

is called a Lagrangian vector field.

Theorem 2.1.14. If the Lagrangian function L is regular, then there exists a unique vector
field XL ∈ X(TQ) which is solution of (2.7). The Lagrangian vector field XL is a second
order differential equation and its integral curves are solutions of the Euler-Lagrange equations
(2.4).

Proof. The existence and uniqueness of a Lagrangian vector field comes out from the fact
that ΩL is non-degenerate when L is regular, hence ΩL is symplectic. Let XL be a generic
vector field on TQ whose local expression is

X = q̇i
∂

∂qi
+ v̇i

∂

∂vi
,
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for adapted coordinates (qi, vi) of TQ. Let suppose also that XL satisfies the equation (2.7).
The contraction of the Poincaré-Cartan 2-form ΩL with XL reads

iXLΩL =

(
q̇j

∂2L

∂vj∂qi
− q̇j ∂2L

∂vi∂qj
− v̇j ∂2L

∂vj∂vi

)
dqi + q̇j

∂2L

∂vj∂vi
dvi,

while the differential of the Lagrangian energy EL is

dEL = (vj
∂2L

∂vj∂qi
− ∂L

∂qi
)dqi + vj

∂2L

∂vj∂vi
dvi.

Equating coefficients, we have in one hand that

q̇j
∂2L

∂vj∂vi
= vj

∂2L

∂vj∂vi
.

Thus, if L is regular, q̇j = vj , which provides that XL is second order. We will use vi and q̇i

without distinction in the sequel whenever we consider regularity conditions. On the other
hand, since L is regular, we have that

∂L

∂qi
− vj ∂2L

∂qj∂vi
− v̇j ∂2L

∂vj∂vi
= 0.

Let c : I → Q be a base integral curve of the Lagrangian vector field XL. Then, q̇i =
ċi = dc/dt and v̇i = c̈i = d2c/dt2. Replacing this into the previous equation and denoting
c(1) = (ci, ċi) the lift of c to TQ, we obtain

0 =
∂L

∂qi
◦ c(1) −

(
dcj

dt

)
∂2L

∂qj∂vi
◦ c(1) −

(
dcj

dt

)
∂2L

∂vj∂vi
◦ c(1) =

∂L

∂qi
◦ c(1) − d

dt

(
∂L

∂vi
◦ c(1)

)
,

which are precisely the Euler-Lagrange equations (2.4).

Lagrangian vector fields and flows

The Lagrangian vector field XL : TQ → TTQ is a second-order vector field on TQ
satisfying equation (2.7), and the Lagrangian flow FL : TQ × R → TQ is the flow of XL.
We shall write F tL : TQ → TQ for the map FL at a frozen time t. A curve q ∈ C2(q0, q1)
(we recall that C2(q0, q1) is defined in §2.1.2) is said to be a solution of the Euler-Lagrange
equations (2.4) if it is an integral curve of XL.

Symplecticity of Lagrangian flows

From equation (2.7) we immediately have that LxLΩL = 0 and therefore (F tL)∗ΩL = ΩL,
which implies the preservation of the Poincaré-Cartan 2-form by the Lagrangian flow F tL. In
the following lines we give a variational deduction of this preservation which will be useful in
the discrete formalism.

Define the solution space CL(Q) ⊂ C2(q0, q1) to be the set of curves solution of the Euler-
Lagrange equations given a regular Lagrangian. As an element q ∈ CL(Q) is an integral curve
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of XL, it is uniquely determined by the initial (local) condition (qi(0), vi(0) ∈ TQ, where
(qi(t), vi(t)) are the local coordinates of q. Thus, we can identify CL(Q) with the space of
initial conditions in TQ. Note that, with some abuse of notation, we are using the same
symbol for the curve q and its configuration coordinates qi(t).

Defining the restricted action sum ÂL : TQ→ R to be

ÂL(vq) = AL(q), q ∈ CL(Q) and (qi(0), vi(0)) ∈ TQ,

where AL is defined in (2.2). We see that the Hamilton’s principle δAL(q) reduces to

〈dÂL(vq), wvq〉 = 〈ΘL(vq(T )), (F T )∗wvq〉 − 〈ΘL(vq(0)), wvq〉
= 〈

(
(F TL )∗ΘL

)
(vq(0)), wvq〉 − 〈ΘL(vq(0)), wvq〉,

for all wvq ∈ TvqTQ. Taking a further derivative of this expression, and using the fact that

d2ÂL = 0, we obtain the already mentioned preservation property

(F TL )∗ΩL = ΩL.

Momentum map preservation

Suppose that the Lie group G, with Lie algebra g, acts on Q by the (left or right) action
Φ : G × Q → Q. Consider the tangent lift of this action to ΦTQ : G × TQ → TQ given by
ΦTQ
g (vq) = TΦg(vq) which locally is

ΦTQ(g, qi, vi) =

(
Φ(g, qi),

∂Φi

∂qj
(g, qi)vj

)
,

where g ∈ G and (qi, vi) are the local coordinates of vq ∈ TQ. For ξ ∈ g define the infinitesimal
generators (as is already done in definition 1.4.10) ξQ : Q→ TQ and ξTQ : TQ→ TTQ by

ξQ(q) =
d

dt

∣∣∣
t=0

Φ(exp(tξ), q),

ξTQ(vq) =
d

dt

∣∣∣
t=0

ΦTQ(exp(tξ), vq),

where t ∈ R and exp : g → G is the usual exponential map (see definition 1.4.10). We now
define the Lagrangian momentum map JL : TQ→ g∗ to be

〈JL(vq), ξ〉 = 〈ΘL, ξTQ(vq)〉,

where 〈·, ·〉 is the natural pairing between g and g∗ in the left hand side of the equation,
whereas it denotes the natural pairing between T ∗TQ and TTQ in the right hand side.

A Lagrangian L : TQ→ R is said to be invariant under the action ΦTQ : G×TQ→ TQ,
that is

L ◦ ΦTQ
g = L, ∀ g ∈ G,

and in this case the group action is said to be a symmetry of the Lagrangian. Differen-
tiating this expression implies that the Lagrangian is infinitesimally invariant, which is
the statement 〈dL, ξTQ〉 = 0 for all ξ ∈ g. We will now show that, when the group action is
a symmetry of the Lagrangian, then the momentum maps are preserved by the Lagrangian
flow. This result was originally due to Noether (1918).
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Theorem 2.1.15 (Noether’s theorem). Consider a Lagrangian system L : TQ → R

which is invariant under the lift of the left (or right) action Φ : G × Q → Q. Then, the
corresponding Lagrangian momentum map JL : TQ→ g∗ is a conserved quantity of the flow,
so that JL ◦ F tL = JL for all times t.

Proof. The action of G on Q induces an action of G on the space of paths C2(q0, q1) by
pointwise action, so that Φg : C2(q0, q1) → C2(gq0, gq1) is given by Φg(q)(t) = Φg(q(t)), for
q ∈ Q and q(t) ∈ C2(q0, q1). As the action is just the integral of the Lagrangian, invariance
of L implies invariance of AL, and the differential of this gives

〈dAL, ξC2(q0,q1)(q)〉 =

∫ T

0
〈dL, ξTQ〉dt = 0.

Invariance of AL also implies that Φg maps solution curves to solution curves and thus
ξC2(q0,q1)(q) ∈ TqCL, which is the corresponding infinitesimal version. We can thus restrict
〈dAL, ξC2(q0,q1)〉 to the space of solutions CL(Q) to obtain

0 = 〈dÂL, ξTQ(vq)〉 = 〈ΘL(vq(T )), ξTQ(vq(T ))〉 − 〈ΘL(vq(0)), ξTQ(vq(0))〉.

Replacing in the definition of JL shows that this is just

0 = 〈JL(F TL (vq)), ξ〉 − 〈JL(vq), ξ〉,

which gives the desired result.

We have thus seen that conservation of momentum maps is a direct consequence of the
invariance of the variational principle under a symmetry action.

2.2 Hamiltonian mechanics

Equivalently to the Lagrangian formalism, the Hamiltonian formulation of mechanics is set up
in a finite dimensional manifold Q, the configuration space, but, in contrast, the positions
and momenta of the system under study are described by the cotangent bundle T ∗Q of Q.
The local coordinates (qi) of Q induce fiber coordinates (qi, pi) on T ∗Q.

Let H : TQ → R be the Hamiltonian function (smooth) of the system, which from
the physical point of view is the total energy of the system under study. Typically, the
Hamiltonian is defined as the sum of kinetic and potential energies of the system.

Definition 2.2.1. Given a Hamiltonian function H : T ∗Q→ R, the Hamiltonian vector
field associated to H is the unique vector field XH ∈ X(T ∗Q) such that,

iXHΩQ = dH, (2.8)

where ΩQ is the canonical symplectic form of T ∗Q.



52 Hamiltonian mechanics

Notice that the nondegeneracy of ΩQ guarantees that XH exists. The canonical symplectic
form can be geometrically defined in the following way. Define the canonical 1-form or
Liouville’s 1-form ΘQ on T ∗Q by

〈ΘQ(αq), vαq〉 = 〈αq, TπQ(vαq)〉,

where αq ∈ T ∗Q, vαq ∈ TT ∗Q, πQ : T ∗Q→ Q is the standard projection. In local coordinates,
ΘQ = pidq

i. The canonical 2-form ΩQ is defined to be

ΩQ = −dΘQ,

which has the local expression ΩQ = dqi ∧ dpi given by the Darboux theorem.

Theorem 2.2.2. A differentiable curve c : I → T ∗Q is an integral curve of XH if and only
if the Hamilton’s equations hold:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (2.9)

where c(t) = (qi(t), pi(t)).

As mentioned above, the Hamiltonian function represents the total energy of the system.
Thus, if H is autonomous (i.e. there is no explicit dependence on time) the total energy must
be preserved.

Proposition 2.2.3. Given an ingegral curve c(t) of XH , we have that H(c(t)) is constant.

Proposition 2.2.4. Let Ft ∈ Diff(T ∗Q) be the flow of XH , then F ∗t ΩQ = ΩQ for each t, i.e.
Ft is a family of symplectomorphisms.

Proof. We have

d

dt
F ∗t ΩQ = LXHΩQ = iXHdΩQ + diXHΩQ.

Since dΩQ = 0 and (2.8) holds, we arrive to

d

dt
F ∗t ΩQ = ddH = 0.

Thus F ∗t is constant in t. Since F0 = Id, the equation F ∗t ΩQ = ΩQ results.

In the previous proof the definition of the Lie derivative and some of its properties,
described in §1.1.1, have been used.

For more insight in Hamiltonian mechanics, see [1, 123].
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Hamiltonian form of Noether’s theorem

Consider a (left or right) action Φ : G × Q → Q. The cotangent lift of this action is

ΦT ∗Q : G× T ∗Q→ T ∗Q given by ΦT ∗Q
g (pq) = Φ∗g−1(pq), where g ∈ G and pq ∈ T ∗Q. In local

coordinates

ΦT ∗Q(g, (qi, pi)) =

(
(Φ−1

g )i(q), pj
∂Φj

g

∂qi
(q)

)
,

where (qi, pi) are the local coordinates of pq ∈ T ∗qQ. This has its corresponding infinitesimal
generator ξT ∗Q : T ∗Q→ TT ∗Q defined by

ξT ∗Q(pq) =
d

dt

∣∣∣
t=0

ΦT ∗Q(exp(tξ), pq).

The Hamiltonian momentum map JH : T ∗Q→ g∗ is defined by

〈JH(pq), ξ〉 = 〈ΘQ(pq), ξT ∗Q(pq)〉,

where 〈·, ·〉 denotes the natural pairing between g and g∗ in the left hand side of the equation,
whereas it represents the natural paiting between TT ∗Q and T ∗T ∗Q in the right hand side.
For each ξ ∈ g we define JξH : T ∗Q → R by JξH(pq) = 〈JH(pq), ξ〉, which has the intrinsic

expression JξH = iξT∗QΘQ.

A Hamiltonian H : T ∗Q → R is said to be invariant under the cotangent lift of the
action Φ : G×Q→ Q if

H ◦ ΦT ∗Q
g = H, ∀ g ∈ G,

in which case the action is said a symmetry for the Hamiltonian. The derivative of this
expression implies that such a Hamiltonian is also infinitesimally invariant, which is the
requirement 〈dH, ξT ∗Q〉 = 0 for all ξ ∈ g, although the converse is not generally true.

Theorem 2.2.5 (Hamiltonian Noether’s theorem). Let H : T ∗Q→ R be a Hamiltonian
which is invariant under the lift of the (left or right) action Φ : G × Q → Q. Then the
corresponding Hamiltonian momentum map JH : T ∗Q → g∗ is a conserved quantity of the
flow; that is, JH ◦ F tH = JH for all times t.

See [1, 124] for the proof. Noether’s theorem still holds even if the Hamiltonian is only
infinitesimally invariant.

2.2.1 The Legendre transformation

Let us now give the relationship between the Lagrangian formulation on TQ and the Hamil-
tonian formulation on T ∗Q. In fact, they are equivalent in the hyperregular case, and are
transformed one into the other by the Legendre transform

Definition 2.2.6. Given a Lagrangian function L : TQ → R, the Legendre transforma-
tion associated to L is the fibered mapping FL : TQ→ T ∗Q defined implicitly by

〈FL(v), w〉 =
d

ds

∣∣∣
s=0

L(v + sw),

where v, w ∈ TQ.
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If (qi, vi) and (qi, pi) denote fibered coordinates on TQ and T ∗Q respectively, then the
local expression of the Legendre transform is

FL(qi, vi) =

(
qi, pi =

∂L

∂vi

)
.

Remark 2.2.7. Note that the Legendre transformation is a fiber derivative in the
sense shown in §1.1.1. That is, let Q be a manifold and L : TQ → R a function on its
tangent bundle. Then the map FL : TQ → T ∗Q : wq 7→ DLq(wq) ∈ Lin(TqQ,R) = T ∗qQ
is called the fiber derivative of L. Here, Lq denotes the restriction of L to the fiber over
q ∈ Q.

Proposition 2.2.8. If L is regular, then FL : TQ→ T ∗Q is a local diffeomorphism.

Proof. Employing the Inverse Function Theorem, is easy to see that FL is a local diffeomor-
phism if

∂pi
∂vj

=
∂2L

∂vi∂vj

is invertible, which is equivalent to say that L is regular.

Definition 2.2.9. A Lagrangian function L : TQ→ R is said to be hyper-regular whenever
FL is a global diffeomorphism.

The following theorem shows the relationship of Lagrangian and Hamiltonian formalisms
via the Legendre transformation.

Theorem 2.2.10. Let L be a hyperregular Lagrangian and let H = EL ◦ (FL)−1 : T ∗Q→ R,
where EL is the Lagrangian energy. Then the Lagrangian vector field XL and the Hamiltonian
vector field XH are (FL)−related: (FL)∗XL = XH . The integral curves of XL are mapped
by FL onto integral curves of XH . Furthermore, XL and XH have the same base integral
curves

Proof. It suffices to prove that (FL)∗XL = XH . Note that τQ = τ∗Q ◦FL, so once the integral
curves are FL related, the base integral curves are deduced to be equal.

Now, writing v∗ = Tv(FL)(w) for v ∈ TQ, w ∈ TvTQ, we get

ΩQ (TFL(XL(v)), v∗) = ΩL (XL(v), w)

= 〈dEL(v), w〉
= 〈d(H ◦ FL)(v), w〉
= 〈dH(FL(v)), v∗〉
= ΩQ (XH(FL(v)), v∗) ,

where, as before, ΩQ is the standard symplectic form in T ∗Q. Since Tv(FL) is an isomorphism,
v∗ is arbitrary, so

TFL (XL(v)) = XH (FL(v)) ,

that is,
(FL)∗XL = XH .
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The transformation FL : TQ → T ∗Q thus maps the Euler-Lagrange equations into the
Hamilton equations.

The following diagram shows the relationship between Lagrangian and Hamiltonian for-
malisms via the Legendre transformation:

Q

T ∗Q

πQ

EE

H

��

TQ
FLoo

τQ

YY

EL

��

L // R

R

In §4 a generalization of theorem 2.2.10, showing the relationship between a general
Hamiltonian system and its (constrained) Lagrangian counterpart, will be presented.

2.2.2 Generating functions

As with Hamiltonian mechanics, a useful general context for discussing canonical transfor-
mations and generating functions is that of symplectic manifolds. Here, we restrict ourselves
again to the case of T ∗Q with the canonical symplectic form ΩQ.

Let F : T ∗Q→ T ∗Q be a transformation from T ∗Q to itself and let Graph(F ) ⊂ T ∗Q×
T ∗Q be the graph of F . Consider the one-form on T ∗Q× T ∗Q defined by

Θ̂Q = π∗2ΘQ − π∗1ΘQ,

where π1,2 : T ∗Q × T ∗Q → T ∗Q are the projections onto the two components. The corre-
sponding two-form is then

Ω̂Q = −dΘ̂ = π∗2ΩQ − π∗1ΩQ,

which is a symplectic 2-form in T ∗Q×T ∗Q. Denoting the inclusion map by iF : Graph(F ) ↪→
T ∗Q× T ∗Q, we see that we have the identities

π1 ◦ iF = π1|Graph(F )
, and π2 ◦ iF = F ◦ π1 on Graph(F ).

Using these relations, we have

i∗F Ω̂Q = i∗F (π∗2ΩQ − π∗1ΩQ)

= (π2 ◦ iF )∗ΩQ − (π1 ◦ iF )∗ΩQ

= (π1|Graph(F )
)∗(F ∗ΩQ − ΩQ).
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Using this last equality, it is clear that F is a canonical transformation if and only if
i∗F Ω̂Q = 0 or, equivalently, if and only if d(i∗F Θ̂Q) = 0. By the Poincaré lemma, this last
statement is equivalent to there existing, at least locally, a function S : Graph(F )→ R such
that i∗F Θ̂Q = dS. Such function S is known as the generating function of the symplectic
transformation F . Note that S is not unique.

The generating function S is specified on the graph Graph(F ), and so can be ex-
pressed in any local coordinate system on Graph(F ). The standard choices, for coordinates
(q0, p0, q1, p1) on T ∗Q × T ∗Q, are any two of the four quantities q0, p0, q1 and p1; note that
Graph(F ) has the same dimension as T ∗Q and, moreover, is a Lagrangian submanifold of
T ∗Q× T ∗Q.

Coordinate expression

We will be particulary interested in the choice (q0, q1) as local coordinates on Graph(F ), and
so we give the coordinate expression for the above general generating function derivation for
this particular case . This choice results in generating functions of the so-called first kind.

Consider a function S : Q×Q→ R. Its differential is

dS =
∂S

∂q0
dq0 +

∂S

∂q1
dq1.

Let F : T ∗Q → T ∗Q be the canonical transformation generated by S. In local coordinates,
the quantity i∗F Θ̂Q is

i∗F Θ̂Q = −p0dq0 + p1dq1,

and so the condition i∗F Θ̂Q = dS reduces to the equations

p0 = − ∂S
∂q0

(q0, q1), (2.10a)

p1 =
∂S

∂q1
(q0, q1), (2.10b)

which are an implicit definition of the transformation F : (q0, p0)→ (q1, p1). From the above
general theory, we know that such a transformation is automatically symplectic, and that all
symplectic transformations have such a representation, at least locally.

Note that there is not a one-to-one correspondence between symplectic transformations
and real-valued functions on Q × Q, because for some functions the above equations either
have no solutions or multiple solutions, and so there is no well-defined map (q0, p0)→ (q1, p1).
For example, taking S(q0, q1) = 0 forces p0 to be zero, and so there is no corresponding map
F . In addition, one has to be careful about the special case of generating the identity
transformation, as was noted in [31, 47].

2.3 The Tulczyjew’s triple

In this section we summarize a classical result due to W.M. Tulczyjew showing a natural
identification of T ∗TQ and TT ∗Q, where Q is any smooth manifold, as symplectic manifolds.
This construction plays a key role in Lagrangian and Hamiltonian mechanics
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In [157, 158], Tulczyjew established two identifications, the first one between TT ∗Q
and T ∗TQ (useful to describe Lagrangian mechanics) and the second one between TT ∗Q
and T ∗T ∗Q (useful to describe Hamiltonian mechanics). The Tulczyjew map αQ is an
isomorphism between TT ∗Q and T ∗TQ. Beside, it is also a symplectomorphism between
these double vector bundles (see [48, 146] for further details) as symplectic manifolds, i.e.
(TT ∗Q , dT ΩQ), where dT ΩQ is the tangent lift of ΩQ, and (T ∗TQ,ΩTQ).

Before giving the full picture, we begin with two basic definitions. The canonical in-
volution (see [48] for further details) of TTQ is the smooth map κQ : TTQ → TTQ given
by

κQ

(
d

ds

(
d

dt
χ(s, t)

∣∣
t=0

) ∣∣
s=0

)
:=

d

ds

(
d

dt
χ̃(s, t)

∣∣
t=0

) ∣∣
s=0

,

where χ : R2 → Q and χ̃(s, t) := χ(t, s). Note that d
dt
χ(s, t)|t=0 : R → TQ. If (qi) are local

coordinates for Q, (qi, vi) are the induced coordinates for TQ and (qi, vi, q̇i, v̇i) for TTQ,
then the canonical involution can be locally defined by κQ(qi, vi, q̇i, v̇i) = (qi, q̇i, vi, v̇i). The
relation among the canonical involution and bundles is expressed in the following diagram

TTQ

τTQ

��

κQ
// TTQ

TτQ
��

TQ
Id
// TQ,

The tangent pairing between TT ∗Q and TTQ is the fibered map 〈·, ·〉T : TT ∗Q ×Q
TTQ→ R given by

〈 d

dt
γ(t)

∣∣
t=0

,
d

dt
δ(t)

∣∣
t=0
〉T :=

d

dt
〈γ(t), δ(t)〉T

∣∣
t=0

,

where γ : R→ T ∗Q and δ : R→ TQ are such that πQ ◦ γ ≡ τQ ◦ δ.

Definition 2.3.1. The Tulczyjew’s isomorphism αQ is the map αQ : TT ∗Q → T ∗TQ
given by

〈αQ(V ),W 〉 := 〈V, κQ(W )〉, V ∈ TT ∗Q, W ∈ TTQ.

Locally:

αQ(qi, pi, q̇
i, ṗi) = (qi, q̇i, ṗi, pi)

In the following diagram we show the different relationships among the double vector bundles
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and the αQ−Tulczyjew’s isomorphism:

TT ∗Q
αQ //

τT∗Q

��

TπQ

��

T ∗TQ

πTQ

��

T ∗τQ

��
T ∗Q

πQ

%%

TQ

τQ

��

T ∗Q

πQ

yy
Q

The definition of T ∗τQ is given in the following remark.

Remark 2.3.2. Given a tangent bundle τN : TN → N , for each y ∈ TxN we can define

Vy = ker {TyτN : TyTN → TxN} , τN (y) = x.

Summing over all y we obtain a vector bundle V of rank n over TN . Any element u ∈ TxN
determines a vertical vector at any point y in the fibre over x, called its vertical lift to y,
denoted by u∨(y) (recall the definition 2.1.1). It is the tangent vector at t = 0 to the curve
y + t u. If X is a vector field on N , we may define its vertical lift as X∨(y) = (X(τN (y)))∨.
Locally, if X = Xi ∂

∂xi
in a neighborhood U with local coordinates xi, then X∨ is locally given

by

X∨ = Xi ∂

∂vi
,

with respect to induced coordinates (xi, vi) on TU .

Now, we define T ∗τQ : T ∗TQ → T ∗Q by 〈T ∗τQ(αu), w〉 = 〈αu, w∨u 〉; u,w ∈ TqQ, αu ∈
T ∗uTQ and w∨u ∈ TuTQ.

Definition 2.3.3. The Tulczyjew’s isomorphism βQ is the map βQ : TT ∗Q → T ∗T ∗Q
defined by

βQ(V ) := iV ΩQ, V ∈ TT ∗Q,

where ΩQ is the canonical symplectic form of T ∗Q.

Locally,
βQ(qi, pi, q̇

i, ṗi) = (qi, q̇i, ṗi, pi).

By means of the Tulczyjew’s isomorphisms αQ and βQ, the double vector bundle TT ∗Q
may be endowed with two (a priori) different symplectic structures. Let ΩTQ and ΩT ∗Q

be the symplectic structures corresponding to T ∗TQ and T ∗T ∗Q respectively. Therefore,
ΩαQ := α∗Q ΩTQ and ΩβQ := β∗Q ΩT ∗Q define symplectic structures on TT ∗Q which turn out
to be the same, more precisely: ΩαQ = −ΩβQ . As mentioned before, there exists a third
canonical symplectic structure on TT ∗Q which comes from the complete lift of the canonical
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symplectic form ΩQ of Q, denoted by dT ΩQ and which coincides with the previous ones, that
is dT ΩQ = ΩαQ . In coordinates:

ΘαQ = α∗Q ΘTQ = ṗidq
i + pidq̇

i and ΘβQ = β∗Q ΘT ∗Q = −ṗidqi + q̇idpi,

where ΘTQ and ΘT ∗Q are the Liouville 1-forms on TQ and T ∗Q, respectively.

T ∗TQ

πTQ

��

TT ∗Q

τT∗Q

��

TπQ

��

αQoo
βQ // T ∗T ∗Q

πT∗Q

��
TQ

FL //

τQ

��

T ∗Q

πQ

��
Q

2.3.1 Implicit description of mechanics

In middle seventies, W.M. Tulczyjew [157, 158] introduced the notion of special symplectic
manifold, which is a symplectic manifold symplectomorphic to a cotangent bundle. Using
this notion, Tulczyjew gave a nice interpretation of Lagrangian and Hamiltonian dynamics
as Lagrangian submanifolds of convenient special symplectic manifolds. Thus, in order to
depict this interpretation we are going to use the notion of Lagrangian submanifold introduced
in §1.3.1 and that of Tulczyjew’s isomorphisms introduced in the previous subsection §2.3.
In addition, it is necessary to introduce the notion of special symplectic manifold. In
the following definition we are employing an arbitrary symplectic manifold (P,ΩP ); we will
particularize to P = T ∗Q afterwards.

Definition 2.3.4. A special symplectic manifold is a symplectic manifold (P,ΩP ) which
is symplectomorphic to a cotangent bundle. More precisely, there exists a fibration π : P →
M , and a one-form ΘP on P , such that ΩP = −dΘP , and α : P → T ∗M is a diffeomorphism
such that πM ◦ α = π and α∗ΘM = ΘP .

Here, Q is a smooth manifold, πQ : T ∗Q → Q is the canonical projection and ΘQ is the
canonical one-form in T ∗Q.

The following is an important result for our discussion.

Theorem 2.3.5. Let (P,ΩP = −dΘP ) be an special symplectic manifold, let f : M → R be
a function, and denote by Nf the submanifold of P where α∗df and ΘP coincide. Then Nf

is a Lagrangian submanifold of (P,ΩP ) and f is a generating function (see §2.2.2).

Theorem 2.3.5 applies to the particular case of mechanics. Indeed, if we consider a
Lagrangian function L : TQ→ R, we obtain a Lagrangian submanifold NL to the symplectic
manifold (TT ∗Q,ΩαQ) with generating function L.
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Now, assume that H : T ∗Q→ R is a Hamiltonian function, with Hamiltonian vector field
XH . We have the following results.

Theorem 2.3.6. Given a Hamiltonian function H : T ∗Q → R, consider the associated
Hamiltonian vector field XH ∈ X(T ∗Q). The following assertions hold:

1. The image of XH is a Lagrangian submanifold SXH of (TT ∗Q,ΩβQ).

2. The image of dH is a Lagrangian submanifold SH of (T ∗T ∗Q,ΩT ∗Q).

3. The isomorphism βQ maps one into each other, i.e. βQ(SXH ) = SH .

Lemma 2.3.7. Given a Lagrangian function L : TQ → R, then the image of dL is a
Lagrangian submanifold SdL of (T ∗TQ,ΩTQ).

Finally, we relate both Lagrangian submanifolds NL and ImXH .

Proposition 2.3.8. Given a hyper-regular Lagrangian function L : TQ → R, consider the
associated Hamiltonian H = EL ◦FL−1. We have that α−1

Q (SL) = SXH = β−1
Q (SH). In other

words, NL = SXH .

The results 3.5, 2.3.7, 2.3.8 are summarized in the following diagram

T ∗TQ

πTQ

��

TT ∗Q

τT∗Q

��

TπQ

��

αQoo
βQ // T ∗T ∗Q

πT∗Q

��
TQ

FL //

τQ

��

dL

MM

T ∗Q

πQ

��

dH

PP

Q

In proposition 2.3.8 we derive a Lagrangian submanifold of TT ∗Q with a Lagrangian or
Hamiltonian system as starting point. To extract the integrable part of the corresponding
equations of motion that this submanifold implies, it is just necessary to use the constraint
integrability algorithm developed in [133], which will be briefly described in §4.1.2.

2.4 Mechanical systems with constraints

Let Q be the configuration manifold of our system. Generically, a constrained system is
defined by a (2n−m)−dimensional submanifold M ⊂ TQ, which locally is defined by Φa = 0,
1 ≤ a ≤ m, where Φa : TQ → R. Two distinguished kinds of constraints are the following:
linear and affine (which will be useful in §6):
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Definition 2.4.1. A linear constraint on Q is defined by a distribution D on Q. A curve
c : I → Q will be said to satisfy the linear constraint D if c(1)(t) ∈ D(c(t)) for all t ∈ I.

Definition 2.4.2. An affine constraint on Q is a pair (D, γ), where D is a distribution
on Q and γ ∈ X(Q) is a vector field. A curve c : I → Q will be said to satisfy the affine
constraint (D, γ) if c(1)(t)− γ(c(t)) ∈ D(c(t)) for all t ∈ I.

In these definitions c(1) is the lift of the curve c(t) (see def.2.1.5). We shall assume that
D has constant rank k for simplicity, and we will use this fact to suppose, at least locally,
the existence of n − k = m linearly independent one-forms µ1, ..., µm, which annihilate the
distribution. The previous assertion is equivalent to say the following

D = ker
{
µ1, ..., µm

}
.

All solutions of the constrained system are required to satisfy the conditions

• 〈µa(c(t)) , c(1)(t)〉 = 0, a = 1, ...,m, for linear constraints,

• 〈µa(c(t)) , c(1)(t)〉 = 〈µa(c(t)) , γ(c(t))〉, a = 1, ...,m, for affine constraints,

In the subsections §2.4.2 and §2.4.3, we respectively present nonholonomic and vakonomic
methods for deriving the equations of motion for a mechanical system with constraints (which
will be linear in both cases). Previously we study the unconstrained case.

2.4.1 Unconstrained mechanics

Let L : TQ → R be the Lagrangian function of our system. Theorem 2.1.9 established that
the motion of a mechanical system defined by the Lagrangian function L : TQ → R is a
critical point of the action integral AL, that is, a curve c ∈ C2(q0, q1) (see equation (2.1))
such that δAL(c) = 0. Recall that the action integral is defined by

AL(c) =

∫ T

0
L(c(1)(t)) dt, (2.11)

where L is a Lagrangian on Q. Note that δAL(c) = 0 if and only if 〈dAL(c), u〉 = 0 for

every u ∈ TcC2([0, T ], Q, q0, q1) (see equation (2.3)). In other words u(t) = d
ds

∣∣
s=0

cs(t). It is
convenient to write

〈dAL(c), u〉 =
d

ds

∣∣∣
s=0

AL(cs(t)),

where s is a real parameter. Given (2.11) this can be written as

〈dAL(c), u〉 =

∫ T

0

d

ds

∣∣∣
s=0

L(c(1)
s (t)) dt.

We wish to evaluate this expression in local coordinates for Q. By the chain rule we have

〈dA(c), u〉 =

∫ T

0

(
∂L

∂qi
∂qi

∂s
+
∂L

∂q̇i
∂q̇i

∂s

) ∣∣∣
s=0

dt

=

∫ T

0

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqidt+

(
∂L

∂q̇i

)
δqi
∣∣∣T
0
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where (qi, q̇i) are the local coordinates for a neighborhood of c(1) and integration by parts
has been used. Since δqi(0) = δqi(T ) = 0 and, moreover, δqi are independent, the previous
expression vanishes if and only if

∂L(c(1))

∂qi
− d

dt

∂L(c(1))

∂q̇i
= 0.

Thus, the previous digression can be considered as a proof for theorem 2.1.10.

2.4.2 Nonholonomic mechanics

In order to depict the nonholonomic setting, we shall start with a configuration space Q and
a distribution D that describes the kinematic constraints of interest. Thus, D is a collection
of linear subspaces denoted by Dq ⊂ TqQ, one for each q ∈ Q. As mentioned in definition
2.4.1, a curve c(t) ∈ Q will be said to satisfy the constraints if c(1)(t) ∈ Dc(t) for all t.
This distribution will, in general, be nonintegrable in the sense of Frobeniu’s theorem; i.e.
the constraints are, in general, nonholonomic.

The Lagrange-d’Alembert Principle.

Consider a given Lagrangian L : TQ → R. In (generalized) coordinates (qi), i = 1, ..., n, on
Q with induced coordinates (qi, q̇i) for the tangent bundle, we write, as before, L(qi, q̇i). We
assume the following principle of Lagrange-d’Alembert.

Definition 2.4.3. The Lagrange-d’Alembert equations of motion for the system are
those determined by

δ

∫ T

0
L(qi, q̇i)dt = 0,

where we choose variations δc(t) of the curve c(t) that satisfy δc(t) ∈ Dc(t) for each t, 0 ≤
t ≤ T , and δqi(0) = δqi(T ) = 0. Recall that we are using local coordinates (qi, q̇i) for a
neighborhood of c(1)(t).

This principle is supplemented by the condition that the curve c(t) itself satisfies the
constraint.

As explained before, in such a principle we take the variations δqi before imposing the
constraints; that is, we do not impose the constraints on the family of curves defining the vari-
ation. The usual arguments in the calculus of variations show that the constrained variational
principle is equivalent to the equations

− δL =

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0, (2.12)

for all variations δq such that δq ∈ Dq at each point of the underlying curve c(t).
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Structure of the equations of motion

To explore the structure of the equations determined by (2.12), let consider the set of one-
forms whose vanishing determines D, that is

D0 = span
{
µ1, ..., µm

}
.

Considering this m one-forms independent, it can be proven that one can choose, in a neigh-
borhood of each point, a local coordinate chart such that µa, a = 1, ...,m, can be written
as

µa(q) = dsa +Aaα(r, s)drα, a = 1, ...,m,

where, locally, q = (r, s) ∈ Rn−m × Rm. With this choice, the constraints on δq = (δr, δs)
are given in the conditions

δsa +Aaαδr
α = 0.

Substituting the previous equation into (2.12) and using the fact that δr is arbitrary gives(
d

dt

∂L

∂ṙα
− ∂L

∂rα

)
= Aaα

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
, a = 1, ...,m. (2.13)

Equations (2.13) combined with the constraints equation

ṡa +Aaαṙ
α = 0, a = 1, ...,m, (2.14)

give a complete description of the equations of motion of the system. Notice that they
consist of n−m second-order equations and m first order equations.

In §6 we will give an extension of the nonholonomic equations in terms of affine connections
(see §1.2).

The constrained Lagrangian

We now define the constrained Lagrangian by substituting the constraints (2.14) into the
Lagrangian, i.e:

Lc(r
α, sa, ṙα) = L(rα, sa,−Aaα(r, s)ṙα).

The equations of motion (2.13) can be written in terms of the constrained Lagrangian in the
following way:

d

dt

∂Lc
∂ṙα
− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

= − ∂L
∂ṡb

Bb
αβ ṙ

β,

where

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

+Aaα
∂Abβ
∂sa

−Aaβ
∂Abα
∂sa

.

Letting dµb be the exterior derivative of µb, another straightforward computation using prop-
erties of differential forms shows that

dµb(q̇, ·) = Bb
αβ ṙ

βdrα,
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and hence the equations of motion have the form

− δLc =

(
d

dt

∂Lc
∂ṙα
− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

)
δra = − ∂L

∂ṡb
dµb(q̇, δr). (2.15)

This form of the equations isolates the effects of the constraints, and shows that if the
constraints are integrable (which is equivalent to dµb = 0, i.e., to Bb

αβ = 0), then the correct
equations of motion are obtained by substituting the constraints into the Lagrangian and
setting the variation of Lc to zero. However, in the nonintegrable case, which is the case of
nonholonomic systems, the constraints generates extra forces that must be taken into account.

For a more geometric interpretation of the equations (2.15) see [29]. Particularly, for an
interpretation within the Lie algebroid setup see [37, 104].

Nonholonomic equations of motion with Lagrange multipliers

We can obtain the nonholonomic equations of motion with Lagrange multipliers from the
Lagrange-d’Alembert principle as follows. Recall that the Lagrange-d’Alembert principle
gives us (

d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0, i = 1, ..., n, (2.16)

for variations δqi ∈ D, i.e., for variations in the constraint distribution. We shall denote the
constraints on δqi as follows,

µai δq
i = 0, a = 1, ...,m, (2.17)

where we are assuming the Einstein convention. From (2.16) and (2.17) we obtain the set of
n equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= λaµ

a
i . (2.18)

If, instead of constraints defined by (2.17), the constraints are more generically defined by the
vanishing of the set of m independent maps Φa : TQ → R, that is Φa(qi, q̇i) = 0, equations
(2.18) become

d

dt

∂L

∂q̇i
− ∂L

∂qi
= λa

∂Φa

∂qi
,

which are called Chetaev’s equations.

2.4.3 Vakonomic mechanics

In this variational technique one makes the functional AL stationary after asking that the
solutions satisfy the constraints. Thus, this is a classical constrained minimization problem,
and may be solved with techniques from the calculus of variations with constraints. Let
consider again a constrained system, with Lagrangian function L : TQ → R, defined by the
submanifold M ⊂ TQ. This submanifold is (2n − m)−dimensional and is determined by
Φa = 0, 1 ≤ a ≤ m, where Φa : TQ→ R.
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Now, we introduce a special subset C̃2(q0, q1) of C2(q0, q1) (recall eq.(2.1)) which consists
of those curves which are in the submanifold M

C̃2(q0, q1) =
{
c ∈ C2(q0, q1) | c(1) ∈Mc(t) = M ∩ τ−1

Q (c(t)), ∀t ∈ [0, T ]
}
, (2.19)

where τQ : TQ → Q is the usual projection. Let consider the action integral AL defined in
(2.11), which we want to extremize among the curves satisfying the constraints imposed by
M, c ∈ C̃2(q0, q1).

Definition 2.4.4. A curve c ∈ C̃2(q0, q1) will be a solution of the vakonomic problem
is c is a critical point of AL

∣∣
C̃2(q0,q1)

.

Therefore, following the same procedure in the unconstrained case (§2.4.1) c is a solution
of the vakonomic problem if and only if 〈dAL(c), u〉 = 0 for all u ∈ TcC̃2(q0, q1).

Remark 2.4.5. We are assuming that the solution curves c ∈ C̃2(q0, q1) admit nontrivial
variations in C̃2(q0, q1). These solutions are called normal in the literature, in opposition
to the abnormal ones, which are pathological curves that do not admit nontrivial variations
[5].

The usual way to present the equations of motion of vakonomic mechanics is the following
([35]): 

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λ̇a

∂Φa

∂q̇i
+ λa

[
d

dt

(
∂Φa

∂q̇i

)
− ∂Φa

∂qi

]
,

Φa(q, q̇) = 0, 1 ≤ a ≤ m,

(2.20)

where λa are the Lagrange multipliers.

Equations (2.20) can be seen as the Euler-Lagrange equations for the extended Lagrangian
L = L+ λaΦ

a. We will not follow this approach here, which has been exploited fruitfully in
[41, 95, 130]. Note that if we consider the extended Lagrangian λ0L+ λaΦ

a, with λa = 0 or
1, then we recover all the solutions, both the normal and the abnormal ones [5].

Assume now that the constraints are written in the following way

q̇a = Ψ(qi, q̇α),

where 1 ≤ a ≤ m, m+ 1 ≤ α ≤ n and 1 ≤ i ≤ n. Then (qi, q̇α) are local adapted coordinates
for the submanifold M of TQ.

Proposition 2.4.6. A curve c ∈ C̃2(q0, q1) is a normal solution of the vakonomic problem if
and only if there exists λ̃ : [0, T ]→ Rm such that

d

dt

(
∂L̃

∂q̇α

)
− ∂L̃

∂qα
= λ̃a

[
d

dt

(
∂Ψa

∂q̇α

)
− ∂Ψa

∂qα

]
+

˙̃
λa
∂Ψa

∂q̇α
,

˙̃
λa =

∂L̃

∂qa
− λ̃b

∂Ψb

∂qa
,

q̇a = Ψa(qi, q̇α),

(2.21)

where L̃ : M→ R is the restriction of L to M.
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See [35] for the proof. Equations (2.21) stress how the information given by L outside M

is irrelevant to obtain the vakonomic equations, contrary to what happens in nonholonomic
mechanics. Finally, note that equations (2.20) and (2.21) are related by the transformation
Φa = Ψa − q̇a and λ̃a = ∂L

∂q̇a − λa, 1 ≤ a ≤ m.

2.5 Extension of mechanics to Lie algebroids

In this section we are going to use the notions of Lie algebroid and prolongation of a Lie
algebroid described in §1.5.1.

2.5.1 Lagrangian mechanics

In [128] (see also [105]) a geometric formalism for Lagrangian mechanics on Lie algebroids
was introduced. It is developed in the prolongation TAA of a Lie algebroid A (see §1.5) over
the vector bundle projection τ : A→ Q. The prolongation of the Lie algebroid is playing the
same role as TTQ in the standard mechanics, that is mechanics defined in tangent bundles.
Following the same program in §2.1.3 to describe geometrically the Lagrangian mechanics for
tangent bundles, we specify the canonical geometrical structures defined in TAA:

• The vertical lift ξ∨ : τ∗A→ TAA given by ξ∨(a, b) = (a, 0, b∨a ), where a ∈ A and b∨a is
the vector tangent to the curve a+ tb at t = 0.

• The vertical endomorphism S : TAA→ TAA defined as follows

S(a, b, v) = ξ∨(a, b) = (a, 0, b∨a ).

• The Liouville section, which is the vertical section corresponding to the Liouville
dilation vector field:

∆(a) = ξ∨(a, a) = (a, 0, a∨a ).

We also mention that the complete lift Y c of a section Y ∈ Γ(A) is the section of TAA
characterized by the following properties:

i) projects to Y , i.e., τT ◦ Y c = Y ◦ τ ,

ii) L(Y c)µ̂ = L̂Y µ, for all µ ∈ Γ(A∗),

where by µ̂ ∈ C∞(A) we denote the linear function associated to any µ ∈ Γ(A∗).

Given a Lagrangian function L ∈ C∞(A) we define the Cartan 1-section ΘL ∈
Γ((TAA)∗) and the Cartan 2-section ΩL ∈ Γ(∧2(TAA)∗) and the Lagrangian energy
EL ∈ C∞(A) as

ΘL = S∗(dL), ΩL = −dΘL, EL = L∆L− L.

Here, d denotes the differential operation in the prolongation of the Lie algebroid (see §1.5.1)
If (qi, yα) are local fibered coordinates on A, (ρiα, C

γ
αβ) are the corresponding local structure
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functions on E and {Xα,Φα} is the corresponding local basis of sections of TAA (see §1.5.1)
then:

S(Xα) = Φα, S(Φα) = 0, ∀α,

∆ = yαΦα,

ΩL = ∂2L
∂yα∂yβ

Xα ∧ Φβ + 1
2

(
∂2L

∂qi∂yα
ρiβ −

∂2L
∂qi∂yβ

ρiα + ∂L
∂yαC

γ
αβ

)
Xα ∧Xβ,

EL = ∂L
∂yα y

α − L.
From the previous equations it follows that

iS(X)ΩL = −S∗(iXΩL), i∆ΩL = −S∗(dEL), (2.22)

for X ∈ Γ(TAA). Here, {Xα,Φα} is the dual basis of {Xα,Φα}.
Now, a curve t→ c(t) on A is a solution of the Euler-Lagrange equations for L if

i) c is admissible (that is, ρ(c(t)) = ṁ(t), where m = τ ◦ c) and

ii) i(c(t),ċ(t))ΩL(c(t)) = dEL(c(t)), for all t.

If c(t) = (qi(t), yα(t)), then c is a solution of the Euler-Lagrange equations for L if and only
if

q̇i = ρiαy
α,

d

dt

∂L

∂yα
+
∂L

∂yγ
Cγαβy

β − ρiα
∂L

∂qi
= 0. (2.23)

Note that if A is the standard Lie algebroid TQ then the above equations are the classical
Euler-Lagrange equations for L : TQ→ R.

On the other hand, a Lagrangian function L is said to be regular if ΩL is a symplectic
section, that is, if ΩL is regular at every point as a bilinear form. In such a case, there exists
a unique solution ΓL verifying

iΓLΩL = dEL.

In addition, using (2.22) it follows that iS(ΓL)ΩL = i∆ΩL which implies that ΓL is SODE
section, that is,

S(ΓL) = ∆,

or alternatively Tτ(ΓL(a)) = a for all a ∈ A.

Thus, the integral curves of ΓL (that is, the integral curves of the vector field ρτ (ΓL)) are
solutions of the Euler-Lagrange equations for L. ΓL is called the Euler-Lagrange section
associated with L.

The Lagrangian L is regular if and only if the matrix ∂2L
∂yα∂yβ

is regular. Moreover, the
local expression of ΓL is

ΓL = yαXα + fαΦα,

where the functions fα satisfy the linear equations

∂2L

∂yβ∂yα
fβ +

∂2L

∂qi∂yα
ρiβy

β +
∂L

∂yγ
Cγαβy

β − ρiα
∂L

∂qi
= 0, ∀α.

As a further topic, an interesting reference on reduction of Lagrangian mechanics within the
context of Lie algebroids is [28].
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2.5.2 Hamiltonian mechanics

Let τ∗ : A∗ → Q be the vector bundle projection of the dual bundle A∗ to A. Consider the
prolongation TAA∗ of A over τ∗

TAA∗ = {(b, v) ∈ A× TA∗ | ρ(b) = Tτ∗(v)}
= {(a∗, b, v) ∈ A∗ ×A× TA∗ | τ∗(a∗) = τ(b) , ρ(b)) = Tτ∗(v)} .

The canonical geometrical structures defined on TAA∗ are the following:

• The Liouville section ΘA ∈ Γ((TAA∗)∗) defined by

〈ΘA(a∗), (b, v)〉 = 〈a∗, b〉.

• The canonical symplectic section ΩA ∈ Γ(∧2(TAA∗)∗) is defined by

ΩA = −dΘA

where d is the differential on the Lie algebroid TAA∗.

Take coordinates (qi, pα) on A∗ and denote by
{
Yα,P

β
}

the local basis of sections of TAA∗,
with

Yα(a∗) =

(
a∗, eα(τ∗(a∗)), ρiα

∂

∂qi

)
, Pβ(a∗) =

(
a∗, 0,

∂

∂pα

)
.

In coordinates the Liouville and canonical sections are written as

ΘA = pαY
α, ΩA = Yα ∧ Pα +

1

2
pγC

γ
αβY

α ∧ Yα.

where {Yα,Pβ} is the dual basis of
{
Yα,P

β
}

.

Every function H ∈ C∞(A∗) define a unique section ΓH of TAA∗ by the equation

iΓHΩA = dH,

and, therefore, a vector field ρτ
∗
(ΓH) = XH on A∗ which gives the dynamics. In coordinates

ΓH =
∂H

∂pα
Yα −

(
ρiα
∂H

∂qi
+ pγC

γ
αβ

∂H

∂pβ

)
Pα,

and therefore

XH = ρiα
∂H

∂pα

∂

∂qi
−
(
ρiα
∂H

∂qi
+ pγC

γ
αβ

∂H

∂pβ

)
∂

∂pα
.

Thus, the Hamiltonian equations are

dqi

dt
= ρiα

∂H

∂pα
,

dpα
dt

= −ρiα
∂H

∂qi
− pγCγαβ

∂H

∂pβ
.
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2.5.3 The Legendre transformation

The relationship between Lagrangian and Hamiltonian mechanics in Lie algebroids is given
by the Legendre transformation (see §2.2.1 for the case of mechanics in tangent bundles). Let
L : A→ R be a Lagrangian function and ΘL ∈ Γ((TAA)∗) be the Poincaré-Cartan 1-section
associated with L.

We introduce the Legendre transformation associated with L as the smooth map
FL : A→ A∗ defined by

〈FL(a), b〉 =
d

dt
L(a+ tb)

∣∣∣
t=0

,

for a, b ∈ Aq, where Aq is the fiber of A over the point q ∈ Q. In other words 〈FL(a), b〉 =
〈ΘL(a), z〉, where z is a point in the fiber TAA over the point a such that Tτ(z) = b.

The map FL is well-defined and its local expression in fibered coordinates on A and A∗

is

FL(qi, yα) = (qi,
∂L

∂yα
).

From this local expression it is easy to prove that the Lagrangian L is regular if and only if
FL is a local diffeomorphism.

The Legendre transformation induces a map TFL : TAA→ TAA∗ defined by

TFL(b,Xa) = (b, (TaFL)(Xa)),

for a, b ∈ A and (a, b,Xa) ∈ TAa A ⊆ Aτ(a) × Aτ(a) × TaA, where TFL : TA → TA∗ is the
tangent map of FL. Note that τ∗ ◦ FL = τ and thus TFL is well-defined.

If we consider local coordinates on TAA (resp. TAA∗) induced by the local basis {Xα,Φα}
(resp. {Yα,Pα} ) the local expression of TFL is

TFL(qi, yα; zα, vα) =

(
xi,

∂L

∂yα
; zα, ρiβz

β ∂2L

∂qi∂yα
+ vβ

∂2L

∂yα∂yβ

)
.

The relationship between Lagrangian and Hamiltonian mechanics is given by the following
theorem.

Theorem 2.5.1. [105] The pair (TFL,FL) is a morphism between the Lie algebroids
(TAA, [[·, ·]]τ , ρτ ) and (TAA∗, [[·, ·]]τ∗ , ρτ∗). Moreover, if ΘL and ΩL (resp. ΘA and ΩA) are
the Poincaré-Cartan 1-section and 2-section associated with L (respectively, the Liouville
1-section and the canonical symplectic section on TAA∗), then

(TFL,FL)∗ΘA = ΘL, (TFL,FL)∗ΩA = ΩL.

In addition, in [105], it is proved that if the Lagrangian L is hyperregular, that is, FL
is a global diffeomorphism, then (TFL,FL) is a symplectomorphism and the Euler-Lagrange
section ΓL associated with L and the Hamiltonian section ΓH are (TFL,FL)−related, that
is

ΓH ◦ FL = TFL ◦ ΓL.

Therefore, an admissible curve a(t) on TAA is a solution of the Euler-Lagrange equations if
and only if the curve µ(t) = FL(a(t)) is a solution of the Hamilton equations.
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Remark 2.5.2. The extension of nonholonomic mechanics to the Lie algebroid setup was
developed in [37], whereas the vakonomic extension was presented in [72], among other refer-
ences.



Chapter 3

Discrete Lagrangian and
Hamiltonian mechanics

This chapter is mainly based on the work by Marsden and collaborators (see [124] for an
introduction to this topic). Other interesting references, as was mentioned in the introduction
chapter, are [25, 97, 98, 134]. They used the concept of discrete variational mechanics to
derive variational integrators simulating initial value problems in dynamical mechanics. The
extension of these ideas to Lie groupoids, presented in the last section of this chapter, were
originally developed in the seminal work [118]. Regarding this last topic we follow here the
nice survey [36].

3.1 Discrete Lagrangian mechanics

As in the continuous case, we consider the configuration manifold Q, but now we define the
discrete state space to be Q × Q. That means that rather than taking a position qi and
a velocity q̇i (as local coordinates of the vector vq ∈ TQ), we now consider two positions q0

and q1 and a time step h ∈ R. These positions should be thought of as being two points on
a curve at time h apart, such that q0 ' q(0) and q1 ' q(h). Roughly speaking, the discrete
state space Q × Q contains the same amount of information as TQ (in other words, both
spaces are isomorphic). A discrete Lagrangian is a function Ld : Q ×Q ×R → R, which
we think of as approximating the action integral along the curve segment between q0 and q1,
namely

Ld(q0, q1, h) '
∫ h

0
L(q(t), q̇(t)) dt.

In the following we neglect the h dependence except where it is important and consider the
discrete Lagrangian as a function Ld : Q×Q→ R.

We construc the increasing sequence of times {tk = hk | k = 0, ..., N} ⊂ R from the time
step h, and define the discrete path space to be

Cd(Q) = Cd({tk}Nk=0 , Q) =
{
qd : {tk}Nk=0 → Q

}
.

71
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We will identify a discrete trajectory qd ∈ Cd(Q) with its image qd : {qk}Nk=0, where qk =
qd(tk). The discrete action map or discrete action sum ALd : Cd(Q) → R along this
sequence is calculated by summing the discrete Lagrangian on each adjacent pair and defined
by

ALd =
N−1∑
k=0

Ld(qk, qk+1).

As the discrete path space Cd(Q) is isomorphic to Q× · · ·×Q (N + 1 copies), it can be given
a smooth product manifold structure. The discrete action ALd inherits the smoothness of
the discrete Lagrangian Ld.

The tangent space TqdCd(Q) at qd is the set of maps vqd : {tk}Nk=0 → TQ such that

τq ◦ vqd = qd, which we will denote vqd = {(qk, q̇k)}Nk=0.

The discrete object corresponding to TTQ is the set (Q × Q) × (Q × Q). With the
projection operator π and the translation operator σ defined as

π : ((q0, q1), (q′0, q
′
1)) 7→ (q0, q1),

σ : ((q0, q1), (q′0, q
′
1)) 7→ (q′0, q

′
1),

the discrete second order submanifold of (Q×Q)× (Q×Q) is defined to be

Q̈d = {wd ∈ (Q×Q)× (Q×Q) |π1 ◦ σ(wd) = π2 ◦ π(wd)} ,

where π1,2 : Q × Q → Q are the usual projectors of the first and second factors onto Q.
The discrete second order submanifold is the set of pairs of the form ((q0, q1), (q1, q2)). Now,
analogously to the continuous setting, the discrete version of Hamilton’s principle describes
the dynamics of the discrete mechanical system determined by a discrete Lagrangian Ld on
Q×Q.

Theorem 3.1.1 (Discrete Hamilton’s principle). Given a Ck discrete Lagrangian Ld,
k ≥ 1, there exists a unique Ck−1 mapping DELLd : Q̈d → T ∗Q and unique Ck−1 one-forms
Θ+
Ld

and Θ−Ld on Q×Q, such that for all variations δqd ∈ TqdCd(Q) of qd we have

〈dALd , δqd〉 =

N−1∑
k=0

〈DELLd((qk−1, qk), (qk, qk+1)), δqk〉

+〈Θ+
Ld

(qN−1, qN ), (δqN−1, δqN )〉+ 〈Θ−Ld(q0, q1), (δq0, δq1)〉. (3.1)

The mapping DELLd is called the discrete Euler-Lagrange map and has coordinate
expression

DELLd((qk−1, qk), (qk, qk+1)) = D2Ld(qk−1, qk) +D1Ld(qk, qk+1).

The one-forms Θ+
Ld

and Θ−Ld are called the discrete Lagrangian one-forms which local
expressions are

Θ+
Ld

(q0, q1) = D2Ld(q0, q1)dq1 =
∂Ld
∂qi1

dqi1,

Θ−Ld(q0, q1) = −D1Ld(q0, q1)dq0 = −∂Ld
∂qi0

dqi0.
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Proof. Computing the derivative of the discrete action sum gives

〈dALd , δqd〉 =
N−1∑
k=0

(〈D1Ld(qk, qk+1), δqk〉+ 〈D2Ld(qk−1, qk), δqk+1〉)

=

N−1∑
k=0

〈(D1Ld(qk, qk+1) +D2Ld(qk−1, qk)), δqk〉

+ 〈D1Ld(q0, q1), δq0〉+ 〈D2Ld(qN−1, qN ), δqN 〉,

using a discrete integration by parts (rearrangement of the summation). Identifying the
terms with the discrete Euler-Lagrange map and the discrete Lagrangian one-forms gives the
desired result.

Note that two one-forms arise from the boundary terms. However, observe that dLd =
Θ+
Ld
−Θ−Ld and so using that d2 = 0 we arrive to

dΘ+
Ld

= dΘ−Ld .

Thus, although there are two one-form, they give rise to a single discrete two-form, which is
important for symplecticity.

Discrete Lagrangian evolution operator and mappings

The discrete Lagrangian evolution operator XLd plays the same role as the continuous
Lagrangian vector field, and is defined to be the map XLd : Q × Q → (Q × Q) × (Q × Q)
satisfying π ◦XLd = IdQ×Q and

DELLd ◦XLd = 0.

The discrete objet corresponding to the Lagrangian flow is the discrete Lagrangian map
FLd : Q×Q→ Q×Q defined by

FLd = σ ◦XLd .

Since XLd is of second order, which corresponds to the requirement that XLd(Q×Q) ⊂ Q̈d,
it has the form

XLd : (q0, q1)→ ((q0, q1), (q1, q2)),

and so the corresponding Lagrangian map will be FLd : (q0, q1)→ (q1, q2).1

A discrete path qd ∈ Cd(Q) is said to be a solution of the discrete Euler-Lagrange
equations if the first term on the right hand side of (3.1) vanishes for all variations δqd ∈
TqdCd(Q). This means that the points {qk} satisfy FLd(qk−1, qk) = (qk, qk+1) or, equivalently,
that they satisfy the discrete Euler-Lagrange equations

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0, ∀ k = 1, ..., N − 1. (3.2)

1For a regular discrete Lagrangian (see §3.2), these objets are well-defined and the discrete Lagrangian
map is invertible.
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Example 3.1.2. Let consider the discrete Lagrangian Ld : Rn ×Rn → R defined by

Ld(qk, qk+1) =
h

2

(
qk+1 − qk

h

)T
M

(
qk+1 − qk

h

)
− hV (qk),

where M is a real symmetric positive-definite n × n matrix (in other words a mass matrix)
and V a potential function. Applying equation (3.2), we find that the discrete Euler-Lagrange
equations are

M

(
qk+1 − 2qk + qk−1

h2

)
= −∇V (qk),

which is clearly a discretization of Newton’s equations

M q̈ = −V (q),

which just are the Euler-Lagrange equations for a continuous Lagrangian system defined by
L(q, q̇) = 1

2 q̇
T M q̇ − V (q).

If, on the other hand, we choose a different discrete Lagrangian, namely

Ld(qk, qk+1) =
h

2

(
qk+1 − qk

h

)T
M

(
qk+1 − qk

h

)
− hV (

qk + qk+1

2
),

the resulting discrete Euler-Lagrange equations are

M

(
qk+1 − 2qk + qk−1

h2

)
= −∇V (qk+1/2)−∇V (qk−1/2),

where qk+1/2 =
qk+1−qk

2 and qk−1/2 =
qk−qk−1

2 . Again, this is a discrete analogue of the
Newton’s law.

3.1.1 Properties of discrete Lagrangian maps

One can show that discrete Lagrangian maps inherit the properties we have presented for
continuous Lagrangian flows. That means that the discrete Lagrangian symplectic form
ΩLd = dΘ+

Ld
= dΘ−Ld , with coordinate expression

ΩLd(q0, q1) =
∂2Ld

∂qi0∂q
j
1

dqi0 ∧ dqj1,

is preserved under the discrete Lagrangian map as

(FLd)
∗ΩLd = ΩLd .

Thus, we say that FLd is discretely symplectic (see [124] for the proof).

There exists a discrete analogue of Noether’s theorem which states that momentum maps
of symmetries are constants of the motion. To see this, we introduce the action lift to
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Q×Q by the product ΦQ×Q
g (q0, q1) = (Φg(q0),Φg(q1)), which has an infinitesimal generator

ξQ×Q : Q×Q→ T (Q×Q) given by

ξQ×Q(q0, q1) = (ξQ(q0), ξQ(q1)),

where ξQ : Q→ TQ is the infinitesimal generator of the action Φg : Q→ Q, both presented
in §2.1.3. The two discrete Lagrangian momentum maps J±Ld : Q×Q→ g∗ are

〈J+
Ld

(q0, q1), ξ〉 = 〈Θ+
Ld
, ξQ×Q(q0, q1)〉,

〈J−Ld(q0, q1), ξ〉 = 〈Θ−Ld , ξQ×Q(q0, q1)〉,

for all ξ ∈ g, or alternatively written as

〈J+
Ld

(q0, q1), ξ〉 = 〈D2Ld(q0, q1), ξQ(q1)〉,
〈J−Ld(q0, q1), ξ〉 = 〈−D1Ld(q0, q1), ξQ(q0)〉.

The discrete momentum maps J+
Ld

and J−Ld are equal, along solutions of the discrete Euler-
Lagrange equations, in the case of a discrete Lagrangian that is invariant under the lifted
action, that is

Ld ◦ ΦQ×Q
g = Ld

holds for all g ∈ G. Then JLd : Q×Q→ g∗ is the unique discrete Lagrangian momentum
map.

Theorem 3.1.3 (Discrete Noether’s theorem). Consider a given discrete Lagrangian
system Ld : Q × Q → R which is invariant under the lift of the (left or right) action Φ :
G×Q→ Q. Then, the corresponding discrete Lagrangian momentum map JLd : Q×Q→ g∗

is a conserved quantity of the discrete Lagrangian map FLd : Q × Q → Q × Q, such that
JLd ◦ FLd = JLd.

See [124] for the proof.

3.2 Discrete Hamiltonian mechanics

Discrete Legendre transforms

Just as the standard Legendre transform maps the Lagrangian state space TQ to the Hamil-
tonian phase space T ∗Q, we can define discrete Legendre transforms or discrete fiber
derivatives FL±d : Q×Q→ T ∗Q, which map the discrete state space Q×Q to T ∗Q. These
are given by

〈FL+
d (q0, q1), δq1〉 = 〈D2Ld(q0, q1), δq1〉,

〈FL−d (q0, q1), δq0〉 = 〈−D1Ld(q0, q1), δq0〉,

which can be written as

FL+
d : (q0, q1) 7→ (q1, p1) = (q1, D2Ld(q0, q1)),

FL−d : (q0, q1) 7→ (q0, p0) = (q0,−D1Ld(q0, q1)).
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We say that Ld is regular if both discrete fiber derivatives are local isomorphisms (for nearby
q0 and q1). In general, we assume working with regular discrete Lagrangians. If both discrete
fiber derivatives are global isomorphisms we say that Ld is hyperregular. In fact, it is only
necessary to have regularity of one of the Legendre maps. Then the regularity of the second
is straightforward.

The canonical one- and two-forms and Hamiltonian momentum maps are related to the
discrete Lagrangian forms and discrete momentum maps by pullback by the discrete fiber
derivatives, such that

Θ±Ld = (FL±d )∗ΘQ and ΩLd = (FL±d )∗ΩQ,

where, as before, ΘQ is the canonical 1-form and ΩQ is the symplectic 2-form on T ∗Q.

Momentum matching

By introducing the notation

p+
k,k+1 = p+(qk, qk+1) = FL+

d (qk, qk+1),

p−k,k+1 = p−(qk, qk+1) = FL−d (qk, qk+1),

for the momentum at the two endpoints of each interval [k, k+1] the discrete fiber derivatives
permit a new interpretation of the discrete Euler-Lagrange equations (3.2) which can be
written as

FL+
d (qk−1, qk) = FL−d (qk, qk+1), (3.3)

or simply
p+
k−1,k = p−k,k+1.

That is, the discrete Euler-Lagrange equations are enforcing the condition that the momentum
at time k should be the same when being evaluated from the lower interval [k − 1, k] or the
upper interval [k, k+1]. This means that along a solution curve there is a unique momentum
at each time k, which is denoted by

pk = p+
k−1,k = p−k,k+1.

A discrete trajectory {qk}Nk=0 in Q can thus also be regarded as either a trajectory

{(qk, qk+1)}N−1
k=0 in Q×Q or, equivalently, as a trajectory {(qk, pk)}Nk=0 in T ∗Q.

Note that (3.3) can be also written as

FL+
d = FL−d ◦ FLd . (3.4)

A consequence of viewing the discrete Euler-Lagrange equations as a matching of momenta
is that it gives a condition for when the discrete Lagrangian evolution operator and discrete
Lagrangian map are well-defined.

Theorem 3.2.1. Given a discrete Lagrangian system Ld : Q × Q → R, the discrete La-
grangian evolution operator XLd and the discrete Lagrange map FLd are well-defined if and
only if FL−d is locally and isomorphism. The discrete Lagrange map is well-defined and in-
vertible if and only if the discrete Lagrangian is regular.

See [124] for the proof.
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Discrete Hamiltonian maps

Using the discrete Legendre transformations also enables us to push the discrete Lagrangian
map FLd : Q × Q → Q × Q forward to T ∗Q. We define the discrete Hamiltonian map
F̃Ld : T ∗Q→ T ∗Q by F̃Ld = FL±d ◦FLd ◦ (FL±d ). The fact that the discrete Hamiltonian map
can be equivalently defined with either discrete Legendre transform is a consequence of the
following theorems.

Theorem 3.2.2. The following diagram commutes

(q0, q1) � FLd //
C

FL−d

��

{

FL+
d

��

(q1, q2)C

FL−d

��

{

FL+
d

��
(q0, p0) �

F̃Ld

// (q1, p1) �
F̃Ld

// (q2, p2)

(3.5)

Proof. The central triangle is simply (3.4). Assume that we define the discrete Hamiltonian
map by F̃Ld = FL+

d ◦ FLd ◦ (FL+
d )−1, which gives the right-hand parallelogram. Replicating

the right-hand triangle on the left-hand side completes the diagram. If we choose to use the
other discrete Legendre transform then the reverse argument applies.

Corollary 3.2.3. The following three definitions of the discrete Hamiltonian map,

F̃Ld = FL+
d ◦ FLd ◦ (FL+

d )−1,

F̃Ld = FL−d ◦ FLd ◦ (FL−d )−1,

F̃Ld = FL+
d ◦ (FL−d )−1,

are equivalent and have coordinate expression F̃Ld : (q0, p0) 7→ (q1, p1), where

p0 = −D1Ld(q0, q1), (3.6a)

p1 = D2Ld(q0, q1). (3.6b)

Proof. The equivalence of the three definitions can be read directly from the diagram in
Theorem (3.2.2). The coordinate expression for F̃Ld : (q0, p0) 7→ (q1, p1) can be readily seen
from the definition F̃Ld = FL+

d ◦ (FL−d )−1. Taking initial condition (q0, p0) ∈ T ∗Q and
setting (q0, q1) = (FL−d )−1(q0, p0) implies that p0 = −D1Ld(q0, q1), which is (3.6a). Now,
letting (q1, p1) = FL+

d (q0, q1) gives p1 = D2Ld(q0, q1), which is (3.6b).

As the discrete momentum map preserves the discrete symplectic form and discrete mo-
mentum maps on Q×Q, the discrete Hamiltonian map will preserve the pushforwards of these
structures. As we saw above, however, these are simply the canonical symplectic form and
momentum map on T ∗Q, and so the discrete Hamiltonian map is symplectic and momentum
preserving.
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We can summarize the relationship between the discrete and continuous systems in the
following diagram, where the dashed arrows represent the discretization.

TQ , FL

FL

��

// Q×Q , FLd

FLd

��
T ∗Q , FH // T ∗Q , F̃Ld

(3.7)

3.2.1 Discrete Lagrangians are generating functions

As we have seen above, a discrete Lagrangian is a real-valued function on Q×Q which defines
a map F̃Ld : T ∗Q → T ∗Q. In fact, a discrete Lagrangian is simply a generating function of
the first kind for the map F̃Ld , in the sense defined in §2.2.2. This is seen by comparing the
coordinate expression (3.6) for the discrete Hamiltonian map with the expression (2.10) for
the map generated by a generating function of the first kind.

3.3 Correspondence between discrete and continuous me-
chanics

We will now define a particular choice of discrete Lagrangian which gives an exact corre-
spondence between discrete and continuous systems. To do this, we must firstly recall the
following fact

Theorem 3.3.1. Consider a regular Lagrangian L for a configuration manifold Q, two points
q0, q1 ∈ Q and a time step h ∈ R. If ||q1 − q0|| and h are sufficiently small, then there exists
a unique solution q : R → Q of the Euler-Lagrange equations for L satisfying q(0) = q0 and
q(h) = q1.

See [123] and [140] for the proof. For a regular Lagrangian L we state the following
definition

Definition 3.3.2. Let the exact discrete Lagrangian be

LEd (q0, q1, h) =

∫ h

0
L(q0,1(t), q̇0,1(t)) dt,

for sufficiently small h and close q0 and q1.

Here, q0,1(t) is the unique solution of the Euler-Lagrange equations for L which satisfies
the boundary conditions q0,1(0) = q0 and q0,1(h) = q1, and whose existence is guaranteed by
Theorem 3.3.1.

We will now see that with this exact discrete Lagrangian there is an exact correspondence
between the discrete and continuous systems. To do this, we will first establish that there
is a special relationship between the Legendre transforms of a regular Lagrangian and its
corresponding exact discrete Lagrangian.
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Lemma 3.3.3. A regular Lagrangian L and the corresponding exact discrete Lagrangian LEd
have Legendre transforms related by

F(LEd )+(q0, q1, h) = FL(q0,1(h), q̇0,1(h)),

F(LEd )−(q0, q1, h) = FL(q0,1(0), q̇0,1(0)),

for sufficiently small h and close q0, q1 ∈ Q.

See [124] for the proof. Since (q0,1(h), q̇0,1(h)) = F hL(q0,1(0), q̇0,1(0)), Lemma 3.3.3 is
equivalent to the following commutative diagram (recall that F tL is the Lagrangian flow,
defined in §2.1.3, of the Lagrangian vector field XL determined by the equation (2.7), that is
iXLΩL = dEL).

(q0, q1)C

F(LEd )−

��

{

F(LEd )−

��
(q0, p0) (q1, p1)

(q0, q̇0) �
FhL

//
_

FL

OO

(q1, q̇1)
_

FL

OO

Combining this diagram with Theorem 3.2.2 and with the definition of the Legendre transform
gives the following commutative diagram for the exact discrete Lagrangian

(q0, q1) �
F
LE
d //

C

F(LEd )−

��

{

F(LEd )+

��

(q1, q2)C

F(LEd )−

��

{

F(LEd )+

��
(q0, p0) �

F̃
LE
d

=FhH

// (q1, p1) �
F̃
LE
d

=FhH

// (q2, p2)

(q0, q̇0) �
FhL

//
_

FL

OO

(q1, q̇1) �
FhL

//
_

FL

OO

(q2, q̇2)
_

FL

OO

This proves the following theorem.

Theorem 3.3.4. Consider a regular Lagrangian L, its corresponding exact discrete La-
grangian LEd and the pushforward of both the continuous and discrete systems on T ∗Q, yield-
ing a Hamiltonian system with Hamiltonian H and a discrete Hamiltonian map F̃LEd

, respec-
tively. Then, for a sufficiently small time step h ∈ R, the Hamiltonian flow map equals the
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pushforward discrete Lagrangian map:

F hH = F̃LEd
.

This theorem is a statement about the time evolution of the system, and can also be
interpreted as saying that the diagram (3.7) commutes with the dashed arrows understood
as samples at times {tk}Nk=0, rather than merely as discretizations.

We can also interpret the equivalence of the discrete and continuous systems as a statement
about trajectories. On the Lagrangian side, this gives the following theorem.

Theorem 3.3.5. Take a series of times {tk = hk}Nk=0 for a sufficiently time step h ∈ R, and
a regular Lagrangian L and its corresponding exact discrete Lagrangian LEd . Then, solutions

q : [0, tN ] → Q of the Euler-Lagrange equations for L and solutions {qk}Nk=0 of the discrete
Euler-Lagrange equations for LEd are related by

qk = q(tk), k = 0, ..., N, (3.8a)

q(t) = qk,k+1(t), t = [tk, tk+1]. (3.8b)

Here, the curves qk,k+1 : [tk, tk+1]→ Q are the unique solutions of the Euler-Lagrange equa-
tions for L satisfying qk,k+1(kh) = qk and qk,k+1((k + 1)h) = qk+1.

See [124] for the proof.

3.4 Variational integrators

We now turn our attention to a discrete Lagrangian system as an approximation to a given
continuous system. That is, the discrete system is an integrator for the continuous system.

As we have seen, under regularity condition discrete Lagrangian maps preserve the sym-
plectic structure and so, regarded as integrators, they are necessarily symplectic. Further-
more, generating function theory shows that any symplectic integrator for a mechanical sys-
tem can be regarded as a discrete Lagrangian system, a fact we state here as a theorem

Theorem 3.4.1. If the integrator F : T ∗Q × R → T ∗Q is symplectic, then there exists a
discrete Lagrangian Ld whose discrete Hamiltonian map F̃Ld is F .

In addition, if the discrete Lagrangian inherits the same symmetry groups as the contin-
uous system, then the discrete system will also preserve the corresponding momentum maps.
As an integrator, it will thus be a so-called symplectic-momentum integrator.

Just as with continuous mechanics, we have seen that discrete variational mechanics has
both a Lagrangian and a Hamiltonian interpretation. These two viewpoints are complemen-
tary and both give insight into the behaviour and derivation of useful integrators.

However, the above theorem is not literally used in the construction of variational inte-
grators, but is rather used as the first steps in obtaining inspiration. In this section we will
assume that Q, and thus also TQ and T ∗Q, is a finite n-dimensional vector space with an
inner product 〈·, ·〉 and corresponding norm ‖ · ‖.
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3.4.1 Implementation of variational integrators

Although the distinction between the discrete Lagrangian map FLd : Q × Q × R → Q × Q
and its pushforward F̃Ld : T ∗Q × R → T ∗Q is important geometrically, for implementation
purposes the two maps are essentially the same. This is because of the observation made
in §3.2 that the discrete Euler-Lagrange equations that define FLd can be interpreted as
matching of momenta between adjacent intervals.

In other words, given a trajectory q0, q1, ..., qk−1, qk the map FLd : Q × Q × R → Q × Q
calculates qk+1 according to

D2Ld(qk−1, qk, h) = −D1Ld(qk, qk+1, h).

If now we take pk = D2Ld(qk−1, qk, h) for each k, then this equation is simply

pk = −D1Ld(qk, qk+1, h), (3.9)

which together with the next update

pk+1 = D2Ld(qk, qk+1, h), (3.10)

defines the pushforward map F̃Ld : T ∗Q × R → T ∗Q. Another way to think of this is that
the pk are merely storing the values D2Ld(qk, qk+1, h) from the last step. For this reason it is
tipically easier to implement a variational integrator as the single step map F̃Ld , as this also
provides a simple method of initialization from initial vales (q0, p0) ∈ T ∗Q. In the general
case when no special form is apparent, the equations (3.9) and (3.10) must be solved directly.
The update (qk, pk) 7→ (qk+1, pk+1) thus involves first solving the implicit equation (3.9) for
qk+1 and then evaluating the explicit update (3.10) to give pk+1.

3.4.2 Error analysis

In this section we consider a numerical method F : T ∗Q × R → T ∗Q which approximates
the flow FH : T ∗Q × R → T ∗Q of a given Hamiltonian vector field XH . Error analysis is
concerned with difference between and exact trajectory and a discrete trajectory.

Local error and order of the method

An integrator F of XH is said to be of order r if there exist an open set U ⊂ T ∗Q and
constants Cl > 0 and hl so that

‖ F (q, p, h)− FH(q, p, h) ‖≤ Clhr+1 (3.11)

for all (q, p) ∈ U and h ≤ hl (we are using, with some abuse of notation, (q, p) and (qi, pi),
without distinction, since T ∗Q and T ∗Q are vector spaces). The expression on the left hand
side of this equation is known as the local error, and if the method has order at least 1,
then it is said to be consistent.
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Global error and convergence

Having defined the error after one step, we now consider the error after many steps. The
integrator F of FH is said to be convergent of order r if there exist an open set U ⊂ T ∗Q
and constants Cg > 0, hg > 0 and Tg > 0 so that

‖ (F )N (q, p, h)− FH(q, p, T ) ‖≤ Cghr,

where h = T/N , for all (q, p) ∈ U , h ≤ hg and T ≤ Tg. The expression on the left hand side
is the global error at time T .

For one-step methods such as we consider here, convergence follows from a local error
bound on the method and a Lipschitz bound on XH

Theorem 3.4.2. Suppose that the integrator F for XH is of order r on the open set U ⊂ T ∗Q
with local error constant Cl, and assume that ` > 0 is such that∣∣∣∣∣∣ ∂XH

∂(p, q)

∣∣∣∣∣∣ ≤ `
on U . The method is consistent on U with global error constant Cg given by

Cg =
Cl
`

(e`Tg − 1).

See [62], for instance, for the proof.

Order calculation

Given an integrator F of XH , the order can be calculated by expanding both the true flow
FH and the integrator F in a Taylor series in h and then comparing terms. If the terms agree
up to order r, then the method will be of order r.

3.4.3 Variational error analysis

Rather than considering how closely the trajectory of F matches the exact trajectory given
by FH , we can alternatively consider how closely a discrete Lagrangian matches the ideal
discrete Lagrangian given by the action. As we have seen in §3.3, if the discrete Lagrangian
is equal to the action, then the corresponding discrete Hamiltonian map F̃Ld will exactly
equal the flow FH .

The approach taken here is to show that when the discrete Lagrangian approximates a
continuous Lagrangian, the discrete integrator approximates the continuous flow and thus
the classical theory implies that the global discrete trajectory approximates the continuous
trajectory.
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Local variational order

Recall that the exact discrete Lagrangian given in definition 3.3.2 is defined by

LEd (q0, q1, h) =

∫ h

0
L(q(t), q̇(t)) dt,

where q(t) is the solution of the Euler-Lagrange equations satisfying q(0) = q0 and q(h) = q1.

We say that given a discrete Lagrangian Ld is of order r if there exist an open subset
Uv ⊂ TQ with compact closure and constants Cv > 0 and hv > 0 so that

‖ Ld(q(0), q(h), h)− LEd (q(0), q(h), h) ‖≤ Cvhr+1 (3.12)

for all solutions q(t) of the Euler-Lagrange equations with initial conditions (q, q̇) ∈ Uv and
for all h ≤ hv.

Discrete Legendre transform order

The discrete Legendre transforms FL±d of a discrete Lagrangian Ld are said to be of order
r if there exists an open subset Uf ⊂ T ∗Q with compact closure and constants Cf > 0 and
hf > 0, so that

‖ FL+
d (q(0), q(h), h)− F(LEd )+(q(0), q(h), h) ‖≤ Cfhr+1, (3.13a)

‖ FL−d (q(0), q(h), h)− F(LEd )−(q(0), q(h), h) ‖≤ Cfhr+1, (3.13b)

for all solutions q(t) of the Euler-Lagrange equations with initial condition (q, q̇) ∈ Uf and
for all h ≤ hf .

The relationship between the orders of a discrete Lagrangian, its discrete Legendre trans-
forms and its discrete Hamiltonian map is given in the following fundamental theorem.

Theorem 3.4.3. Given a regular Lagrangian L and corresponding Hamiltonian H, the fol-
lowing are equivalent for a discrete Lagrangian Ld:

1. the discrete Hamiltonian map for Ld is of order r,

2. Ld is equivalent to a discrete Lagrangian of order r.

See [124] for the proof. An extension of this theorem is treated in [140].

Variational order calculation

Given a discrete Lagrangian, its order can be calculated by expanding the expression for
Ld(q(0), q(h), h) in a Taylor series in h and comparing this to the same expansion for the
exact Lagrangian. If the series agree up to r, then the discrete Lagrangian is of order r.

We explicitly evaluate the first terms of the expansion of the exact discrete Lagrangian
to give

LEd (q(0), q(h), h) = hL(q, q̇) +
1

2
h2

(
∂L

∂qi
(q, q̇)q̇i +

∂L

∂q̇i
(q, q̇)q̈i

)
+ O(h3),
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where q = q(0), q̇ = q̇(0) and so forth. Higher derivatives of q(t) are determined by the

Euler-Lagrange equations (recall that the Euler-Lagrange equations d
dt

(
∂L(q,q̇)
∂q̇

)
− ∂L(q,q̇)

∂q = 0

determine q̈ in terms of q̇ and q).

3.4.4 The adjoint of a method and symmetric methods

For a one-step method F : T ∗Q×R → T ∗Q the adjoint method is F ∗ : T ∗Q×R → T ∗Q
defined by

(F ∗)h ◦ F−h = Id (3.14)

that is, (F ∗)h = (F−h)−1. The method is said to be self-adjoint if F ∗ = F . Note that we
always have F ∗∗ = F .

Given a discrete Lagrangian Ld : Q × Q × R → R, we define the adjoint discrete
Lagrangian to be L∗d : Q×Q×R→ R defined by

L∗d(q0, q1, h) = −Ld(q1, q0,−h). (3.15)

The discrete Lagrangian Ld is said to be self-adjoint if L∗d = Ld. Note that L∗∗d = Ld for
any Ld.

Theorem 3.4.4. If the discrete Lagrangian Ld has a discrete Hamiltonian map F̃Ld, then
the adjoint L∗d of the discrete Lagrangian has discrete Hamiltonian map equal to the adjoint
map, so that F̃L∗d = F̃ ∗Ld. If the discrete Lagrangian is self-adjoint, then the method is self-
adjoint. Conversely, if the method is self-adjoint, then the discrete Lagrangian is equivalent
to a self-adjoint discrete Lagrangian.

See [124] for the proof.

Order of adjoint methods

To relate the expressions of Ld and its adjoint in terms of h, it is necessary to work with the
modified form

L∗d(q(−h/2), q(h/2), h) = −Ld(q(h/2), q(−h/2),−h),

which can be used in the same way as L∗d(q(0), q(h), h) = −Ld(q(h), q(0),−h). From this it
is clear that the expansion of L∗d is the negative of the expansion of Ld with h replaced by
−h. In other words, if Ld has the expansion

Ld(h) = hL′d +
1

2
h2L′′d +

1

6
h3L′′′d ,

where ′ denotes the derivative with respect to h, then L∗d will have the expansion

L∗d(h) = hL′d −
1

2
h2L′′d +

1

6
h3L′′′d ,

and so the series agree on odd terms and are opposite on even terms.
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This shows that the order of the adjoint discrete Lagrangian L∗d is the same as the order
of Ld. Furthermore, if Ld is self-adjoint, then all the even terms in its expansion must be
zero, showing that self-adjoint discrete Lagrangians are necessarily of even order (the first
nonzero term, which is r + 1, must be odd).

These same conclusions can be also be reached by working with the discrete Hamiltonian
map, and showing that its adjoint has the same order as it, and that it is of even order
whenever it is self-adjoint. Theorems 3.4.4 and 3.4.3 then give the corresponding statements
for the discrete Lagrangians.

Exact discrete Lagrangian is self-adjoint

It is easy to verify that the exact discrete Lagrangian LEd in definition 3.3.2 is self-adjoint.
This can be done either directly from L∗d(q0, q1, h) = −Ld(q1, q0,−h), or by realizing that the
exact flow map FH generated by LEd satisfies equation (3.14) and then using Theorem 3.4.4.

3.5 Discrete mechanics on Lie groupoids

In this section we are going to use the notions of Lie groupoid and prolongation of a Lie
groupoid described in §1.5.2. We discuss discrete Lagrangian mechanics on a Lie groupoid
G ⇒ Q. Instead of the usual Euler-Lagrange equations (2.23) for a Lie algebroid τ : A→ Q
τ : A → Q equipped with a Lagrangian function L : A → R, we obtain a set of difference
equations called discrete Euler-Lagrange equations for a discrete Lagrangian Ld : G→ R

(see [118] for further details). When the Lie algebroid is precisely A = AG and Ld is a
suitable approximation of the continuous Lagrangian L : AG → R, then we will obtain a
geometric integrator for the continuous Euler-Lagrange equations.

Discrete Euler-Lagrange equations

A discrete Lagrangian system consists of a Lie groupoid G ⇒ Q (the discrete space)
and a discrete Lagrangian Ld : G→ R. For g ∈ G fixed, we consider the set of admissible
sequences

CNg =
{

(g1, ..., gN ) ∈ GN | (gk, gk+1) ∈ G(2) for k = 1, ..., N − 1, g1 · · · gN = g
}
.

We may identify the tangent space to CNg with

T(g1,...,gN )C
N
g ≡ {(v1, ..., vN−1) | vk ∈ (AG)qk and qk = β(gk), 1 ≤ k ≤ N − 1} .

An element of T(g1,...,gN )C
N
g is called an infinitesimal variation. Now, we define the dis-

crete action sum associated to the discrete Lagrangian Ld : G→ R by

SLd(g1, ..., gN ) =

N∑
k=1

Ld(gk).
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Hamilton’s principle requires this discrete action sum to be stationary with respect to all
infinitesimal variations. This requirement gives the following alternative expression for the
discrete Euler-Lagrange equations:

←−
X (gk)(Ld)−

−→
X (gk+1)(Ld) = 0, (3.16)

for all sections X ∈ Γ(AG) (see [118] for the proof).

Alternatively, we may rewrite the discrete Euler-Lagrange equations as

d
(
Ld ◦ Lgk + Ld ◦Rgk+1

◦ i
)

(ε(qk))
∣∣∣
(AG)qk

= 0,

where β(gk) = α(g(k+1)) = qk and i represents the inversion map in Lie groupoids defined in
§1.5.2. Note that Lgk and Rgk+1

denote the left-translation by gk and the right translation by
gk+1 in the Lie groupoid, respectively. Thus, we may define the discrete Euler-Lagrange
operator:

DDELLd : G(2) → A∗G.

where A∗G is the dual algebroid of AG. This operator is given by

DDELLd(g, h) = d (Ld ◦ Lg + Ld ◦Rh ◦ i) (ε(q))
∣∣∣
(AG)q

,

with β(g) = α(h) = q.

Discrete Lagrangian evolution operator

Let Υd : G→ G be a smooth map such that:

• Graph(Υd) ⊆ G(2), that is, (g,Υd(g)) ⊆ G(2), for all g ∈ G (in other words Υd is a
second order operator).

• (g,Υd(g)) is a solution of the Euler-Lagrange equations for all g ∈ G, that is
DDELLd(g,Υd(g)) = 0 ∀ g ∈ G.

In such case ←−
X (g)(Ld)−

−→
X (Υd(g))(Ld) = 0,

for every section X of AG and every g ∈ G. The map Υd : G→ G is called a discrete flow
or a discrete Lagrangian evolution operator for Ld.

3.5.1 Discrete Legendre transformations

Given a discrete Lagrangian Ld : G→ R we may define two discrete Legendre transformations
FL±d : G→ A∗G by

(FL−d )(h)(vε(α(h))) = −vε(α(h))(Ld ◦Rh ◦ i),

for vε(α(h)) ∈ (AG)α(h) and

(FL+
d )(g)(vε(β(h))) = vε(β(h))(Ld ◦ Lg),
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for vε(β(h)) ∈ (AG)β(h).

A discrete Lagrangian Ld : G → R is said to be regular if and only if the Legendre
transformation FL+

d is a local diffeomorphism (equivalently if and only if the Legendre trans-
formation FL+

d is a local diffeomorphism). In this case, if (g0, h0) ∈ G×G is a solution of the
discrete Euler-Lagrange equations for Ld, then one may prove (see [118]) that there exist two
open subsets U0 and V0 of G, with g0 ∈ U0 and h0 ∈ V0, and there exists a (local) discrete
unconstrained Lagrangian evolution operator ΥLd : U0 → V0 such that

1. ΥLd(g0) = h0,

2. ΥLd is a diffeomorphism,

3. ΥLd is unique, that is, if U ′0 is an open subset of G, with g0 ∈ U ′0, and Υ′Ld : U ′0 → G is
a (local) discrete Lagrangian evolution operator, then

ΥLd

∣∣
U0∩U ′0

= Υ′Ld
∣∣
U0∩U ′0

.

Moreover, if FL+
d and FL−d are global diffeomorphisms then ΥLd = (FL−d )−1 ◦ (FL+

d ).

If Ld : G → R is a regular Lagrangian, then pushing forward to A∗G with the discrete
Legendre transformations, we obtain the discrete Hamiltonian evolution operator, Υ̃Ld :
A∗G→ A∗G which is given by

Υ̃Ld = (FL±d ) ◦ΥLd ◦ (FL±d )−1 = (FL+
d ) ◦ (FL−d )−1.

The discrete Hamiltonian evolution operator preserves the Poisson bracket naturally induced
by the Lie algebroid structure τ : AG→ Q. In this sense, we are obtaining Poisson preserv-
ing numerical methods by considering appropriate discretizations of the continuous reduced
Lagrangian.

3.5.2 Examples

Pair or Banal groupoid

We consider the pair (banal) groupoid G = Q × Q already introduced in §1.5.2, where the
structural maps are

α(q1, q2) = q1, β(q1, q2) = q2, ε(q) = (q, q), i(q1, q2) = (q2, q1),

m((q1, q2), (q2, q3)) = (q1, q3).

We know that the Lie algebroid of G is isomorphic to the standard Lie algebroid τQ : TQ→ Q
and the map

Ψ : AG = Vε(Q)α→ TQ, (0q, vq) ∈ TqQ× TqQ→ Ψq(0q, vq) = vq, for q ∈ Q,

induces an isomorphism (over the identity of Q) between AG and TQ. In the last expression
we have that Vε(q)α = Ker (Tε(q)α) (respectively β). If X is a section of τQ : AG ' TQ→ Q,

that is, X is a vector field on Q then
−→
X and

←−
X are the vector fields on Q×Q given by

−→
X (q1, q2) = (−X(q1), 0q2) ∈ Tq1Q× Tq2Q and

←−
X (q1, q2) = (0q1 , X(q2)) ∈ Tq1Q× Tq2Q,
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for (q1, q2) ∈ Q×Q. On the other hand, if (q1, q2) ∈ Q×Q we have that the map

P
τQ
(q1,q2)G ≡ V(q1,q2)β ⊕ V(q1,q2)α → T(q1,q2)(Q×Q) ' Tq1Q× Tq2Q,

((vq1 , 0q2), (0q1 , vq2)) → (vq1 , vq2)

induces an isomorphism (over the identity of Q×Q) between the Lie algebroids πτQ : PτQG ≡
V β ⊕G V α→ G = Q×Q and τ(Q×Q) : T (Q×Q)→ Q×Q. Recall that the prolongation of
a Lie groupoid over a tangent bundle τ , PτG, was already defined in §1.5.2.

Now, given a discrete Lagrangian Ld : Q × Q → R then the discrete Euler-lagrange
equations for Ld are:

←−
X (q1, q2)(Ld)−

−→
X (q2, q3)(Ld) = 0, for all X ∈ X(Q), (3.17)

which are equivalent to the classical discrete Euler-Lagrange equations

D2Ld(q1, q2) +D1Ld(q2, q3) = 0

(see, for instance, [124]). The Poincaré-Cartan 1-sections Θ−Ld and Θ+
Ld

on πτQ : PτQG '
T (Q×Q)→ G = Q×Q are the 1-forms on Q×Q defined by

〈Θ−Ld(q1, q2), (vq1 , vq2)〉 = −vq1(Ld), 〈Θ+
Ld

(q1, q2), (vq1 , vq2)〉 = vq2(Ld),

for (q1, q2) ∈ Q×Q and (vq1 , vq2) ∈ Tq1Q× Tq2Q ' T(q1,q2)(Q×Q).

In addition, if ξ : G = Q ×Q → G = Q ×Q is a discrete Lagrangian evolution operator
then the prolongation of ξ

PτQξ : PτQG ' T (Q×Q)→ PτQG ' T (Q×Q)

is just the tangent map to ξ and, thus, we have that

ξ∗ΩLd = ΩLd ,

ΩLd = −dΘ−Ld = −dΘ+
Ld

being the Poincaré-Cartan 2-form on Q×Q. The Legendre transfor-

mations FL−d : G = Q×Q→ A∗G ' T ∗Q and FL+
d : G = Q×Q→ A∗G ' T ∗Q associated

with Ld are the maps given by

FL−d (q1, q2) = −D1Ld(q1, q2) ∈ T ∗q1Q, FL+
d (q1, q2) = D2Ld(q1, q2) ∈ T ∗q2Q,

for (q1, q2) ∈ Q × Q. The Lagrangian Ld is regular if and only if the matrix

(
∂2L

∂x∂y

)
is

regular, where x and y account for the first and second variables respectively. Finally, a
Noether symmetry is a vector field X on Q such that

D1Ld(q1, q2)(X(q1)) +D2Ld(q1, q2)(X(q2)) = f(q2)− f(q1),

for (q1, q2) ∈ Q × Q, where f : Q → R is a real C∞-function on Q. If X is a Noether
symmetry then

q1 → f(q1) = D1Ld(q1, q2)(X(q1))− f(q1)

is a constant of the motion.

In conclusion, we recover all the geometrical formulation of the classical discrete mechanics
on the discrete state space Q×Q (see, for instance, [118, 124]).
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Lie groups

We consider a Lie group G as a groupoid over one point M = {e}, the identity element of G.
The structural maps are

α(g) = e, β(g) = e, ε(e) = e, i(g) = g−1, m(g, h) = gh, for g, h ∈ G.

The Lie algebroid associated to G is just the Lie algebra g = TeG of G. Given ξ ∈ g we have
the left and right invariant vector fields:

←−
ξ (g) = (TeLg)(ξ),

−→
ξ (g) = (TeRg)(ξ), for g ∈ G,

where, again, Lg and Rg are the left- and right-translations in the Lie group G, respectively.
Thus, given a Lagrangian Ld : G −→ R its discrete Euler-Lagrange equations are:

(TeLgk)(ξ)(Ld)− (TeRgk+1
)(ξ)(Ld) = 0, for all ξ ∈ g and gk, gk+1 ∈ G,

or, (L∗gkdLd)(e) = (R∗gk+1
dL)(e). Denote by µk = (R∗gkdLd)(e) then the discrete Euler-

Lagrange equations are written as

µk+1 = Ad∗gkµk, (3.18)

where Ad : G × g → g is the adjoint action of G on g defined in §1.4.3. These equations
are known as the discrete Lie-Poisson equations (they will be reobtained in a different
context in §5). See [18, 121, 122] for further details.

Finally, an infinitesimal symmetry of Ld is an element ξ ∈ g such that (TeLg)(ξ)(Ld) =
(TeRg)(ξ)(Ld), and then the associated constant of the motion is F (g) = (TeLg)(ξ)(Ld) =
(TeRg)(ξ)(Ld). Observe that all the Noether’s symmetries are infinitesimal symmetries of Ld.
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Chapter 4

Hamiltonian dynamics and
constrained variational calculus

The aim of this chapter is to study the relationship between Hamiltonian dynamics and
constrained variational calculus or, in other words, vakonomic mechanics (see §2.4.3 for fur-
ther details). One of our main conclusions is that, under natural regularity conditions, both
are equivalent. We describe Hamiltonian and vakonomic mechanics using the notion of La-
grangian submanifolds (see §1.3 for further details) of convenient symplectic manifolds and
using the Tulczyjew’s triples (see §2.3 for further details). The results are also extended to
the case of discrete dynamics. More concretely, our approach allows us to build symplectic
integrators and to find out interesting applications to geometrical integration of Hamiltonian
systems. Moreover, we analyze in parallel the case of classical nonholonomic mechanics in
the discrete and continuous cases: we give a general method to compare common solutions of
nonholonomic and vakonomic problems (generalizing the results in [35]) and easily adaptable
to more general systems. In order to complete the landscape, some extra geometric notions,
not presented in §1, are introduced in §4.1, such as implicit differential equations.

4.1 Geometric preliminaries

4.1.1 Lagrangian submanifolds and symplectic structures on the tangent
bundle of a symplectic manifold

In §1.3 both symplectic algebra and symplectic geometry were introduced, along with the key
notion of Lagrangian submanifold. Here we recall the example of Lagrangian submani-
fold given in §1.3 and, moreover, we introduce some other particular constructions that are
interesting for our purposes (see [112, 166]).

An interesting class of Lagrangian submanifolds, which will be useful in this chapter,
is the following. Let (P,ΩP ) be a symplectic manifold, where ΩP is the usual symplectic
2-form, and g : P → P a diffeomorphism. Denote by Graph (g) the graph of g, that is
Graph (g) = {(p, g (p)) , p ∈ P} ⊂ P × P , and by pri : P × P → P , i = {0, 1}, the canonical

projections. Then
(
P × P, Ω̃P

)
, where Ω̃P = pr∗1 ΩP −pr∗0 ΩP , is a symplectic manifold. Let
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ig : Graph (g) ↪→ P × P be the inclusion map, then

i∗gΩ̃P = (pr0)∗ (g∗ΩP − ΩP ) .

Thus, g is a symplectomorphism (that is, g∗ΩP = ΩP ) if and only if Graph g is a Lagrangian
submanifold of P × P .

A distinguished symplectic manifold is the cotangent bundle T ∗Q of any manifold Q.
If we choose local coordinates (qi), 1 ≤ i ≤ n, then T ∗Q has induced coordinates (qi, pi).
Denote by πQ : T ∗Q → Q the canonical projection defined by πQ(εq) = q, where εq ∈ T ∗qQ.
Define the Liouville one-form or canonical one-form ΘQ ∈ Λ1T ∗Q by

〈(ΘQ)ε , X〉 = 〈ε , TπQ(X)〉, where X ∈ TεT ∗Q , ε ∈ T ∗Q.

In local coordinates we obtain ΘQ = pi dqi. The canonical two-form ΩQ on T ∗Q is the
symplectic form ΩQ = −dΘQ (that is ΩQ = dqi ∧ dpi).

Now, we will introduce some special Lagrangian submanifolds of the symplectic manifold
(T ∗Q,ΩQ). For instance, the image Σλ = λ(Q) ⊂ T ∗Q of a closed one-form λ ∈ Λ1Q is a
Lagrangian submanifold of (T ∗Q,ΩQ), since λ∗ΩQ = −dλ. We then obtain a submanifold
diffeomorphic to Q and transverse to the fibers of T ∗Q. When λ is exact, that is, λ = df ,
where f : Q → R, we say that f is a generating function of the Lagrangian submanifold
Σλ = Σf . Locally, this is always the case.

A useful extension of the previous construction is the following result due to W.Q. Tul-
czyjew.

Theorem 4.1.1 ([157],[158]). Let Q be a smooth manifold, τQ : TQ→ Q its tangent bundle
projection, N ⊂ Q a submanifold, and f : N → R. Then

Σf =
{
p ∈ T ∗Q | πQ(p) ∈ N and 〈p, v〉 = 〈df, v〉

for all v ∈ TN ⊂ TQ such that τQ(v) = πQ(p)
}

is a Lagrangian submanifold of T ∗Q.

Taking f as the zero function we obtain the following Lagrangian submanifold

Σ0 =
{
p ∈ T ∗Q

∣∣
N
| 〈p , v〉 = 0 , ∀ v ∈ TN with τQ(v) = πQ(p)

}
,

which is just the conormal bundle of N :

ν∗(N) =
{
ξ ∈ T ∗Q

∣∣
N

; ξ
∣∣
Tπ(ξ)N

= 0
}
.

Given a symplectic manifold (P,ΩP ), dimP = 2n it is well-known that its tangent bundle
TP is equipped with a symplectic structure denoted by dTΩP (see [108]). If we take Darboux
coordinates (qi, pi) on P , 1 ≤ i ≤ n, then ΩP = dqi ∧ dpi and, consequently, we have
induced coordinates (qi, pi; q̇

i, ṗi), (qi, pi; ai, b
i) on TP and T ∗P , respectively. Thus, dTΩP =

dq̇i∧dpi+dqi∧dṗi and ΩP ∗ = dqi∧dai+dpi∧dbi (with some abuse of notation Ωp∗ denotes the
usual symplectic form on T ∗P ). If we denote by [ΩP : TP → T ∗P the isomorphism defined
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by ΩP , that is [ΩP (v) = iv ΩP , then we have [ΩP (qi, pi; q̇
i, ṗi) = (qi, pi;−ṗi, q̇i). Given a

function H : P → R, and its associated Hamiltonian vector field XH , that is, iXHΩP ∗ = dH,
the image XH(P ) is a Lagrangian submanifold of (TP,dTΩP ). Moreover, given a vector field
X ∈ X(P ), it is locally Hamiltonian if and only if its image X(P ) is a Lagrangian submanifold
of (TP,dTΩP ). It is interesting to note that dTΩP = −[∗ΩP ΩP and [ω(XH(P )) = dH(P ).

An important notion in the theory of Lagrangian submanifolds is the concept of generating
function. If we have a Lagrangian submanifold N of an exact symplectic manifold (P,ΩP =
dΘP ), where ΘP ∈ Λ1P , then 0 = i∗NΩP = i∗NdΘP = d(i∗NΘP ). Consequently, applying the
Poincaré’s lemma, there exists a local function S : U → R defined on a open neighborhood
U of N such that i∗NΘP = dS. We say that S is a (local) generating function of the
Lagrangian submanifold N . The concept of generating function was already introduced in
the context of canonical transformations in §2.2.2.

4.1.2 Implicit differential equations

An implicit differential equation on a general smooth manifold Q is a submanifold E ⊂ TQ.
A solution of E is any curve γ : I → Q, I ⊂ R, such that the tangent curve (γ(t), γ̇(t)) ∈ E
for all t ∈ I. The implicit differential equation will be said to be integrable at a point if
there exists a solution γ of E such that the tangent curve passes through it. Furthermore,
the implicit differential equation will be said to be integrable if it is integrable at all points.
Unfortunately, integrability does not mean uniqueness. The integrable part of E is the
subset of all integrable points of E. The integrability problem consists in identifying such
a subset.

Denoting the canonical projection τQ : TQ→ Q, a sufficient condition for the integrability
of E is

E ⊂ TQ,

where C = τQ(E), provided that the projection τQ restricted is a submersion onto C.

Extracting the integrable part of E

A recursive algorithm was presented in [133] that allows to extract the integrable part of an
implicit differential equation E. We shall define the subsets

E0 = E, C0 = C,

and recursively for every k ≥ 1,

Ek = Ek−1 ∩ TCk−1, Ck = τQ(Ek),

then, eventually the recursive construction will stabilize in the sense that Ek = Ek+1 = ... =
E∞, and Ck = Ck+1 = ... = C∞. It is clear by construction that E∞ ⊂ TC∞. Then, provided
that the adequate regularity conditions are satisfied during the application of the algorithm,
the implicit differential equations E∞ will be integrable and it will solve the integrability
problem.
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4.2 Continuous Lagrangian and Hamiltonian mechanics

In §2.3 and §2.3.1 we have shown how the Tulczyjew’s triple is used to describe geometrically
Lagrangian and Hamiltonian mechanics and its relationship. In this section we will see
that it is also possible to adapt this geometric formalism when we introduce constraints
into the picture. As was shown in §2.4, there are (at least) two methods that one might
use to derive the equations of motion of systems subjected to constraints: nonholonomic
mechanics (§2.4.2) and constrained variational calculus (or vakonomic mechanics §2.4.3).
The classical method to derive equations of motion for constrained mechanical systems is the
nonholonomic mechanics. The equations derived from the nonholonomic methods are not
of variational nature, but they describe the correct dynamics of a constrained mechanical
system. In order to obtain the nonholonomic equations, if we have linear or affine constraints,
is necessary to apply the Lagrange-D’Alembert’s principle. When dealing with nonlinear
constraints, one should employ the more controversial Chetaev’s rule (see [14, 103] for further
details). Since the geometrical implementation of the Chetaev’s rule is practically equal to
the process in the linear case, we shall use it from a pure mathematical perspective.

On the other hand, the equations of motion of constrained variational problems are deriv-
able by using variational techniques (always in the constrained case). These last equations
are also known in the literature as vakonomic equations. The terminology vakonomic (“me-
chanics of variational axiomatic kind”) was coined by V.V. Kozlov ([5],[96]). The main ap-
plications of the constrained variational calculus appear in problems of mathematical nature
(like subriemannian geometry) and in optimal control theory.

4.2.1 Nonholonomic mechanics

A nonholonomic system on a manifold Q consists of a pair (L, C), where L : TQ→ R is the
Lagrangian of the mechanical system and C is a submanifold of TQ with canonical inclusion
iC : C ↪→ TQ. In the following, we will assume, for sake of simplicity, that τQ(C) = Q.
Since the motion of the system is forced to take place on the submanifold C, this requires
the introduction of some reaction or constraint forces into the system. If φα(qi, q̇i) = 0,
1 ≤ α ≤ n, determine locally the submanifold C, then Chetaev’s rule implies that the
constrained equations of the system are:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= λα
∂φα

∂q̇i
,

(4.1)

φα(qi, q̇i) = 0, 1 ≤ α ≤ n.

Next, we will describe geometrically the nonholonomic equations. First, we need to introduce
the vertical endomorphism S which is a (1, 1)-tensor field on TQ defined by

S : TTQ −→ TTQ

Wvx 7−→ d

dt

∣∣∣
t=0

(vx + t T τQ(Wvx)) .

Its local expression is S = ∂
∂q̇i
⊗ dqi.
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If we accept Chetaev-type forces, then we define

F = S∗(TC)0.

Observe that the vector subbundle F will be generated by the 1-forms µα = ∂φα

∂q̇i
dqi because

S∗(dφα) = µα.

Now, define the affine subbundle of T ∗CTQ given by

Σnoh = (dL) ◦ iC + F,

that is,

Σnoh = {(qi, q̇i, µi, µ̃i) ∈ T ∗TQ | (4.2)

µi =
∂L
∂qi

+ λα
∂φα

∂q̇i
,

µ̃i =
∂L
∂q̇i

,

φα(q, q̇) = 0, 1 ≤ α ≤ n} .

Therefore, applying the Tulczyjew’s isomorphism αQ we obtain the affine subbundle

α−1
Q

(
Σnoh

)
= {(qi, pi, q̇i, ṗi) ∈ TT ∗Q | (4.3)

pi =
∂L
∂q̇i

,

ṗi =
∂L
∂qi

+ λα
∂φα

∂q̇i
,

φα(q, q̇) = 0, 1 ≤ α ≤ n} .

Define now the nonholonomic Legendre transformation FLnoh : C → T ∗Q by

FLnoh = πT ∗Q ◦ α−1
Q ◦ dL ◦ iC .

The solutions for the dynamics given by α−1
Q

(
Σnoh

)
are curves σ : I ⊂ R → Q such that

dσ
dt (I) ⊂ C and the induced curve γ : R → T ∗Q, γ = FLnoh(dσ

dt ) verifies that dγ
dt (I) ⊂

α−1
Q

(
Σnoh

)
. Locally, σ must satisfy the system of equations (4.1).

An interesting use of Tulczyjew’s triple in order to define Lagrangian submanifolds and
generalized Legendre transformations within the nonholonomic framework can be found in
[125].

4.2.2 Variational constrained equations (vakonomic equations)

Now, we study the same problem but now using purely variational techniques. As above, let
consider a regular Lagrangian L : TQ→ R, and a set of nonholonomic constraints φα(qi, q̇i),
1 ≤ α ≤ n, determining a 2m − n dimensional submanifold C ⊂ TQ. Now we take the
extended Lagrangian L = L + λαφ

α which includes the Lagrange multipliers λα as new
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extra variables. The equations of motion for the constrained variational problem are the
Euler-Lagrange equations for L, that is:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= −λ̇α
∂φα

∂q̇i
− λα

[
d

dt

(
∂φα

∂q̇i

)
− ∂φα

∂qi

]
,

(4.4)

φα(qi, q̇i) = 0, 1 ≤ α ≤ n.

From a geometrical point of view, these type of variationally constrained problems are de-
termined by a pair (C,L) where C is a submanifold of TQ, with inclusion iC : C ↪→ TQ, and
L : C → R a Lagrangian function. Using Theorem 4.1.1 we deduce that ΣL is a Lagrangian
submanifold of (T ∗TQ,ΩTQ) (see [54]). Now using the Tulczyjew’s symplectomorphism αQ,
we induce a new Lagrangian submanifold α−1

Q (ΣL) of (TT ∗Q,dTΩQ), which completely deter-
mines the constrained variational dynamics. Of course, the case of unconstrained Lagrangian
mechanics is generated taking the whole space TQ instead of C and an a Lagrangian function
over the tangent bundle L : TQ→ R.

Next we shall prove that, indeed, this procedure gives the correct equations for the con-
strained variational dynamics. Take an arbitrary extension L : TQ→ R of L : C → R, that
is, L ◦ iC = L. As above, assume also that we have fixed local constraints such that locally
determines C by their vanishing, i.e: φα(q, q̇) = 0, 1 ≤ α ≤ n where n = 2dim Q− dim C.

Locally

ΣL = {(qi, q̇i, µi, µ̃i) ∈ T ∗TQ | (4.5)

µi =
∂L
∂qi

+ λα
∂φα

∂qi
,

µ̃i =
∂L
∂q̇i

+ λα
∂φα

∂q̇i
,

φα(q, q̇) = 0, 1 ≤ α ≤ n} .

Observe that locally the conormal bundle ν∗(C) = span {dφα, 1 ≤ α ≤ n}.
Therefore,

α−1
Q (ΣL) = {(qi, pi, q̇i, ṗi) ∈ TT ∗Q | (4.6)

pi =
∂L
∂q̇i

+ λα
∂φα

∂q̇i
,

ṗi =
∂L
∂qi

+ λα
∂φα

∂qi
,

φα(q, q̇) = 0, 1 ≤ α ≤ n} .

The solutions for the dynamics given by α−1
Q (ΣL) ⊂ TT ∗Q are curves γ : I ⊂ R→ T ∗Q such

that dγ
dt : I ⊂ R→ TT ∗Q verifies that dγ

dt (I) ⊂ α−1
Q (ΣL). Locally, if γ(t) = (qi(t), pi(t)) then

it must verify the following set of differential equations:

d

dt

(
∂L
∂q̇i

+ λα
∂φα

∂q̇i

)
− ∂L
∂qi
− λα

∂φα

∂qi
= 0,

φα(qi, q̇i) = 0,
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which clearly coincide with equations (4.4).

Now, we consider adapted coordinates (qi, q̇a) to the submanifold C (recall that τQ(C) =
Q is now a fibration C → Q), 1 ≤ i ≤ dimQ and 1 ≤ a ≤ dimQ− n, such that

iC(qi, q̇a) =
(
qi, q̇a,Ψα(qi, q̇a)

)
.

This means that φα(qi, q̇i) = q̇α −Ψα(qi, q̇a) = 0. Therefore, we have

ΣL = {(qi, q̇i, µi, µ̃i) ∈ T ∗TQ| (4.7)

µi =
∂L

∂qi
− µ̃α

∂Ψα

∂qi
,

µ̃a =
∂L

∂q̇a
− µ̃α

∂Ψα

∂q̇a
,

q̇α = Ψα(qi, q̇a), 1 ≤ α ≤ n} .

Observe that (qi, q̇a, µ̃α) determines a local system of coordinates for ΣL.

Then,

α−1
Q (ΣL) = {(qi, pi, q̇i, ṗi) ∈ TT ∗Q | (4.8)

pa =
∂L

∂q̇a
− pα

∂Ψα

∂q̇a
,

ṗi =
∂L

∂qi
− pα

∂Ψα

∂qi
,

q̇α = Ψα(qi, q̇a), 1 ≤ α ≤ n} .

Consequently, the solutions must verify the following system of differential equations (see
[35]):

d

dt

(
∂L

∂q̇a
− pα

∂Ψα

∂q̇a

)
=

∂L

∂qa
− pα

∂Ψα

∂qa

ṗβ =
∂L

∂qβ
− pα

∂Ψα

∂qβ
,

q̇α = Ψα(qi, q̇a), 1 ≤ α ≤ n .

The constrained Legendre transformation

Definition 4.2.1. We define the constrained Legendre transformation FL : ΣL −→ T ∗Q as
the mapping FL = τT ∗Q ◦ (α−1

Q )|ΣL.

We will say that the constrained system (L,C) is regular if FL is a local diffeomorphism
and hyperregular if FL is a global diffeomorphism.

Observe that locally, if as above we consider the constraints q̇α = Ψα(qi, q̇a) determining
C, then

FL(qi, q̇a, µ̃α) = (qi, pa =
∂L

∂q̇a
− µ̃α

∂Ψα

∂q̇a
, pα = µ̃α) .
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The constrained system (L,C) is regular if and only if
(

∂2L
∂q̇a∂q̇b

− µ̃α ∂2Ψα

∂q̇a∂q̇b

)
is a nondegenerate

matrix.

Next, define the energy function EL : ΣL → R by

EL(αu) = 〈αu, u∨u〉 − L(u), αu ∈ ΣL, u ∈ C ≡ iC(C)

Locally, we have

EL(qi, q̇a, µ̃α) = q̇a
∂L

∂q̇a
− µ̃α

∂Ψα(qi, q̇a)

∂q̇a
q̇a + µ̃αΨα(qi, q̇a)− L(qi, q̇a).

Remark 4.2.2. The constrained Legendre transformation allows us to develop a Lagrangian
formalism on ΣL. Indeed, we can define the 2-form ΩL = (FL)∗ΩQ on ΣL and it is easy to
show that the equations of motion of the constrained system are now intrinsically rewritten
as

iXΩL = dEL.

In consequence, we could develop an intrinsic formalism on the Lagrangian side, that is a
Klein formalism ([49, 55, 88, 108]) for constrained systems without using (at least initially)
Lagrangian multipliers. Moreover, notice that the constrained system is regular if and only if
ΩL is a symplectic 2-form on ΣL

Then, if the constrained system (L,C) is hyperregular we can define the Hamiltonian
function H : T ∗Q→ R by

H = EL ◦ (FL)−1 ,

and the corresponding Hamiltonian vector field XH by iXHΩQ = dH. In this particular case
we have that

ImXH = XH(T ∗Q) = β−1
Q (dH(T ∗Q)) = α−1

Q (ΣL) .

The second equivalence, XH(T ∗Q) = α−1
Q (ΣL), will be studied below. The next diagram

summarizes the above discussion:

TT ∗Q
αQ //

τT∗Q

��

T ∗TQ

α−1
Q (ΣL)
R2

ee

T ∗Q

H
&&

ΣL

ELxx

α−1
Q

ee

FL
oo ?�

OO

R

In the singular case, it is necessary to apply the integrability algorithm briefly described in
§4.1.2 to find, if it exists, a subset where there are consistent solutions of the dynamics (see
[53, 51, 52] for further details).
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4.2.3 Comparison of nonholonomic and variational constrained equations.
Continuous picture

Let consider a system defined by the Lagrangian function L : TQ → R and an independent
set of constraints φα(qi, q̇i) = 0 determining the submanifold C ⊂ TQ.

As shown in §4.2.1 and §4.2.2, the solutions of the nonholonomic dynamics are geo-
metrically described by the submanifold Σnoh ↪→ TT ∗Q, while the solutions of the con-
strained variational dynamics are given by the Lagrangian submanifold ΣL ↪→ TT ∗Q, where
L = L

∣∣
C

: C → R.

Our aim is to know whether, given a solution of the nonholonomic problem, it is also a
solution of the constrained variational problem. In order to capture the common solutions to
both problems, we have developed the following geometric algorithm. Consider the fibered
product T ∗Q ⊕ T ∗Q, where we choose the local coordinates (qi, pi, πi); consider also the
tangent bundle T (T ∗Q⊕ T ∗Q) which can be identified with TT ∗Q⊕TπQ TT

∗Q, which fibers

over TQ. Under these considerations, construct the submanifold Σcons ↪→ TT ∗Q⊕TπQ TT
∗Q

as follows:

Σcons = {(Xαq , Yβq) ∈ TT ∗Q⊕TπQ TT
∗Q/TαqπQ(Xαq) = TβqπQ(Yβq),

for Xαq ∈ Σnoh, Yβq ∈ ΣL}. (4.9)

It is quite clear that the submanifold Σcons gathers together both nonholonomic and
constrained variational dynamics. Locally, Σcons is determined by the coordinates
(qi, pi, πi, q̇

i, ṗi, π̇i) obeying the nonholonomic and constrained variational conditions respec-
tively presented in (4.2) and (4.5), that is

pi = ∂L
∂q̇i
, πi = ∂L

∂q̇i
+ µα

∂φα

∂q̇i
,

ṗi = ∂L
∂qi

+ λα
∂φα

∂q̇i
, π̇i = ∂L

∂qi
+ µα

∂φα

∂qi
,

subject to φα(qi, q̇i) = 0. Here, λα and µα are the nonholonomic and variational constrained
Lagrange multipliers, respectively. Finally, in order to find the common solutions we will
need to apply the integrability algorithm described in [35, 133].

The following diagram shows the bundle relations:

Σcons � � // TT ∗Q⊕TπQ TT
∗Q

T̃πQ //

(τT∗Q,τT∗Q)

��

TQ

τQ

��
T ∗Q⊕ T ∗Q

π̃Q

// Q

where T̃ πQ : TT ∗Q⊕TπQ TT
∗Q −→ TQ and π̃Q : T ∗Q⊕ T ∗Q −→ Q denote the fibrations of

the Whitney sums over TQ and Q, respectively.
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As a simple example, consider the case of linear constraints, namely φα(qi, q̇i) = q̇α −
ϕαa (qi) q̇a = 0. The relationship determining Σcons presented in (4.25), as well as the integra-
bility algorithm, implies the following equation:

q̇aµαR
α
ab = 0, (4.10)

where

Rαab =
∂ϕαb
∂qa
− ∂ϕαa
∂qb

+ ϕβa
∂ϕαb
∂qβ

− ϕβb
∂ϕαa
∂qβ

can be considered as the curvature of the connection Γ in the local projection ρ(qa, qα) = (qα)
such that the horizontal distribution H is given by prescribing its annihilator to be

H0 = {dqα − ϕαadqa , 1 ≤ α ≤ m}.

See more details in [35].

4.2.4 Lagrangian and Hamiltonian mechanics relationship

In this section, we shall discuss the converse case, i.e., starting from a Hamiltonian system
we shall show that it is possible to construct a constrained Lagrangian system providing the
same dynamics.

Since πQ : T ∗Q → Q is a vector bundle, then it is possible to define the dilation vector
field or Liouville vector field ∆∗ ∈ X(T ∗Q), which is the generator of the one-parameter
group of dilations along the vertical fibres µq −→ etµq, µq ∈ T ∗qQ. The dilation vector field
is locally expressed by

∆∗ = pi
∂

∂pi
.

Given a Hamiltonian function H : T ∗Q → R, the Hamilton’s equations are written in
canonical coordinates by

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

.

(4.11)

The solutions of the Hamilton’s equations are just the integral curves of the Hamiltonian
vector field given by

iXHΩQ = dH, (4.12)

where ΩQ is a symplectic form on T ∗Q .

Given the Hamiltonian function, one defines a function FH : T ∗Q → TQ, i.e. the fiber
derivative of H (see [1]), by

〈FH(αq) , βq〉 =
d

dt

∣∣∣
t=0

H(αq + tβq),

where both αq, βq ∈ T ∗qQ. In local coordinates,

FH(qi, pi) = (qi,
∂H

∂pi
) .
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Assume that the image of T ∗Q under FH defines a submanifold C of TQ. Mimicking the
Gotay and Nester’s definition ([51, 52]), we implicitly define the function L : C → R by

L ◦ FH = ∆∗H −H. (4.13)

The function L : C → R will be well-defined if and only if, for any two points αq, βq ∈ T ∗Q
such that FH(αq) = FH(βq), we have that (∆∗H −H)(αq) = (∆∗H −H)(βq). Obviously,
without additional assumptions there is no reason why this should be true. The following
definition states under what conditions such projection L exists.

Definition 4.2.3. A Hamiltonian H : T ∗Q → R is almost-regular if FH(T ∗Q) = C is a
submanifold of TQ and FH : T ∗Q→ C ⊂ TQ is a submersion with connected fibers.

T ∗Q
FH //

))

TQ

FH(T ∗Q) = C
?�

OO

Under the assumption that the Hamiltonian H is almost-regular, it is only necessary to show
that expression (4.13) defines a single-valued function L : C → R, or, in other words, that
∆∗H − H is a constant function in the fibers. Since each fiber of the submersion FH is
connected, it is sufficient to consider the infinitesimal condition, i.e. to show that

LZ(∆∗H −H) = 0, for all Z ∈ ker(FH∗) ,

where LZ is the Lie derivative in the Z direction. Working in local coordinates, Z will be of
the form

Z = Zi
∂

∂pi
, with Zi

∂2H

∂pi ∂pj
= 0, for all 1 ≤ j ≤ n .

Since FH∗(Z) = 0, the last condition can be obtained taking into account that 〈σ , FH∗(Z)〉
= 〈FH∗(σ) , Z〉 = 0, for σ an arbitrary point of T ∗TQ such that πTQ(σ) = τTQ (FH∗(Z)).
Then

LZ(∆∗H −H) = Zi
∂ (∆∗H −H)

∂pi

= Zi
∂H

∂pi
+ pjZi

∂2H

∂pi ∂pj
− Zi

∂H

∂pi
= 0.

In what follows we will assume that H satisfies the almost regularity property.

Theorem 4.2.4. The following equality holds

αQ(XH(T ∗Q)) = ΣL ,

where αQ is the Tulczyjew’s isomorphism.
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Proof. Take W1 ∈ ΣXH = XH(T ∗Q) ⊂ TT ∗Q and take αQ(W1) ∈ T ∗TQ. We need to prove
that

〈αQ(W1), U〉 = 〈dL,U〉 ,

for all U ∈ T C ⊂ TTQ, such that τTQ(U) = TπQ(W1). This is equivalent to the equality

〈αQ(W1) , FH∗(W2)〉 = 〈dL , FH∗(W2)〉 , (4.14)

for all W2 ∈ TT ∗Q such that τTQ (FH∗(W2)) = TπQ(W1). Therefore, regarding (4.14) the
previous equality turns out to be

(FH)∗ (αQ(W1)) = (FH)∗ (dL) = d(∆∗H −H) , (4.15)

where the right hand side of the equation comes directly from (4.13). If locally W1 = q̇i ∂
∂qi

+

ṗi
∂
∂pi

, in other words W1 = (qi, pi; q̇
i, ṗi), then

(FH)∗ (αQ(W1)) =

(
ṗi + pj

∂2H

∂pj∂qi

)
dqi + pj

∂2H

∂pj∂pi
dpi

=

(
pj

∂2H

∂pj∂qi
− ∂H

∂qi

)
dqi + pj

∂2H

∂pj∂pi
dpi, (4.16)

where we consider ṗi = −∂H
∂qi

since we are dealing with a Hamiltonian vector field XH (see

equations (4.11)). From condition, τTQFH∗(W2) = TπQ(W1) we also deduce that q̇i = ∂H
∂pi

.
But this is true since W1 ∈ ΣXH .

On the other hand, a straightforward computation leads to check that d(∆∗H − H) is
exactly (4.16).

4.3 Discrete equivalence

4.3.1 Discrete nonholonomic mechanics

A discrete nonholonomic system is determined by three ingredients: a discrete lagrangian
Ld : Q × Q → R, a constraint distribution D on Q and a discrete constraint submanifold
Cd ⊂ Q × Q with canonical inclusion iCd : Cd ↪→ Q × Q. Notice that discrete mechanics
can also be seen within this case, where D = TQ and Cd = Q × Q. Notice also that, in
the discrete version of Lagrangian mechanics, the tangent manifold TQ is substituted by the
cartesian product Q×Q.

Define the affine submanifold Σnoh
d ⊂ T ∗(Q×Q) by Σnoh

d = (dLd) ◦ iCd + Fd, where Fd is
the vector subbundle of T ∗Cd(Q×Q) given by

Fd =
(
pr∗1 D

0
) ∣∣
Cd
.

Here, pr1 : Q×Q→ Q is the first projection onto Q.
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The symplectic manifold (T ∗(Q×Q) , ΩQ×Q) is symplectomorphic to (T ∗Q×T ∗Q , Ω̃Q),
where Ω̃Q = pr∗1ΩQ−pr∗0ΩQ and pri : T ∗Q×T ∗Q→ T ∗Q, i = 0, 1, are the natural projections
of T ∗Q× T ∗Q onto T ∗Q. The symplectomorphism is given by

Υ : T ∗(Q×Q) → T ∗Q× T ∗Q
γ(q0,q1) ≡ (γq0 , γq1) 7→ (−γq0 , γq1)

where (q0, q1) ∈ Q×Q.

Using Υ we induce the affine subbundle Υ(Σnoh
d ) of the symplectic manifold (T ∗Q ×

T ∗Q, Ω̃Q). The dynamics is then determined by the sequences γq0 , γq1 , . . . , γqN such that
(γqi , γqi+1) ∈ Υ(Σnoh

d ), 0 ≤ i ≤ N − 1 (see [71]).

We will describe now the equations in terms of local coordinates. Assume that Cd is
defined by the vanishing of the following set of independent constraints: φαd (q0, q1) = 0,
1 ≤ α ≤ n, where n = 2dim Q− dim C and D0 = span{ωα = ωαi dqi}. Therefore,

Σnoh
d = {(qi0, qi1, (µ0)i, (µ1)i) ∈ T ∗(Q×Q) | (4.17)

(µ0)i =
∂Ld
∂qi0

+ (λ0)α ω
α
i ,

(µ1)i =
∂Ld
∂qi1

,

φαd (q0, q1) = 0, 1 ≤ α ≤ n} ,

where (λα)0 are Lagrange multipliers to be determined. Then,

Υ(Σnoh
d ) = {(qi0, (p0)i, q

i
1, (p1)i) ∈ T ∗Q× T ∗Q | (4.18)

(p0)i = −∂Ld
∂qi0
− (λ0)α ω

α
i ,

(p1)i =
∂Ld
∂qi1

,

φαd (q0, q1) = 0, 1 ≤ α ≤ n} .

The solutions of the dynamics are therefore given by the equations

∂Ld
∂qi1

(qk−1, qk) = −∂Ld
∂qi0

(qk, qk+1)− (λk)α ω
α
i (qk),

φαd (qk, qk+1) = 0.

These equations are traditionally written in the following manner

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = (λk)α ω
α(qk)

φαd (qk, qk+1) = 0,

which are the expression of the discrete nonholonomic equations (see [38] for more details).
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4.3.2 Constrained discrete Lagrangian mechanics

A discrete constrained system [119] is determined by a pair (Cd, Ld) where Cd is a submanifold
of Q×Q, with inclusion iCd : Cd ↪→ Q×Q, and Ld : Cd → R a discrete Lagrangian function.

Using again Theorem 4.1.1 we deduce that ΣLd is a Lagrangian submanifold of (T ∗(Q×
Q) , ΩQ×Q).

Using Υ we induce the Lagrangian submanifold Υ(ΣLd) of the symplectic manifold (T ∗Q×
T ∗Q, Ω̃Q) (see the diagram below).

T ∗(Q×Q)
Υ // T ∗Q× T ∗Q

ΣLd
Υ //?�

OO

Υ(ΣLd)
?�

OO

The dynamics is determined by the sequences γq0 , γq1 , . . . , γqN such that (γqi , γqi+1) ∈ Υ(ΣLd),
0 ≤ i ≤ N − 1 (see [71, 119]). Observe that

γqk ∈ T
∗
qk
Q ∩ pr0(Υ(ΣLd)) ∩ pr1(Υ(ΣLd)), 1 ≤ k ≤ N − 1. (4.19)

After determining intrinsically the dynamics, as in the continuous case, we now consider
local expressions. Take an arbitrary extension Ld : Q × Q → R of Ld : Cd → R, that
is, Ld ◦ iCd = Ld. Assume also that we have fixed local constraints such that determines
the submanifold Cd. This definition is performed by the vanishing of the following set of
independent constraints: φαd (q0, q1) = 0, 1 ≤ α ≤ n where n = 2dim Q− dim C.

Locally

ΣLd = {(qi0, qi1, (µ0)i, (µ1)i) ∈ T ∗(Q×Q) | (4.20)

(µ0)i =
∂Ld
∂qi0

+ (λ1)α
∂φαd
∂qi0

,

(µ1)i =
∂Ld
∂qi1

+ (λ1)α
∂φαd
∂qi1

,

φαd (q0, q1) = 0, 1 ≤ α ≤ n} ,

where (λ1)α are Lagrange multipliers to be determined.

Therefore,

Υ(ΣLd) = {(qi0, (p0)i, q
i
1, (p1)i) ∈ T ∗Q× T ∗Q | (4.21)

(p0)i = −∂Ld
∂qi0
− (λ1)α

∂φαd
∂qi0

,

(p1)i =
∂Ld
∂qi1

+ (λ1)α
∂φαd
∂qi1

,

φαd (q0, q1) = 0, 1 ≤ α ≤ n} .

The solutions of the dynamics come from (4.19) and are given by the equations
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∂Ld
∂qi1

(qk−1, qk) + (λk)α
∂φαd
∂qi1

(qk−1, qk) = −∂Ld
∂qi0

(qk, qk+1)− (λk+1)α
∂φαd
∂qi0

(qk, qk+1),

φαd (qk−1, qk) = 0,

φαd (qk, qk+1) = 0.

These equations are traditionally written as

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + (λk)αD2φ
α
d (qk−1, qk+1) + (λk+1)αD1φ

α
d (qk, qk+1) = 0,

φαd (qk−1, qk) = 0,

φαd (qk, qk+1) = 0,

which are the expression of the discrete vakonomic equations (see [11] for more details).

Now, as a particular case, we assume that we can choose adapted coordinates (qi0, q
a
1),

1 ≤ i ≤ dimQ and 1 ≤ a ≤ dimQ− n, on Cd in such a way the inclusion is written as

iCd(q
i
0, q

a
1) = (qi0, q

a
1 ,Ψ

α
d (qi0, q

a
1)). (4.22)

In other words, we can write the constraints as φαd (q0, q1) = qα1 −Ψα
d (qi0, q

a
1) = 0.

Thus, locally we have that

ΣLd = {(qi0, qi1, (µ0)i, (µ1)i) ∈ T ∗(Q×Q)| (4.23)

(µ0)i =
∂Ld
∂qi0
− (µ1)α

∂Ψα
d

∂qi0
,

(µ1)a =
∂Ld
∂qa1
− (µ1)α

∂Ψα
d

∂qa1
,

qα1 = Ψα
d (qi0, q

a
1), 1 ≤ α ≤ n} .

Observe that (qi0, q
a
1 , (µ1)α) gives a local coordinate system for ΣLd .

Therefore, we obtain the following expression of the Lagrangian submanifold Υ(ΣLd):

Υ(ΣLd) = {(qi0, (p0)i, q
i
1, (p1)i) ∈ T ∗Q× T ∗Q | (4.24)

(p0)i = −∂Ld
∂qi0

+ (p1)α
∂Ψα

d

∂qi0
,

(p1)a =
∂Ld
∂qa1
− (p1)α

∂Ψα
d

∂qa1
,

qα1 = Ψα
d (qi0, q

a
1), 1 ≤ α ≤ n} .

Consequently, the solutions must verify the following system of difference equations:

(D2)a(Ld − (pk)αΨα
d )(qk−1, qk) + (D1)a(Ld − (pk+1)αΨα

d )(qk, qk+1) = 0,

(pk)β + (D1)βLd(qk, qk+1)− (pk+1)α(D1)βΨα
d (qk, qk+1) = 0,

qαk+1 = Ψα
d (qik, q

a
k+1) ,

where (Dj)l just means ∂
∂qlj

, being j = {1, 2} and l = {a, α}.
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The constrained discrete Legendre transformations

Definition 4.3.1. [119] We define the constrained discrete Legendre transformations
FL±d : ΣLd −→ T ∗Q as the mappings

FL−d = pr0 ◦ (Υ)
∣∣
ΣLd

,

FL+
d = pr1 ◦ (Υ)

∣∣
ΣLd

.

We will say that the constrained system (Ld, Cd) is regular if FL−d is a local diffeomorphism
and hyperregular if FL−d is a diffeomorphism.

Remark 4.3.2. It is easy to prove that FL−d is a local diffeomorphism if and only if FL+
d is a

local diffeomorphism; therefore, it is possible to characterize the regularity of the constrained
system using any of the two Legendre transformations (see [119]).

Observe that if we consider the local constraints qα1 = Ψα
d (qi0, q

a
1) determining Cd, then

FL−d (qi0, q
a
1 , (µ1)α) = (qi0, (p0)i = −∂Ld

∂qi0
+ (µ1)α

∂Ψα
d

∂qi0
)

= (qi0,−(D1)i(Ld − (µ1)αΨα
d )(q0, q1)) .

FL+
d (qi0, q

a
1 , (µ1)α) = (qa1 , q

α
1 = Ψα

d (qi0, q
a
1),

(p1)a =
∂Ld
∂qa1
− (µ1)α

∂Ψα
d

∂qa1
, (p1)α = (µ1)α)

= (qa1 , q
α
1 = Ψα

d (qi0, q
a
1),

(p1)a = (D2)a(Ld − µ1
αΨα

d )(q0, q1) , (p1)α = (µ1)α) .

So, the constrained system (Ld, Cd) is regular if and only if the matrix

(Aia, Aiα) =

(
∂2Ld
∂qi0∂q

a
1

− µ1
α

∂2Ψα
d

∂qi0∂q
a
1

,
∂Ψα

d

∂qi0

)
is nondegenerate.

Remark 4.3.3. The constrained Legendre transformations allow us to define a univocally
presymplectic 2-form on ΣLd

ΩLd = (FL−d )∗ΩQ = (FL+
d )∗ΩQ

which is symplectic if the system is regular.

Then, if the constrained system (Ld, Cd) is hyperregular, we can define the discrete dynam-
ics determined by Υ−1(ΣLd) as the graph of the canonical transformation (FL+

d ) ◦ (FL−d )−1 :
T ∗Q→ T ∗Q, that is,

Graph (FL+
d ) ◦ (FL−d )−1 = Υ(ΣLd) .
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4.3.3 Comparison of nonholonomic and variational constrained equations.
Discrete picture

Let consider the system defined by the discrete Lagrangian function Ld : Q×Q → R and a
set of constraints φαd (q0, q1) = 0 determining the submanifold Cd ⊂ Q×Q.

As shown in §4.3.1 and §4.3.2, the solutions of the discrete nonholonomic dynamics are
geometrically described by the affine subbundle Υ(Σnoh

d ) ⊂ T ∗Q × T ∗Q, while the solutions
of the discrete constrained variational dynamics are given by the Lagrangian submanifold
Υ(ΣLd) ⊂ T ∗Q× T ∗Q, where Ld = Ld

∣∣
Cd

: Cd → R.

Given a solution of the discrete nonholonomic problem, we want to know when is also
a solution of the associated discrete constrained variational problem. To capture the set of
common solutions to both problems, we have developed the following geometric integrability
algorithm similar to the continuous one.

As in the continuous case, take the Whitney sum T ∗Q⊕ T ∗Q, and the cartesian product

(T ∗Q⊕ T ∗Q)× (T ∗Q⊕ T ∗Q) ≡ (T ∗Q× T ∗Q)⊕πQ×πQ (T ∗Q× T ∗Q).

Construct the submanifold Σcons
d ↪→ (T ∗Q⊕ T ∗Q)× (T ∗Q⊕ T ∗Q) as follows:

Σcons
d = { (γq0 , γq1 , γ̃q0 , γ̃q1) ∈ (T ∗Q× T ∗Q)⊕πQ×πQ (T ∗Q× T ∗Q) /

(γq0 , γq1) ∈ Σnoh
d , (γ̃q0 , γ̃q1) ∈ ΣLd}. (4.25)

It is quite clear that the submanifold Σcons
d gathers together both nonholonomic and con-

strained variational dynamics and applying the discrete version of the integrability algorithm
developed in [71] we will find the set where there are common solutions for both dynamics.

The following diagram shows the bundle relations:

Σcons
d
� � // (T ∗Q⊕ T ∗Q)× (T ∗Q⊕ T ∗Q)

π̃Q×π̃Q
//

����

Q×Q

����
T ∗Q⊕ T ∗Q

π̃Q

// Q

where the vertical arrows represent the projections onto the first and second factor of the
respective cartesian products.

4.3.4 Construction of a discrete constrained problem from a Lagrangian
submanifold of T ∗Q× T ∗Q

Given a Lagrangian submanifold Λ of (T ∗Q× T ∗Q, Ω̃Q) we will construct, under some regu-
larity conditions, a constrained Lagrangian problem given by a submanifold Cd ⊂ Q×Q and
a function Ld : Cd → R.

We first construct the Lagrangian submanifold Υ−1(Λ) of (T ∗(Q × Q),
ΩQ×Q) and we assume that the restriction of ΩQ×Q to Υ−1(Λ) is exact, that is, we
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have a generating function S : Υ−1(Λ) → R. In addition, we suppose that the image of
Υ−1(Λ) by πQ×Q is a submanifold Cd of Q×Q, and, also, that (πQ×Q)

∣∣
Υ−1(Λ)

is a submersion

with connected fibers (see the diagrams below).

T ∗(Q×Q)
Υ // T ∗Q× T ∗Q

Υ−1(Λ)
?�

OO

Λ
?�

OO

Υ−1
oo

T ∗(Q×Q)
πQ×Q

ww
Q×Q ⊃ Cd

Ld
((

Υ−1(Λ)
S3

iΥ−1(Λ)

ff

S
xx

R

Theorem 4.3.4. Under the previous conditions the function S : Υ−1(Λ) → R is
(πQ×Q)

∣∣
Υ−1(Λ)

-projectable onto a function Ld : Cd → R. Moreover, the following equation

holds
Υ−1(Λ) = ΣLd .

Proof. The submanifold Υ−1(Λ) is defined as

Υ−1(Λ) = {(γq0 , γq1) ∈ T ∗(q0,q1)(Q×Q) | i∗
Υ−1(Λ)

ΘQ×Q(γq0 , γq1) = dS(γq0 , γq1)}. (4.26)

By definition of the Liouville 1-form ΘQ×Q we have that

〈ΘQ×Q , kerT πQ×Q〉 = 0.

By applying the chain rule T (πQ×Q ◦ iΥ−1(Λ)
) = T πQ×Q ◦ T iΥ−1(Λ)

, is easy to check that

T i
Υ−1(Λ)

(
kerT πQ×Q

∣∣
Υ−1(Λ)

)
⊂ kerT πQ×Q. Thus, we finally deduce that S is projectable

into Ld : Cd → R, i.e.
S = (πQ×Q

∣∣
Υ−1(Λ)

)∗Ld (4.27)

since πQ×Q(Υ−1(Λ)) = Cd.

On the other hand, we can define a tangent vector X = (Xγq0
, Xγq1

) ∈ T Υ−1(Λ) ⊂
TT ∗(Q×Q), such that T

(γq0 ,γq1 )
πQ×Q(X) = (uq0 , uq1) ∈ T(q0,q1)Cd, by

〈(γq0 , γq1) , (uq0 , uq1)〉 = 〈dS(γq0 , γq1) , X〉,

where (γq0 , γq1) ∈ Υ−1(Λ). The equation above comes directly from the definitions of both
the Liouville one-form and the Lagrangian submanifold Υ−1(Λ) in (4.26). Regarding equation
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(4.27) and taking into account that the pullback and the exterior derivative commute, we
arrive to

〈dS(γq0 , γq1) , X〉 = 〈dLd(q0, q1) , TπQ×Q
∣∣
Υ−1(Λ)

(X)〉

= 〈dLd(q0, q1) , (uq0 , uq1)〉.

In the last line of the expression just above, we recognize the definition given in Theorem
4.1.1 of ΣLd , that is

ΣLd =
{

(γq0 , γq1) ∈ T ∗(q0,q1)(Q×Q) | 〈(γq0 , γq1) , (uq0 , uq1)〉 =

= 〈dLd(q0, q1) , (uq0 , uq1)〉 for all (uq0 , uq1) ∈ T(q0,q1)Cd
}
.

In consequence, we deduce that Υ−1(Λ) = ΣLd .

Remark 4.3.5. We would like to point out that the proof of Theorem 4.3.4 can be easily
extended to the continuous case. Namely, let consider Λ̃ ⊂ TT ∗Q a Lagrangian submanifold.
Under some regularity conditions, it is possible to construct a constrained Lagrangian problem
given by a submanifold C ⊂ TQ and a Lagrangian function L : C → R. If we consider the
Lagrangian submanifold αQ(Λ̃) ⊂ (T ∗TQ , ΩTQ), where αQ is the Tulczyjew’s isomorphism,
we can build an analogy with the discrete case by assuming that the restriction of ΩTQ to
αQ(Λ̃) is exact, that is, we have a generating function S̃ : αQ(Λ̃)→ R;

αQ(Λ̃) =
{
γ ∈ T ∗vqTQ | i

∗
αQ(Λ̃)

ΘTQ(γ) = dS̃(γ)
}
,

where vq ∈ TQ such that τQ(vq) = q ∈ Q. In addition, we suppose that πTQ

(
αQ(Λ̃)

)
is a

submanifold C ⊂ TQ, and that πTQ
∣∣
αQ(Λ̃)

is a submersion with connected fibers.

Again, by the definition of the Liouville one-form ΘTQ we have that 〈ΘTQ , kerTπTQ〉 = 0,

and consequently that S̃ is projectable into L, that is S̃ = (πTQ
∣∣
αQ(Λ̃)

)∗L.

Following similar arguments that in the proof of Theorem 4.3.4 we deduce that αQ(Λ̃) =
ΣL.

Since we are not fixing the Lagrangian submanifold Λ̃, this is a more general result than
that one provided by Theorem 4.2.4, i.e. αQ(XH(T ∗Q)) = ΣL. Nevertheless, among all the
Lagrangian submanifolds Λ̃ of T ∗TQ, we choose XH(T ∗Q), that is the image of the cotangent
bundle T ∗Q by the Hamiltonian vector field provided by the equations iXHΩQ = dH, in order
to stress the relationship between Hamiltonian and constrained Lagrangian systems.

4.4 Examples

4.4.1 Linear Constraints

Let consider a dynamical system denoted by the Lagrangian

L(vq) =
1

2
G(vq, vq)− V (q) =

1

2
Gij q̇

iq̇j − V (q) (4.28)
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where vq ∈ TqQ, with local coordinates vq = (qi, q̇i), G is a Riemannian metric with compo-
nents (Gij) (see §1.2). Moreover, V : Q→ R is a potential function. Additionally, the system
is subject to the linear constraints

φα(vq) = q̇α − Γαa (q) q̇a, (4.29)

where q̇i = {q̇a, q̇α}. Locally, the constraints define a submanifold C ⊂ TQ. Moreover, we
have the restriction of L to C, L : C → R. In local coordinates,

L(qi, q̇a) =
1

2
γabq̇

aq̇b − V (q) ,

where
γab (q) = Gab + GaαΓαb (q) + GbαΓαa (q) + GαβΓαa (q)Γβb (q).

Observe that (γab) is invertible since G is a Riemannian metric.

Using expression (4.8), we can find local coordinates for α−1
Q (ΣL):

pa = γab(q) q̇
b − pα Γαa (q) ,

pi =
1

2

∂γab
∂qi

q̇aq̇b − ∂V

∂qi
− pα

∂Γαa
∂qi

(q) q̇a ,

q̇α = Γαa (q) q̇a .

The Legendre transformation is defined by FL = τT ∗Q ◦ (α−1
Q )
∣∣
ΣL

, or locally by:

FL(qi, q̇a, µ̃α) = (qi, γabq̇
a − µ̃α Γαa (q), µ̃α) .

Since
(

∂2L
∂q̇a∂q̇b

− µ̃α ∂2Ψα

∂q̇a∂q̇b

)
= (γab) the constrained system (L,C) is regular.

Moreover, the energy function EL : ΣL → R is precisely

EL(qi, q̇a, µ̃α) =
1

2
γabq̇

aq̇b − V (q) .

Therefore, the Hamiltonian function can be expressed by H = EL ◦ (FL)−1 : T ∗Q→ R

H(q , p) =
1

2
γab(q)Pa Pb + V (q), (4.30)

where γa b γ
b c = δca and Pa = pa + pα Γαa (q).

Discretization: symplectic Euler method

Taking into account equations (4.28) and (4.29), we define the discrete Lagrangian Ld :
Q × Q → R and the set of independent constraints in the following way (see [124] for more
details):

Ld(q0, q1) = hL(q0,
q1 − q0

h
) =

1

2h
Gi j(q0)(qi1 − qi0)(qj1 − q

j
0)− hV (q0) ,

(4.31)(
qα1 − qα0

h

)
= Γαa (q0)

(
qa1 − qa0
h

)
.



Examples 111

Next, we can explicitly obtain the coordinates for the submanifold Υ(ΣLd) given in equations
(4.21), namely

(p0)a =
1

h
Ga j(q0)(qj1 − q

j
0) + h∂aV (q0)− 1

2h
∂aGi j(q0)(qi1 − qi0)(qj1 − q

j
0)

+ (λ1)β ∂aΓ
β
b (q0)

(
qb1 − qb0

)
− (λ1)αΓαa (q0), (4.32)

(p0)α =
1

h
Gα j(q0)(qj1 − q

j
0) + h∂αV (q0)− 1

2h
∂αGi j(q0)(qi1 − qi0)(qj1 − q

j
0)

+(λ1)α + (λ1)β∂αΓβb (q0)(qb1 − qb0), (4.33)

(p1)a =
1

h
Ga j(q0)(qj1 − q

j
0)− (λ1)αΓαa (q0), (4.34)

(p1)α =
1

h
Gα j(q0)(qj1 − q

j
0) + (λ1)α,

(qα1 − qα0 ) = Γαa (q0)(qa1 − qa0),

where ∂a, ∂α mean ∂
∂qa and ∂

∂qα , respectively. It is important to note that (4.32) is a set of

2m+ n equations with 2m+ n unknowns, which are (q1)a , (q1)α , (p1)a, (p1)α and (λ1)α.

Alternatively, we can apply the so-called Euler symplectic method (see [61])

p1 = p0 − h
∂H

∂q
(q0, p1) , q1 = q0 + h

∂H

∂p
(q0, p1) (4.35)

to the Hamiltonian function H : T ∗Q→ R defined in (4.30). We deduce the following set of
equations:

(q1)a = (q0)a + hγab (P1)b ,

(q1)α = (q0)α + hΓαaγ
ab (P1)b ,

(4.36)

(p1)a = (p0)a − h∂aV − h
{

1

2

(
∂aγ

bc
)

(P1)b (P1)c + γbc (P1)b ∂a (P1)c

}
,

(p1)α = (p0)α − h∂αV − h
{

1

2

(
∂αγ

ab
)

(P1)a (P1)b + γab (P1)a ∂α (P1)b

}
,

where (P1)a = (p1)a+(p1)α Γαa , and V , γab, Γαa , (P1)a are evaluated at q0. Regarding equations
(4.32), is easy to express λ1 in terms of p and q. Since

0 = ∂aδ
c
d = ∂a

(
γcbγbd

)
=
(
∂aγ

cb
)
γbd + γcb (∂aγbd) , (4.37)

and
(
∂aγ

cb
)
γbd = −γcb (∂aγbd), is easy to check, after a straightforward calculation, that

equations (4.32) reduce to (4.36).
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Discretization: Midpoint rule

Define the discrete Lagrangian and the discrete constraints using the midpoint rule (see
[124] for more details), that is:

Ld(q0, q1) = hL(
q1 + q0

2
,
q1 − q0

h
) =

1

2h
Gi j(

q1 + q0

2
)(q1 − q0)i(q1 − q0)j − hV (

q1 + q0

2
), (4.38)

(
q1 − q0

h

)α
= Γαa (

q1 + q0

2
)

(
q1 − q0

h

)a
.

Now, we can explicitly obtain the corresponding equations derived from the submanifold
Υ(ΣLd). A straightforward computation shows that these equations are equivalent to the
corresponding ones derived from the so-called midpoint rule

q1 = q0 + h
∂H

∂p

(
q1 + q0

2
,
p1 + p0

2

)
, p1 = p0 − h

∂H

∂q

(
q1 + q0

2
,
p1 + p0

2

)
, (4.39)

which is a symplectic method of order 2.

ΣL

φL

��

ϕd // ΣLd

φLd

��

FL−d // T ∗Q

(φH)d

��

φ
FL−
d

��

T ∗Q

φH

��

ϕ̂doo

ΣL ϕd
// ΣLd

FL−d // T ∗Q T ∗Q
ϕ̂d
oo

(4.40)

ΣL

φL

��

ϕd // ΣLd

φLd

��

FL+
d // T ∗Q

(φH)d

��

φ
FL+
d

��

T ∗Q

φH

��

ϕ̂doo

ΣL ϕd
// ΣLd

FL+
d // T ∗Q T ∗Q

ϕ̂d
oo

(4.41)

The results of the previous examples can be summarized in the diagrams (4.40) and (4.41),
which are explained in the following lines.

• From right to left: φH is the Hamiltonian flow derived from (4.11) applied to a
Hamiltonian function H, ϕ̂d is the discretization of that flow (concretely the symplectic
Euler method (4.35) and the midpoint rule (4.39)), (φH)d is the discrete flow in T ∗Q
provided by ϕ̂d.

• From left to right: φL is the constrained Lagrangian flow resulting from equations
(4.4) applied to the continuous Lagrangian, ϕd is the discretization applied to that
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Lagrangian ((4.31) and (4.38)), φLd is the discrete flow within ΣLd (4.23) due to ϕd,
φ
FL±d

is the discrete flow in T ∗Q× T ∗Q (4.24).

In order to be more explicit, ϕ̂d : T ∗Q → T ∗Q represents the discrete flow generated by
applying a symplectic method to the Hamiltonian equations (e.g. (4.35) and (4.39)). On
the other hand, ϕd represents the discretization mapping, that is ϕd : TQ → Q × Q, e.g.
ϕd(q, q̇) = (qk,

qk+1−qk
h ) or ϕd(q, q̇) = (

qk+1+qk
2 ,

qk+1−qk
h ).

As expected from Theorems 4.2.4 and 4.3.4, what we explicitly show is that φ
FL±d

=

(φH)d using some discretizations (we have depicted the particular cases of the symplectic
Euler methods and the midpoint rule). In other words, the diagrams (4.40) and (4.41) are
commutative in those particular cases, as also is when the discretization ϕ̂d corresponds to
the exact discrete Lagrangian’s (see [124]). Therefore, using a discrete variational integrator
for the constrained continuous Lagrangian system or applying a symplectic integrator to the
associated continuous Hamiltonian problem are equivalent approaches.

4.4.2 The Martinet case: symplectic integrators for sub-Riemannian ge-
ometry

Let us consider the Hamiltonian function H : T ∗R3 → R

H(q, p) =
1

2

((
px + pz

y2

2

)2

+
p2
y

(1 + β x)2

)
, (4.42)

where q = (x, y, z)T ∈ R3 and p = (px, py, pz) ∈ (R3)∗ ' R3. From (4.42) we can locally
define XH(T ∗M), particulary XH(T ∗R3), through the Hamiltonian equations, i.e:

ẋ = px + pz
y2

2 , ṗx =
β p2

y

(1+β x)3 ,

ẏ =
py

(1+β x)2 , ṗy = −
(
px + pz

y2

2

)
pz y,

ż =
(
px + pz

y2

2

)
y2

2 , ṗz = 0.

(4.43)

The associated Legendre transform FH is in this particular case written as

FH(x, y, z; px, py, pz) = (x, y, z ; (px + pz
y2

2
),

py
(1 + β x)2

,

(
px + pz

y2

2

)
y2

2
). (4.44)

Looking at (4.43) and (4.44) is easy to realize that

C ⊂ TR3 =

{
(x, y, z ; ẋ, ẏ, ż) s.t. ż =

y2

2
ẋ

}
.

Next, we will obtain the Lagrangian function L : C → R using the implicit equation given in
(4.13):

L ◦ FH =
1

2

((
px + pz

y2

2

)2

+
p2
y

(1 + β x)2

)
.
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Finally, using FH we arrive to

L(x, y, z, ẋ, ẏ) =
1

2

(
ẋ2 + (1 + β x)2 ẏ2

)
. (4.45)

Consequently, our approach allows us to conclude that the Hamiltonian system (4.42) is

equivalent to the Lagrangian one (4.45) subject to the constraints ż = y2

2 ẋ. We clearly
recognize in (4.45) a Martinet sub-Riemannian structure ([4, 19, 32]), which is described by
the triple (U , ∆ , G). In this triple, U is an open neighborhood of the origin in R3, ∆ is a

distribution corresponding to ∆ = kerα for α = dz− y2

2 dx and G is a Riemannian metric. In
the particular case G = dx2 + (1 + β x)2dy2, we deduce that (4.45) corresponds to L = L

∣∣
C

where L(q, q̇) = 1
2 G ( ∂∂q ,

∂
∂q ), where ∂

∂q = ẋ ∂
∂x + ẏ ∂

∂y + ż ∂
∂z . In addition, the constraints are

given by α ( ∂∂q ) = 0.

Discrete Case

Let us consider the symplectic Euler method (4.35). Is easy to see that a type-2 generating
function of the approximated Hamiltonian flow is

H+(q0, p1) = q0 p1 + hH(q0, p1), (4.46)

where H is the Hamiltonian function H : T ∗R3 → R. In other words:

p0 =
∂ H+(q0, p1)

∂q0
, q1 =

∂ H+(q0, p1)

∂p1
.

Under these considerations, we can define the local coordinates for Υ−1(Λ):

Υ−1(Λ) =

{
q0 ,

∂ H+(q0, p1)

∂q0
,
∂ H+(q0, p1)

∂p1
, p1

}
.

Now, projecting Υ−1(Λ) onto R3 ×R3, we obtain that

x1 = x0 + h

(
(p1)x + (p1)z

y2
0

2

)
,

y1 = y0 + h
(p1)y

(1 + β x0)2
, (4.47)

z1 = z0 + h

(
(p1)x + (p1)z

y2
0

2

)
y2

0

2
.

From the last equations we obtain the constraint (z1 − z0) =
y2
0
2 (x1 − x0), which defines the

submanifold

Cd = {(x0, y0, z0;x1, y1, z1) ∈ R3 ×R3 | (z1 − z0) =
y2

0

2
(x1 − x0)}.

The next step to completely determine the discrete constrained Lagrangian system is to
obtain Ld. In that sense, we take the usual generating function S mentioned in Theorem
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4.3.4. Transforming S into a type-2 generating function ([106]) we arrive to the implicitly
defined expression: S(q0, p1) = p1 q1 −H+(q0, p1), which, taking into account (4.46) leads to

S(q0, p1) = h

(
p1
∂H(q0, p1)

∂p1
−H(q0, p1)

)
. (4.48)

We have shown in Theorem 4.3.4 that S is πQ×Q
∣∣
Υ−1(Λ)

-projectable onto Ld : Cd → R. Thus,

from (4.48) and according to equations (4.47) we finally arrive to

Ld(q0, q1) =
1

2h

(
(x1 − x0)2 +

y2
0

2
(y1 − y0)2

)
, (4.49)

for

Cd ⊂ Q×Q =

{
(q0 , q1) | (z1 − z0) =

y2
0

2
(x1 − x0)

}
. (4.50)

This is the expected result as is easily seen taking into account the continuous Lagrangian

(4.45) and the submanifold C ⊂ TQ defined by the continuous constraint ż = y2

2 ẋ. If we
define both the discrete Lagrangian and the discrete submanifold Cd in the usual symplectic
Euler discretization ([124]), i.e. Ld(q0, q1) = hL(q0,

q1−q0
h ), we easily obtain (4.49) and (4.50).

4.4.3 Symplectic Störmer-Verlet method

Due to its well-behaved features, namely reversibility, symplecticity, volume preservation
and conservation of first integrals, the Störmer-Verlet method is one of the most important
examples in geometric numerical integration (see [61]). For a Hamiltonian system determined
by H : T ∗Q→ R, the Störmer-Verlet method reads

pk+1/2 = pk −
h

2
Hq(qk, pk+1/2),

qk+1 = qk +
h

2

(
Hp(qk, pk+1/2) +Hp(qk+1, pk+1/2)

)
, (4.51)

pk+1 = pk+1/2 −
h

2
Hq(qk+1, pk+1/2),

where qk ∈ Rn, pk ∈ (Rn)∗ and Hq, Hp are the derivatives of the Hamiltonian function respect
q and p, respectively. As we did for the momenta, we can fix an intermediate configuration
point qk+1/2 = qk + h

2Hp(qk, pk+1/2) and consider (4.51) as a two step integrator:

qk+1/2 = qk +
h

2
Hp(qk, pk+1/2),

(4.52)

pk+1/2 = pk −
h

2
Hq(qk, pk+1/2),

qk+1 = qk+1/2 +
h

2
Hp(qk+1, pk+1/2),

(4.53)

pk+1 = pk+1/2 −
h

2
Hq(qk+1, pk+1/2).
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Equations (4.52) and (4.53) show the well-known fact that the Störmer-Verlet method is
the composition of two different symplectic Euler schemes. In addition, it is clear that they
are respectively generated by the 2- and 3-type generating functions

H+(qk, pk+1/2) = pk+1/2 qk +
h

2
H(qk, pk+1/2),

H−(qk+1, pk+1/2) = pk+1/2 qk+1 −
h

2
H(qk+1, pk+1/2),

which, taking into account that p1 dq1 − p0 dq0 = dS(q0, q1), lead to

S+(qk, pk+1/2) = pk+1/2 qk+1/2 − pk+1/2 qk −
h

2
H(qk, pk+1/2), (4.54)

S−(pk+1/2, qk+1) = −pk+1/2 qk+1/2 + pk+1/2 qk+1 −
h

2
H(qk+1, pk+1/2). (4.55)

Now, as shown in [106], we can construct a 1-type generating function S(qk, qk+1) by

S(qk, qk+1) = S+(qk, pk+1/2) + S−(pk+1/2, qk+1) (4.56)

= pk+1/2 qk+1 − pk+1/2 qk −
h

2

(
H(qk, pk+1/2) +H(qk+1, pk+1/2)

)
,

and a extremal condition in the intermediate variable pk+1/2. That is,

dS =
∂S

∂qk
dqk +

∂S

∂qk+1
dqk+1

=

{
∂S+

∂qk
+

(
∂S+

∂pk+1/2
+

∂S−

∂pk+1/2

)
∂pk+1/2

∂qk

}
dqk

+

{
∂S−

∂qk+1
+

(
∂S+

∂pk+1/2
+

∂S−

∂pk+1/2

)
∂pk+1/2

∂qk+1

}
dqk+1,

which leads to
∂S+

∂pk+1/2
+

∂S−

∂pk+1/2
= 0, (4.57)

(put in another way, S(qk, qk+1) is not a function of pk+1/2 and consequently its partial
derivative with respect to this variable should vanish). In other words, we obtain the first

equation in (4.51) by −pk =
∂S(qk,qk+1)

∂qk
, the third one by pk+1 =

∂S(qk,qk+1)
∂qk+1

, and the second

one by
∂S(qk,qk+1)
∂pk+1/2

= 0.

As shown in Theorem 4.3.4, S(qk, qk+1) is projectable onto Ld, while condition (4.57)
provides Cd ⊂ Q×Q.

Regular systems

Consider the usual mechanical Hamiltonian

H(q, p) =
1

2
pM−1 pT + V (q),
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where M is a symmetric regular n× n matrix. From the second equation in (4.51) is easy to
check that pTk+1/2 = M(

qk+1−qk
h ). Hence, projecting (4.56) onto Q×Q we arrive to

Ld(qk, qk+1) =
1

2h
(
qk+1 − qk

h
)T M (

qk+1 − qk
h

)− h

2
(V (qk) + V (qk+1)) .

In the expression just above, we clearly recognize the discretization

Ld(qk, qk+1) =
h

2
L(qk,

qk+1 − qk
h

) +
h

2
L(qk+1,

qk+1 − qk
h

)

for the usual mechanical Lagrangian L(q, q̇) = 1
2 q̇

T M q̇ − V (q).

Martinet structure

Consider again the sub-Riemannian Martinet structure in (4.42). Recall that q = (x, y, z)T ∈
R3 and p = (px, py, pz) ∈ R3. From (4.57) we obtain

xk+1 = xk +
h

2

{(
(pk+1/2)x + (pk+1/2)z

y2k
2

)
+

(
(pk+1/2)x + (pk+1/2)z

y2k+1

2

)}
,

yk+1 = yk +
h

2

{
(pk+1/2)y

(1 + β xk)2
+

(pk+1/2)y

(1 + β xk+1)2

}
,

zk+1 = zk +
h

2

{(
(pk+1/2)x + (pk+1/2)z

y2k
2

)
y2k
2

+

(
(pk+1/2)x + (pk+1/2)z

y2k+1

2

)
y2k+1

2

}
.

As above, we consider a two steps (of h/2 size) interpretation of this sub-Riemannian
system through equations (4.52) and (4.53) in the following manner (we denote pk+1/2 by p
for sake of simplicity):

(qk, pk)→ (qk+1/2, pk+1/2) (qk+1/2, pk+1/2)→ (qk+1, pk+1)

xk+1/2 = xk + h
2

(
px + pz

y2
k
2

)
xk+1 = xk+1/2 + h

2

(
px + pz

y2
k+1

2

)

yk+1/2 = yk + h
{

py
(1+β xk)2

}
yk+1 = yk+1/2 + h

{
py

(1+β xk+1)2

}
zk+1/2 = zk + h

2

(
px + pz

y2
k
2

)
y2
k
2 zk+1 = zk+1/2 + h

2

(
px + pz

y2
k+1

2

)
y2
k+1

2

⇓ ⇓

Cd :
(
zk+1/2−zk

h/2

)
=

y2
k
2

(
xk+1/2−xk

h/2

)
Cd :

(
zk+1−zk+1/2

h/2

)
=

y2
k+1

2

(
xk+1−xk+1/2

h/2

)
L+
d (qk, qk+1/2) L−d (qk+1/2, qk+1)
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As shown in the table above, both discrete submanifolds are respectively defined by the

constraints
(
zk+1/2−zk

h/2

)
=

y2
k
2

(
xk+1/2−xk

h/2

)
and

(
zk+1−zk+1/2

h/2

)
=

y2
k+1

2

(
xk+1−xk+1/2

h/2

)
. Taking

into account equations (4.54) and (4.55) in §4.4.3, define the two discrete Lagrangian functions
(implicitly expressed) as

L+
d (qk, qk+1/2) = pk+1/2 qk+1/2 − pk+1/2 qk −

h

2
H(qk, pk+1/2),

with qk+1/2 = qk + h
2Hp(qk, pk+1/2) (recall that this expression corresponds to the generating

function after projecting onto Q×Q). On the other hand

L−d (qk+1/2, qk+1) = −pk+1/2 qk+1/2 + pk+1/2 qk+1 −
h

2
H(qk+1, pk+1/2),

with qk+1 = qk+1/2 + h
2Hp(qk+1, pk+1/2).

From the previous expressions and following the discussion in [124] §2.5.1, we divide each
step (qk, qk+1) into 2 substeps (qk = q0

k , q
1
k = qk+1/2) and (q1

k = qk+1/2 , q
0
k+1 = qk+1). Take

the discrete action sum

Sd({q0
k, q

1
k}N−1

0 ) =

N−1∑
k=0

(
L+
d (q0

k, q
1
k) + L−d (q1

k, q
0
k+1)

)
=

N∑
k=0

(
L+
d (qk, qk+1/2) + L−d (qk+1/2, qk+1)

)
.

The corresponding Euler-Lagrange equations, resulting from requiring this action to be sta-
tionary, pair both neighboring discrete Lagrangians together to give

D2 L
+
d (q0

k.q
1
k) + D1 L

−
d (q1

k, q
2
k) = 0,

D2 L
−
d (q1

k, q
2
k) + D1 L

+
d (q0

k+1, q
1
k+1) = 0.

The equations just above completely determine the discrete dynamics in equations (4.52) and
(4.53) for the Martinet sub-Riemannian system (4.42). In other words, the discrete scheme
in (4.52) and (4.53) could be understood as two discrete Hamiltonian flows FL+

d
and FL−d

,

each one of half-step h/2, respectively generated by the generating functions L+
d and L−d .

The map over the entire time-step h is thus the composition of the maps FL−d
◦ FL+

d
.



Chapter 5

Discrete mechanics and optimal
control

The goal of this chapter is to develop, from a geometric point of view, numerical methods
for optimal control of Lagrangian mechanical systems. We will employ the theory of discrete
mechanics and variational integrators presented in §3 to derive both an integrator for the
dynamics and an optimal control algorithm in a unified manner. The proposed framework is
general and applies to unconstrained systems, as well as systems with symmetries, underactu-
ation, and nonholonomic constraints. We pay special attention to Lagrangian systems defined
on tangent bundles and Lie groups. The extension to principal bundles and nonholonomic
mechanics is carefully studied in §5.3.

The main idea is the following: we take an approximation of the Lagrange-d’Alembert
principle for forced Lagrangian systems, which models control inputs and external forces
such as gravity or drag forces. In principle, we admit the possibility of piecewise continuous
control forces, as happens in real applications. We observe that the discrete equations of
motion for this type of systems are interpreted as the discrete Euler-Lagrange equations of
a new Lagrangian defined in an augmented discrete phase space. Next, we apply discrete
variational calculus techniques to derive the discrete optimality conditions. After this, we
recover two sequences of discrete controls modeling a piecewise control trajectory.

Moreover, since we are reducing the optimality conditions to discrete Euler-Lagrange
equations, the geometric preservation properties like symplectic-momentum preservation in
the standard case or Poisson bracket and momentum preservation for reduced systems are
automatically guaranteed using the results in [118, 124].

Several theoretical and a practical examples, e.g. the control of an underwater vehicle,
will illustrate the application of the proposed approach.
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5.1 Optimal control of a mechanical system defined in TQ

5.1.1 Continuous Lagrangian picture

Let Q be the configuration manifold, with (qi) local coordinates i = 1, ..., n. We consider
a mechanical system described by a regular Lagrangian L : TQ → R. The induced local
coordinates on TQ are (qi, q̇i). Additionally, there are external-control forces present
defined by the map

f : TQ× U → T ∗Q,

such that f(vq, u) ∈ T ∗qQ for vq ∈ TqQ.

To define these control forces we have introduced the control manifold U ⊂ Rm (m ≤ n)
for a given interval I = [0, T ]. The control path space is defined by

D(U) = D([0, T ], U) = {u : [0, T ]→ U |u ∈ L∞} ,

with u(t) ∈ U also called the control parameter. Lp(Rm) denotes the usual Lebesgue space
of measurable functions x : [0, T ] → Rm with |x(·)|p integrable, equipped with its standard
norm

||x||Lp =

(∫ T

0
|x(t)|pdt

) 1
p

,

where | · | is the Euclidean norm. We interpret a control force as a parameter-dependent force,
that is a parameter-dependent fiber-preserving map f(u) : TQ→ T ∗Q over the identity IdQ,
which can be written in coordinates as

f(u) : (qi, q̇i) 7→ (qi, f(u)(qi, q̇i)).

Remark 5.1.1. Note that the definition of a control force also includes forces that are inde-
pendent on the control parameter. Thus, in the following, we restrict to a formulation with
control forces which gives us the opportunity to include friction or dissipative forces as well.

The optimal control problem can be defined as follows: during the time interval I = [0, T ]
the mechanical system described by L moves on a curve q(t) ∈ Q from an initial state
(q(0), q̇(0)) to a final state (q(T ), q̇(T )). The motion is influenced via the external forces f
with chosen control parameter u(t) such that a given cost functional

J(q, q̇, u) =

∫ T

0
C(q(t), q̇(t), u(t))dt, (5.1)

where C : TQ× U → R is the cost function (continuously differentiable).

The initial state is fixed in the following way: q(0) = q0 and q̇(0) = q̇0, where (q0, q̇0) ∈ TQ
is a fixed value for the initial state, that is input data coming from experiments or any
theoretical assumption.

On the other hand, the final state is given by the time constraint r(q(T ), q̇(T ), qT , q̇T ) = 0
with r : TQ×TQ→ Rnr (nr is an integer), where (qT , q̇T ) ∈ TQ is a fixed value for the desired
final state. This boundary condition allows the simplest velocity constraint q̇(T ) = q̇T , that
is r(q(T ), q̇(T ), qT , q̇T ) = q̇(T )− q̇T , or more involved ones.
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At the same time, the motion q(t) of the system has to satisfy the Lagrange-d’Alembert
principle, which requires that

δ

∫ T

0
L(q(t), q̇(t)) dt+

∫ T

0
f(q(t), q̇(t), u(t)) δq(t) dt = 0, (5.2)

where we consider arbitrary variations δq(t) ∈ Tq(t)Q with δq(0) = 0 and δq(T ) = 0.

The optimal control problem for a Lagrangian system can be now formulated as follows

Problem 5.1.2 (Lagrangian optimal control problem).

min(q(·),q̇(·),u(·),T )

∫ T

0
C(q(t), q̇(t), u(t))dt, (5.3a)

subject to

δ

∫ T

0
L(q(t), q̇(t)) dt+

∫ T

0
f(q(t), q̇(t), u(t)) δq(t) dt = 0, (5.3b)

q(0) = q0, q̇(0) = q̇0, (5.3c)

r(q(T ), q̇(T ), qT , q̇T ) = 0. (5.3d)

The final time T may either be fixed or appear as a degree of freedom in the optimization
problem.

Under these conditions it is necessary to apply the Pontryaguin maximum principle (see
[14, 143] for further details) in order to derive the equations of motion. Generally, it is not
possible to explicitly integrate these equations and, consequently, it is necessary to apply a
numerical method.

5.1.2 Discrete Lagrangian picture

To obtain a discrete formulation, we replace each expression in the previous subsection by
its discrete counterpart in terms of discrete variational mechanics, that is following the pre-
scriptions in §3. Briefly, we replace the state space TQ of the system by Q × Q and a
path q : [0, T ] → Q by a discrete path qd : {0, h, 2h, ..., Nh = T} → Q, N ∈ N, with
qk = qd(hk) ≈ q(tk). Analogously, the continuous control path u : [0, T ] → U is replaced by
a discrete control path ud : ∆t̃→ U . In order to establish a discrete version of the Lagrange-
d’Alembert principle, is necessary to clarify the properties of this discrete control path and,
in addition, the discrete control forces.

Discrete control forces

For the replacement of the control space by a discrete one we introduce a new time grid
∆t̃. This time grid is generated by an increasing sequence of intermediate control points
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c = {cl | 0 ≤ cl ≤ 1, l = 1, ..., s} as ∆t̃ = {tkl | k ∈ {0, ..., N − 1} , l ∈ {1, ..., s}}, where tlk =
tk + clh. With this notation the discrete control path space is defined to be

Dd(U) = Dd(∆t̃, U) =
{
ud : ∆t̃→ U

}
.

We define the intermediate control samples uk on [tk, tk+1] as uk = (uk1, ..., uks) ∈ U s
to be the values of the control parameters guiding the system from qk = qd(tk) to qk+1 =
qd(tk+1), where ukl = ud(tkl) for l ∈ {1, ..., s}.

The set of discrete controls U s can be viewed as a finite dimensional subspace of the
control path space D([0, h], U).

There are several approaches to discrete optimal control theory in the mathematical
literature. An inspiring approach for our work is the one in [139], where the authors consider
the following discretization of the control forces: take two discrete control forces f±k :
Q×Q× U s → T ∗Q:

f−k (qk, qk+1, uk) ∈ T ∗qkQ, (5.4a)

f+
k (qk, qk+1, uk) ∈ T ∗qk+1

Q, (5.4b)

also called left and right forces1. Analogously to the continuous case, the two discrete
control forces are interpreted as two parameter-dependent discrete fiber-preserving forces
f±k (uk) : Q × Q → T ∗Q in the sense that πQ ◦ f±k = π±Q, where πQ : T ∗Q → Q is the usual

projection and π±Q : Q × Q → Q are projection operators defined by π−Q(qk, qk+1) = qk and

π+
Q(qk, qk+1) = qk+1. The two discrete control forces are combined to give a single one-form
fk(uk) : Q×Q→ T ∗(Q×Q) defined by

fk(uk)(qk, qk+1)(δqk, δqk+1) = f+
k (uk)(qk, qk+1)δqk+1 + f−k (uk)(qk, qk+1)δqk. (5.5)

The left discrete force f+
k−1 is interpreted as the force resulting from the continuous control

force acting during the time span [tk−1, tk] on the configuration node qk. The right discrete
force f−k is the force acting on qk resulting from the continuous control force during the time
span [tk, tk+1].

Discrete Lagrange-d’Alembert principle

As with discrete Lagrangian functions, the discrete control forces also depend on the time step
h, which is important when relating discrete and continuous mechanics. Given such forces,
the discrete Hamilton’s principle is modified, following [85], to the discrete Lagrange-
d’Alembert principle, which seeks discrete curves {qk}Nk=0 that satisfy

δ
N−1∑
k=0

Ld(qk, qk+1) +
N−1∑
k=0

(
f+
k (uk)(qk, qk+1)δqk+1 + f−k (uk)(qk, qk+1)δqk

)
= 0, (5.6)

for all variations {δqk}Nk=0 vanishing at the endpoints. This is equivalent to the forced
discrete Euler-Lagrange equations

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1(qk−1, qk, uk−1) + f−k (qk, qk+1, uk) = 0, (5.7)

1Observe, that the discrete control force is now dependent on the discrete control path.
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which are the same as the standard discrete Euler-Lagrange equations with the discrete
forces added. These implicitly define the forced discrete Lagrangian map FLd(uk−1, uk) :
Q×Q→ Q×Q. For further details see [85, 124, 138, 139].

5.1.3 Discrete optimal control problem

Now, we propose another discretization of the control forces which allow us to consider a more
general class of controls (see [76]). Namely, we allow in the sequel two different sequences of
discrete controls

{
u+
k

}
and

{
u−k
}

in (5.4). That is

f−k (qk, qk+1, u
−
k ) ∈ T ∗qkQ, (5.8a)

f+
k (qk, qk+1, u

+
k ) ∈ T ∗qk+1

Q. (5.8b)

In the notation followed through the rest of this chapter, the time interval between [k, k+ 1]
is denoted as the k-th interval. This choice allows us to model piecewise continuous controls,
admitting discrete jumps at the time steps tk = hk. Our notation is completely depicted in
the following figure:

- tk

hk h(k+1) h(k+2) h(k+3)

u+
k+1

r

r u−k+2

u+
k r

u−k+1
r
@
@
@
@
@
@
@
@

︸ ︷︷ ︸
(k)−th

︸ ︷︷ ︸
(k+1)−th

︸ ︷︷ ︸
(k+2)−th

u−k

r���
�
�
�
�
�

ru+
k+2

Under these definitions we take the following approximation of the control forces in (5.2):

f−k (qk, qk+1, u
−
k ) δqk + f+

k (qk, qk+1, u
+
k ) δqk+1 ≈

∫ (k+1)h

kh
f(q(t), q̇(t), u(t))δq(t) dt
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where
(
f−k (qk, qk+1, u

−
k ), f+

k (qk, qk+1, u
+
k )
)
∈ T ∗qkQ × T ∗qk+1

Q. Consequently, the discrete
Lagrange-d’Alembert principle given in (5.6) is modified in the following way

δ

N−1∑
k=0

Ld(qk, qk+1) +

N−1∑
k=0

(
f−k (qk, qk+1, u

−
k ) δqk + f+

k (qk, qk+1, u
+
k ) δqk+1

)
= 0,

for all variations {δqk}k=0,...N with δqk ∈ TqkQ such that δq0 = δqN = 0. From this principle
is easy to derive the system of difference equations:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1(qk−1, qk, u

+
k−1) + f−k (qk, qk+1, u

−
k ) = 0, (5.9)

where k = 1, . . . , N − 1. Equations (5.9) are the new forced discrete Euler-Lagrange
equations.

We can also approximate the cost functional (5.1) in a single time step h by

Cd(qk, u
−
k , qk+1, u

+
k ) ≈

∫ (k+1)h

kh
C(q(t), q̇(t), u(t)) dt,

yielding the discrete cost functional:

Jd(q0:N−1, u
±
0:N−1) =

N−1∑
k=0

Cd(qk, u
−
k , qk+1, u

+
k ) .

Observe that Cd : Q× U ×Q× U → R.

Boundary conditions

In the next step, we need to incorporate the boundary conditions q(0) = q0, q̇(0) = q̇0 and
r(q(T ), q̇(T ), qT , q̇T ) = 0 into the discrete description. Those on the configuration level can be
used as constraints in a straightforward what as q(0) = q0 = q0. However, since in the present
formulation velocities are approximated in a time interval [tk, tk+1], the velocity conditions
have to be transformed to conditions on the conjugate momenta. These are defined at each
and every time node using the discrete Legendre transform. The presence of forces at the
time nodes has to be incorporated into that transformation leading to the forced discrete
Legendre transforms FfL±d (u) : Q×Q→ T ∗Q defined by

FfL+
d (u) : (q0, q1) 7→ (q1, p1) = (q1, D2Ld(q0, q1) + f+

0 (q0, q1, u)), (5.10a)

FfL−d (u) : (q0, q1) 7→ (q0, p0) = (q0,−D1Ld(q0, q1)− f−0 (q0, q1, u)). (5.10b)

Using the standard Legendre transform FL : TQ → T ∗Q, (q, q̇) → (q, p) = (q,D2L(q, q̇))

defined in §2.2.1 and the two different sequences of discrete controls
{
u±k
}N
k=0

leads to the
discrete initial constraint on the conjugate momentum:

D2L(q0, q̇0) +D1Ld(q0, q1) + f−0 (q0, q1, u
−
0 ) = 0. (5.11)

We can transform the boundary condition from a formulation with configuration and velocity
to a formulation with configuration and conjugate momentum. Thus, instead of considering
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a discrete version of the final time constraint r on TQ we use a discrete version of the final
time constraint r̃ on T ∗Q × T ∗Q. We define the discrete boundary condition on the
configuration level to be

rd : Q×Q× U s × TQ→ Rnr ,

rd(qN−1, qN , u
+
N−1, q

T , q̇T ) = r̃d(F
fL+

d (qN−1, qN , u
+
N−1),FL(qT , q̇T )),

with (qN , pN ) = FfL+
d (qN−1, qN , u

+
N−1) and (qT , pT ) = FL(qT , q̇T ), which can be translated

in the final boundary conditions

pN = D2Ld(qN−1, qN ) + f+
N−1(qN−1, qN , u

+
N−1), (5.12a)

pT = D2L(qT , q̇T ). (5.12b)

Remark 5.1.3. For the simple velocity constraint r(q(T ), q̇(T ), qT , q̇T ) = q̇(T )−q̇T , we obtain
for the transformed condition on the momentum level r̃(q(T ), p(T ), qT , pT ) = p(T ) − pT the
discrete constraint

−D2L(qT , q̇T ) +D2Ld(qN−1, qN ) + f+
N−1(qN−1, qN , u

+
N−1) = 0.

Finally, after performing the above discretization steps, one is faced with the following
discrete optimal control problem:

Problem 5.1.4 (Discrete optimal control problem).

min(q0:N ,u
±
0:N−1,h)

N−1∑
k=0

Cd(qk, u
−
k , qk+1, u

+
k ), (5.13a)

subject to

δ

N−1∑
k=0

Ld(qk, qk+1) +

N−1∑
k=0

(
f−k (qk, qk+1, u

−
k ) δqk + f+

k (qk, qk+1, u
+
k ) δqk+1

)
= 0, (5.13b)

q(0) = q0 = q0, (5.13c)

D2L(q0, q̇0) +D1Ld(q0, q1) + f−0 (q0, q1, u
−
0 ) = 0, (5.13d)

rd(qN−1, qN , u
+
N−1, q

T , q̇T ) = 0. (5.13e)

Recall that f±k are dependent on uk ∈ U s. To incorporate a free final time T as in the
continuous setting, the step size h appears as a degree of freedom within the optimization
problem. However, in the following formulations and considerations we restrict ourselves to
the case of fixed final time T and thus fixed step size h.

In the sequel we develop our new method to approach (5.13), which consists in solving
the discrete optimal control problem as a variational integrator of a specially constructed
higher-dimensional system.
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5.1.4 Fully-actuated case

We say that a system is fully-actuated when the dimension of the control space equals the
number of degrees of freedom of the system under study. We perform the fully actuation by
means of the following definition:

Definition 5.1.5. (Fully-actuated discrete system) We say that the discrete mechanical
control system is fully-actuated if the mappings

f−k
∣∣
(qk,qk+1)

: U → T ∗qkQ, f−k
∣∣
(qk,qk+1)

(u) = f−k (qk, qk+1, u),

f+
k

∣∣
(qk,qk+1)

: U → T ∗qk+1
Q, f+

k

∣∣
(qk,qk+1)

(u) = f+
k (qk, qk+1, u),

are both diffeomorphisms.

Define the momenta

pk = −D1Ld(qk, qk+1)− f−k (qk, qk+1, u
−
k ), (5.14)

pk+1 = D2Ld(qk, qk+1) + f+
k (qk, qk+1, u

+
k ). (5.15)

Since both f±k
∣∣
(qk,qk+1)

are diffeomorphisms we can work out u±k in terms of (qk, pk, qk+1, pk+1)

from (5.14) and (5.15). Now, we are in situation to define a new Lagrangian Ld : T ∗Q×T ∗Q→
R by

Ld(qk, pk, qk+1, pk+1) =

= Cd(qk , (f−k
∣∣
(qk,qk+1)

)−1(−D1Ld − pk) , qk+1 , (f+
k

∣∣
(qk,qk+1)

)−1(−D2Ld + pk+1)).

The system is fully-actuated, consequently the Lagrangian Ld is well defined on the entire
discrete space T ∗Q×T ∗Q. Now the discrete phase space is the Cartesian product T ∗Q×T ∗Q
of two copies of the cotangent bundle. The definition (5.14), (5.15) gives us a matching of
momenta (see [124]) which automatically implies

D2Ld(qk−1, qk) + f+
k−1(qk−1, qk, u

+
k−1) = −D1Ld(qk, qk+1)− f−k (qk, qk+1, u

−
k ),

k = 1, . . . , N − 1, which are the forced discrete Euler-Lagrange equations (5.9). In other
words, the matching condition enforces that the momentum at time k should be the same
when evaluated from the lower interval [k−1, k] or the upper interval [k, k+1]. Consequently,
along a solution curve there is a unique momentum at each time tk, which can be called pk.

Once we have the new discrete Lagrangian Ld it is possible to define the discrete action
sum

Sd =

N−1∑
k=0

Ld(qk, pk, qk+1, pk+1).

Applying the Hamilton’s principle we obtain the discrete Euler-Lagrange equations of motion
for the Lagrangian Ld : T ∗Q× T ∗Q→ R:

D3Ld(qk−1, pk−1, qk, pk) +D1Ld(qk, pk, qk+1, pk+1) = 0, (5.16)

D4Ld(qk−1, pk−1, qk, pk) +D2Ld(qk, pk, qk+1, pk+1) = 0 . (5.17)
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In conclusion, we have obtained the discrete equations of motion for a fully-actuated me-
chanical optimal control problem as the discrete Euler-Lagrange equations for a Lagrangian
defined on the Cartesian product of two copies of the cotangent bundle.

Example 5.1.6 (Optimal control problem for a mechanical Lagrangian with con-
figuration space Rn). Let consider x ∈ Rn, M a n × n constant and symmetric matrix
and the mechanical Lagrangian L : R2n → R defined by L(x, ẋ) = 1

2 ẋ
TMẋ − V (x), where

V : Rn → R is the potential function and ẋ represents the time derivative of x. Our bound-
ary constraints are (x(0), ẋ(0)) and (x(T ), ẋ(T )). The system is fully actuated and there exist
no velocity constraints. Note that in the continuous setting we can define the momentum
by the continuous Legendre transformation FL : TQ → T ∗Q, (q, q̇) 7→ (q, p): p = ∂L

∂ẋ , i.e.
p(t) = ẋT (t)M . In consequence, we can define boundary constraints also in the phase space:
(x(0) , p(0) = ẋ(0)T M) and (x(T ) , p(T ) = ẋ(T )T M).

We set the Trapezoidal discretization for the Lagrangian (see [61]), that is,

Ld(xk, xk+1) =
h

2
L(xk,

xk+1 − xk
h

) +
h

2
L(xk+1,

xk+1 − xk
h

)

where, as above, h is the fixed time step and x1, x2, . . . , xN is a sequence of elements on Rn.
Our concrete discrete Lagrangian is

Ld(xk, xk+1) =
1

2h
(xk+1 − xk)TM(xk+1 − xk)−

h

2
(V (xk) + V (xk+1)) .

The control forces are f−k (xk, xk+1, u
−
k ) ∈ T ∗xkR

n and f+
k (xk, xk+1, u

+
k ) ∈ T ∗xk+1

Rn. For sake of

clarity, we are going to fix the control forces in the following manner f±(xk, xk+1, u
±
k ) = u±k .

Looking at equations (5.14) and (5.15) is easy to obtain the associated momenta pk and pk+1,
namely

pk =
1

h
(xk+1 − xk)T M +

h

2
Vx(xk)

T − u−k ,

pk+1 =
1

h
(xk+1 − xk)T M −

h

2
Vx(xk+1)T + u+

k .

Let

Cd =
h

4

N−1∑
k=0

[
(u−k )2 + (u+

k )2
]

be a discrete cost function. Consequently, the Lagrangian over T ∗R× T ∗R is

Ld(xk, pk, xk+1, pk+1) =

=
1

4

N−1∑
k=0

(
pk −

(
xk+1 − xk

h

)T
M − h

2
Vx(xk)

T

)2

+
1

4

N−1∑
k=0

(
pk+1 −

(
xk+1 − xk

h

)T
M +

h

2
Vx(xk+1)T

)2

,
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where Vx represents the derivative of V with respect to the variable x. Applying equations
(5.16) and (5.17) to Ld we obtain the following equations:

pk −
(
xk+1 − xk−1

2h

)T
M = 0, (5.18)

(
pk − (

xk+1 − xk
h

)T M − h

2
Vx(xk)

T

)(
M − h2

2
Vxx(xk)

T

)
(5.19)

−
(
pk − (

xk − xk−1

h
)T M +

h

2
Vx(xk)

T

)(
M − h2

2
Vxx(xk)

T

)
= 0,

where both set of equations are defined for k = 1, ..., N − 1. It is quite clear that we could
remove the pk dependence in equation (5.19). However, we prefer to keep it in order to
stress that the discrete variational Euler-Lagrange equations (5.16) and (5.17) are defined in
T ∗Q× T ∗Q (T ∗R× T ∗R in the particular case we are considering in this example).

Expressions (5.18) and (5.19) mean 2(N − 1)n equations for the 2(N + 1)n unknowns
{xk}Nk=0 , {pk}Nk=0. Nevertheless, we translate the boundary conditions (5.13c), (5.13d) and
(5.13e) (in its Hamiltonian version r̃d(xN , pN , x

T , pT ) = 0) into

x0 = x(0), p0 = p(0),

xN = x(T ), pN = p(T ),

which contribute 4n extra equations and convert eqs. (5.18) and (5.19) in a nonlinear root
finding problem of 2(N − 1)n and the same amount of unknowns.

5.1.5 Under-actuated case

We say that a system is under-actuated when the dimension of the control space is fewer
than the number of degrees of freedom of the system under study. We perform the under-
actuation by means of the following definition:

Definition 5.1.7. (Under-actuated discrete system) We say that the discrete mechan-
ical control system is underactuated if the mappings

f−k
∣∣
(qk,qk+1)

: U → T ∗qkQ, f−k
∣∣
(qk,qk+1)

(u) = f−k (qk, qk+1, u),

f+
k

∣∣
(qk,qk+1)

: U → T ∗qk+1
Q, f+

k

∣∣
(qk,qk+1)

(u) = f+
k (qk, qk+1, u),

are both embeddings.

Under the embedding requirement we ensure f±k (U) ⊂ T ∗Q to has a submanifold struc-
ture. Furthermore, under this hypothesis we deduce that M−(qk,qk+1) = f−k

∣∣
(qk,qk+1)

(U),

M+
(qk,qk+1) = f+

k

∣∣
(qk,qk+1)

(U) are submanifolds of T ∗qkQ and T ∗qk+1
Q, respectively. Therefore,

f±k
∣∣
(qk,qk+1)

are diffeomorphisms onto its image. Moreover, dimM−(qk,qk+1) = dimM+
(qk,qk+1) =

dimU .
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As in the fully-actuated case, we define the Lagrangian function

Ld(qk, pk, qk+1, pk+1)

= Cd(qk , (f−k
∣∣
(qk,qk+1)

)−1(−D1Ld − pk) , qk+1 , (f+
k

∣∣
(qk,qk+1)

)−1(−D2Ld + pk+1)),

where we have defined the momenta

pk = −D1Ld(qk, qk+1)− f−k (qk, qk+1, u
−
k ), (5.20)

pk+1 = D2Ld(qk, qk+1) + f+
k (qk, qk+1, u

+
k ). (5.21)

To define Ld in the way we have just done, is necessary to consider that
(qk , −D1Ld(qk, qk+1)− pk , qk+1 , −D2Ld(qk, qk+1) + pk+1) is a point of M−(qk,qk+1) ×

M−(qk,qk+1) in order to calculate its image by the inverse functions
(
f±k
∣∣
(qk,qk+1)

)−1
. That

is, the Lagrangian function Ld is defined for points (qk, pk, qk+1, pk+1) satisfying

(qk , −D1Ld(qk, qk+1)− pk) ∈ M−(qk,qk+1) ⊂ T
∗
qk
Q,

(qk+1 , −D2Ld(qk, qk+1) + pk+1) ∈ M+
(qk,qk+1) ⊂ T

∗
qk+1

Q.

In many examples of interest, these conditions are performed by means of constraint functions
Φ−α ,Φ

+
α : T ∗Q × T ∗Q → R, 1 ≤ α ≤ n − dimU and therefore the solutions of the optimal

control problem are now viewed as the solutions of the discrete constrained problem (in
other words Vakonomic) determined by the Lagrangian Ld and the constraints Φ±α . Since
f±
∣∣
(qk,qk+1)

are embeddings, as established in definition (5.1.7), the number of constraints is

determined by n minus the dimension of U . Note that the total number of constraints, Φ±α ,
is therefore 2(n− dimU).

To solve this problem we introduce Lagrange multipliers (λ−k )α,(λ+
k )α and the extended

Lagrangian

L̃d(qk, pk, λ
−
k , qk+1, pk+1, λ

+
k ) =Ld(qk, pk, qk+1, pk+1)

+ (λ−k )αΦ−α (qk, pk, qk+1, pk+1)

+ (λ+
k )αΦ+

α (qk, pk, qk+1, pk+1).

Observe that, in spite the constraints are functions of the cartesian product of two copies of
the cotangent bundle i.e. Φ±α : T ∗Q× T ∗Q→ R, neither Φ−α depends on pk+1 nor Φ+

α on pk.
The discrete Euler-Lagrange equations gives us the solutions of the underactuated problem.

Typically, the underactuated systems appear in an affine way that is

f−k (qk, qk+1, u
−
k ) = A−k (qk, qk+1) +B−k (qk, qk+1)(u−k )

f+
k (qk, qk+1, u

+
k ) = A+

k (qk, qk+1) +B+
k (qk, qk+1)(u+

k )

where A−k (qk, qk+1) ∈ T ∗qkQ, A+
k (qk, qk+1) ∈ T ∗qk+1

Q. Moreover B−k (qk, qk+1) ∈ Lin(U, T ∗qkQ)

and B+
k (qk, qk+1) ∈ Lin(U, T ∗qk+1

Q) are linear maps (we assume that U is a vector space
and Lin(E1 , E2) is the set of all linear maps between E1 and E2). In consequence
B−k (qk, qk+1)(u−k ) ∈ T ∗qkQ and B+

k (qk, qk+1)(u+
k ) ∈ T ∗qk+1

Q.
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Then the constraints are deduced using the compatibility conditions:

rankB−k = rank
(
B−k ; −D1Ld(qk, qk+1)− pk −A−k (qk, qk+1)

)
,

rankB+
k = rank

(
B+
k ; −D2Ld(qk, qk+1) + pk+1 −A+

k (qk, qk+1)
)
,

which imply constraints in (qk, qk+1, pk) and (qk, qk+1, pk+1) respectively. The fact that
f±k
∣∣
(qk,qk+1)

are both embeddings implies furthermore that rankB−k = rankB+
k = dimU .

5.2 Optimal control of a mechanical system defined in a Lie
group

5.2.1 Continuous Lagrangian picture

We consider the optimal control of a mechanical system on a finite dimensional Lie group
with Lagrangian that is left invariant under group actions. The goal is to move the system
within the time interval I = [0, T ], under the influence of control forces f with chosen control
parameter u(t), from its current state to a desired state in an optimal way, e.g. by minimizing
distance, control effort, or time, which will be representated by a suitable cost function.

The standard way to solve such problems is to first derive the continuous equations of
motion of the system. Among the trajectories satisfying these equations one can find extremal
(cost function minimizing) by solving a variational problem.

Let the configuration space be a n-dimensional Lie group G with Lie algebra g and a
Lagrangian function L : TG → R which is left invariant under the action of G. Using this
invariance we can left-trivialize such systems (i.e., we can consider the following isomorphism
TG ' G× g) by introducing the body fixed velocity ξ ∈ g defined by the left-translation to
the origin ξ = TeLg−1 ġ (TeL is the left translation to the origin, not to be confused with the
Lagrangian function L). This last expression will be called henceforth the reconstruction
equation:

ġ = TeLgξ = gξ. (5.22)

The reduced Lagrangian l : TG/G ' g→ R is:

l(ξ) = L(g−1g, g−1ġ) = L(e, ξ), (5.23)

where the invariance under G and (5.22) have been used.

In addition, the control forces are defined by the map f : g × U → g∗. As in §5.1.1, the
control manifold U is a subspace of Rm, with m ≤ n. Since the motion of the system is
influenced by control forces, the dynamics will be governed by the Lagrange-d’Alembert
principle, which in this case looks like:

δ

∫ T

0
l(ξ(t))dt+

∫ T

0
〈f(ξ(t), u(t)), η(t)〉dt = 0, (5.24)

for all variations δξ(t) of the form δξ(t) = η̇(t) + [ξ(t), η(t)], where η(t) = g−1(t)δg(t) is an
arbitrary curve on the Lie algebra g∗ with η(0) = η(T ) = 0 (see [123] for further details),
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The derivation of δξ is straightforward by taking usual variations in (5.22), moreover [·, ·] :
g× g→ g is the usual Lie bracket of g. Finally, 〈·, ·〉 represents the usual pairing between g
and g∗. Taking variations in (5.24) we arrive to

d

dt

(
∂l

∂ξ

)
= ad∗ξ

(
∂l

∂ξ

)
+ f. (5.25)

These equations are called the forced Euler-Poincaré equations (see [66] for further details).
ad∗ξλ is defined by 〈ad∗ξλ, η〉 = 〈λ, adξη〉, where λ ∈ g∗ and adξη = [ξ, η], η ∈ g. Together
with the reconstruction equation (5.22), the Euler-Poincaré equations provide the continuous
trajectory (g(t), ξ(t)) of a system evolving on a Lie group under the action of control forces.
If we take the Legendre transform µ = ∂l

∂ξ , µ ∈ g∗, the Euler-Poincaré equations become

µ̇ = ad∗ξµ+ f,

µ =
∂l

∂ξ
, (5.26)

ġ = gξ,

which are called the Lie-Poisson equations.

The optimal control problem can be defined as follows: during the time interval I =
[0, T ] the mechanical system described by l moves on a curve g(t) ∈ G from an initial state
(g(0), ξ(0)) to a final state (g(T ), ξ(T )). The motion is influenced via the external foces f
with chosen control parameter u(t) such that a given cost functional

J(ξ, u) =

∫ T

0
C(ξ(t), u(t))dt, (5.27)

where C : g× U → R is the cost function (continuously differentiable).

As in §5.1.1, the initial state is fixed by (g(0), ξ(0)) = (g0, ξ0), for (g0, ξ0) ∈ G × g a
input value for the initial state, while the final condition is given by the time constraint
r(g(T ), ξ(T ), gT , ξT ) = 0, with r : G × g × G × g → Rnr , where (gT , ξT ) ∈ G × g is a fixed
value for the desired final state.

Equivalently to the optimal control problem on TQ defined in (5.3), the optimal control
problem for a Lagrangian system evolving on a Lie group can be defined as follows:

Problem 5.2.1 (Lagrangian optimal control problem).

min(ξ(·),u(·),T )

∫ T

0
C(ξ(t), u(t))dt, (5.28a)

subject to

(5.28b)

δ

∫ T

0
l(ξ(t))dt+

∫ T

0
〈f(ξ(t), u(t)), η(t)〉dt = 0, (5.28c)

ġ = gξ, (5.28d)

g(0) = g0, ξ(0) = ξ0, (5.28e)

r(g(T ), ξ(T ), gT , ξT ) = 0. (5.28f)
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The final time T may either be fixed or appear as a degree of freedom in the optimization
problem.

5.2.2 Discrete Lagrangian picture

Departing from a continuous picture where the Lagrangian is defined in the tangent bundle of
a Lie group, i.e. L : TG→ R, the prescription shown in §3.1 enforces a discrete Lagrangian
Ld : G×G→ R. We assume Ld invariant in the following sense:

Ld(gk, gk+1) = Ld(ḡgk, ḡgk+1)

for any element ḡ ∈ G and (gk, gk+1) ∈ G × G. According to this, we can define a reduced
discrete Lagrangian ld : G→ R by

ld(Wk) = Ld(e, g
−1
k gk+1),

just by choosing ḡ = g−1. In the last e is the identity of the Lie group G. On the other hand,

Wk = g−1
k gk+1 (5.29)

is the discrete counterpart of (5.22) and is called the discrete reconstruction equation.
By taking usual variations in (5.29) we arrive to

δWk = −ηkWk +Wkηk+1, (5.30)

where g 3 ηk = g−1
k δgk is an arbitrary element of the algebra.

Put in another way, we can construct the reduced discrete Lagrangian ld : G → R as an
approximation of the action integral, that is

ld(Wk) ≈
∫ (k+1)h

kh
l(ξ(t)) dt.

when we deal with a reduced continuous problem l : g→ R as shown in (5.23). Thus, we are
replacing the Lie algebra g by the Lie group G and the continuous curves ξ(t) by by sequences
(W0,W1, ...,WN−1) ∈ GN (since the Lie algebra is the infinitesimal version of a Lie group,
its proper discretization is consequently that Lie group [122, 124]) that will reproduce the
discrete trajectory {gk}Nk=0 by means of the discrete reconstruction equation (5.29).

Let define the discrete external forces in the following way: f±k : G × U → g∗, where
U ⊂ Rm for m ≤ n = dim g. As in §5.1.3 and sections therein, we are going to allow two

different sequences of discrete controls
{
u+
k

}N
k=0

and
{
u−k
}N
k=0

in order to describe discrete
jumps of the controls in the time nodes tk. In consequence, we are going to use the following
quadrature rule:

〈f−k (Wk, u
−
k ) , ηk〉+ 〈f+

k (Wk, u
+
k ) , ηk+1〉 ≈

∫ (k+1)h

kh
〈f(ξ(t), u(t)), η(t)〉 dt,

where (f−k (Wk, u
−
k ), f+

k (Wk, u
+
k )) ∈ g∗ × g∗ and ηk ∈ g, for all k. In addition η0 = ηN = 0.

For sake of simplicity we might omit the dependence on G × U of both f+
k and f−k in the

following.
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Taking all the previous into account, we derive a discrete version of the Lagrange-
d’Alembert principle for Lie groups:

δ
N−1∑
k=0

ld(Wk) +
N−1∑
k=0

(
〈f−k , ηk〉+ 〈f+

k , ηk+1〉
)

= 0, (5.31)

for all variations {δWk}N−1
k=0 verifying the relation (5.30). {ηk}N−1

k=0 is an arbitrary sequence
of elements of g which satisfies η0 = ηN = 0 (see [17, 18, 121] for further details).

From this principle is easy to derive the system of difference equations:

L∗
Wk−1

dld(Wk−1)−R∗
Wk

dld(Wk) + f+
k−1(Wk−1, u

+
k−1) + f−k (Wk, u

−
k ) = 0, (5.32)

k = 1, . . . , N − 1, which are called the controlled discrete Euler-Poincaré equations.
In (5.32), L : G × G → G is the left-translation of the Lie group G (which shall not be
confused with the continuous Lagrangian function L) and R : G × G → G is the right-
translation. Clearly, the controlled discrete Euler-Poincaré equations are the discrete coun-
terpart of (5.25).

5.2.3 Discrete optimal control problem

We will relate now the discrete changes in the group configuration (5.29) to elements in the
Lie algebra ξk by means of a retraction map.

A retraction map τ : g → G is an analytic local diffeomorphism around the identity
such that τ(ξ)τ(−ξ) = e, where ξ ∈ g. Two standard choices for τ– the exponential map and
the Cayley map-are employed in this chapter.

The variational principle will now be expressed in terms of the chosen map τ . The
resulting discrete mechanics will thus involve the derivatives of the map which we define next
(see also [22, 73, 91]):

Definition 5.2.2. Given a map τ : g → G, its right trivialized tangent dτξ : g → g and
is inverse dτ−1

ξ : g→ g, are such that for g = τ(ξ) ∈ G and η ∈ g, the following holds

∂ξτ(ξ) η = dτξ η τ(ξ),

∂ξτ
−1(g) η = dτ−1

ξ (η τ(−ξ)).

Using these definitions, variations δξ and δg are constrained by

δξk = dτ−1
hξk

(−ηk + Adτ(hξk)ηk+1)/h, (5.33)

where ηk = g−1
k δgk, which is obtained by straightforward differentiation of ξk =

τ−1(g−1
k gk+1)/h.

Regarding ξk as the velocity along the segment between gk and gk+1, we set the discrete
Lagrangian ld : G→ R to be

ld(Wk) = hl(ξk) = l̃d(ξk), (5.34)
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where ξk = τ−1(g−1
k gk+1)/h = τ−1(Wk)/h. The difference g−1

k gk+1 ∈ G, which is an element
of a nonlinear space, can now be represented by the vector ξk in order to enable unconstrained
optimization in the linear space g for optimal control purposes. Note that the new Lagrangian
is well-defined only on U, where U ⊂ g is an open neighborhood around the identity for which
τ is a diffeomorphism. To make the notation as simple as possible we retain the Lagrangian
definition to the full space l̃d : g→ R.

With these new elements, the discrete version of the Lagrange-d’Alembert principle (5.31)
can be rewritten as

δ
N−1∑
k=0

hl(ξk) +
N−1∑
k=0

(
〈f−k , ηk〉+ 〈f+

k , ηk+1〉
)

= 0. (5.35)

Taking variations in the last equation, taking into account the definition (5.2.2) for the right-
trivialized (and inverse) retraction map, equation (5.33), lemmae defined in Appendix A and
the definition of the discrete conjugate momenta

µk := (dτ−1
h ξk

)∗
∂l(ξk)

∂ξk
, (5.36)

we arrive to the equations

µk −Ad∗τ(hξk−1)µk−1 = f̃−k (ξk, u
−
k ) + f̃+

k−1(ξk−1, u
+
k−1),

k = 1, .., N − 1,

µk = (dτ−1
h ξk

)∗∂ξl(ξk), k = 0, ..., N − 1, (5.37)

g−1
k gk+1 = τ(hξk), k = 0, ..., N − 1,

where f̃±k and f±k are related by the retraction map. Equations (5.37) are the discrete
counterpart of the Lie-Poisson equations (5.26).

In addition, using arguments similar to those given in [124] (forced discrete mechanics
section), the discrete forced Noether theorem yields the following boundary conditions

µ0 − ∂ξl(ξ(0)) = f̃−0 (ξ0, u
−
0 ), (5.38a)

∂ξl(ξ(T ))−Ad∗τ(hξN−1)µN−1 = f̃+
N (ξN , u

+
N ), (5.38b)

where ξ(0) and ξ(T ) are the (given) initial and final velocities. These boundary conditions
account for what happens in the initial and final points. Note the distinction between ξ0

and ξ(0) on one hand, and between ξN and ξ(T ) on the other. These quantities are not
necessary the same since ξ(t) refers to the point on the continuous curve at time t while ξk
can be thought of as an average velocity along the k-th trajectory segment resulting from the
discretization.

The exact form of (5.37) and (5.38) depends on the choice of τ . It is important to point
out that this choice will influence the computational efficiency of the optimization framework
when the equalities above are enforced as constraints. As mentioned above, there are several
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choices commonly used for integration on Lie groups. Among them, the more usual are the
exponential map and the Cayley map:

a) The exponential map exp : g → G, defined by exp(ξ) = γ(1), with γ : R → G in
the integral curve through the identity of the vector field associated with ξ ∈ g (hence, with
γ̇(0) = ξ). The right trivialized derivative and its inverse are defined by

dexpx y =

∞∑
j=0

1

(j + 1)!
adjx y,

dexp−1
x y =

∞∑
j=0

Bj
j!

adjx y,

where Bj are the Bernoulli numbers (see [61]). Typically, these expressions are truncated in
order to achieve a desired order of accuracy.

b) The Cayley map cay : g→ G is defined by cay(ξ) = (e− ξ
2)−1(e+ ξ

2) and is valid for a
general class of quadratic groups (see [61]) that include the groups of interest in this chapter
(e.g. SO(3), SE(2) and SE(3). The exact form of the Cayley map for these groups is given
in Appendix B). Its right trivialized derivative and inverse are defined by

dcayx y = (e− x

2
)−1 y (e+

x

2
)−1,

dcay−1
x y = (e− x

2
) y (e+

x

2
).

To end up with the discrete optimization problem, we have to take an approximation the
cost functional (5.64):

Cd(u
−
k ,Wk, u

+
k ) ≈

∫ (k+1)h

kh
C(ξ(t), u(t)) dt, (5.39)

yielding the discrete cost functional:

Jd(W0:N−1, u
±
0:N−1) =

N−1∑
k=0

Cd(u
−
k ,Wk, u

+
k ) . (5.40)

Observe that now Cd : U ×G× U → R. By means of the retraction map we can define also
a discrete cost function defined in the space U × g× U , that is:

J̃d(ξ0:N−1, u
±
0:N−1) =

N−1∑
k=0

C̃d(u
−
k , ξk, u

+
k ) . (5.41)

To be precise, the cost function is well-defined only on U × U × U , where U ⊂ g is an open
neighborhood around the identity for which τ is a diffeomorphism. To make the notation as
simple as possible we retain the cost function definition to the full space U × g× U .
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Discrete optimal control problem

The discrete optimal control problem for a system with reduced Lagrangian l : g → R

and fixed initial and final states (g(0), ξ(0)) and (g(T ), ξ(T )) respectively can be directly
formulated as

Problem 5.2.3 (Discrete optimal control problem).

minξ0:N−1,u
±
0:N−1

N−1∑
k=0

C̃d(u
−
k , ξk, u

+
k ), (5.42a)

subject to

µ0 − ∂ξl(ξ(0)) = f̃−0 (ξ0, u
−
0 ), (5.42b)

µk −Ad∗τ(hξk−1)µk−1 = f̃−k (ξk, u
−
k ) + f̃+

k−1(ξk−1, u
+
k−1), k = 1, ..., N − 1, (5.42c)

∂ξl(ξ(T ))−Ad∗τ(hξN−1)µN−1 = f̃+
N (ξN , u

+
N ), (5.42d)

µk = (dτ−1
h ξk

)∗∂ξl(ξk), k = 0, ..., N − 1, (5.42e)

g0 = g(0), (5.42f)

gk+1 = gkτ(hξk), k = 0, ..., N − 1, (5.42g)

τ−1(g−1
N g(T )) = 0, (5.42h)

where (5.42h) enforces the condition g(T ) = gN . Is clear that (5.42c) are the discrete
Lie-Poisson equations coming from the discrete Lagrange-d’Alembert principle (5.35), which
in problem 5.2.3 are enforced as constraints. The variables denoted ξN and µN have no effect
on the trajectory g0:N so we can treat these last points as irrelevant to the optimization. This
is coherent with thinking of the velocities ξk as the average body-fixed velocity along the k-th
path segment between configurations gk and gk+1.

As we did in the case of tangent bundles, in the sequel we develop our new method
to approach prob.5.2.3, which consists in solving the discrete optimal control problem as a
variational integrator of a specially constructed higher-dimensional system

5.2.4 Fully-actuated case

As in §5.1.4, we perform the fully actuation by means of the following definition:

Definition 5.2.4. (Fully-actuated discrete system) We say that the discrete mechanical
control system is fully-actuated if the mappings

f−k
∣∣
Wk

: U → g∗, f−k
∣∣
Wk

(u−k ) = f−k (Wk, u
−
k ),

f+
k

∣∣
Wk

: U → g∗, f+
k

∣∣
Wk

(u+
k ) = f+

k (Wk, u
+
k ),

are both diffeomorphisms.
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Therefore, we can construct the Lagrangian

Ld : g∗ ×G× g∗ −→ R

by

Ld(νk,Wk, νk+1) = (5.43)

= Cd

(
(f−k

∣∣
Wk

)−1(R∗
Wk

dld(Wk)− νk),Wk, (f
+
k

∣∣
Wk

)−1(−L∗
Wk

dld(Wk) + νk+1)
)
,

where we have the equivalence

νk = R∗Wk
dld(Wk)− f−k (Wk, u

−
k ),

νk+1 = L∗Wk
dld(Wk) + f+

k (Wk, u
+
k ). (5.44)

Clearly νk and νk+1 belong to g∗. Observe now that our discrete phase space is g∗ ×G× g∗

which is a space not considered in the previous cases, i.e. two copies of g∗ and a Lie group
G, but in some sense a mixture of both: a Lie groupoid ([118]).

We realize that the discrete optimal control problem defined in (5.31) and (5.39) has been
reduced to a Lagrangian one, with Lagrangian function Ld : g∗ × G × g∗ → R, as shown
just above. In consequence, we are able to apply discrete variational calculus to obtain the
discrete equations of motion of the variables in the phase space g∗ ×G× g∗.

Let us show how to derive these equations from a variational point of view (see [118] for
further details). Define first the discrete action sum

Sd =

N−1∑
k=0

Ld(νk,Wk, νk+1).

Consider sequences of the type {(νk,Wk, νk+1)}k=0,...,N−1 with boundary conditions: ν0, νN
and the composition W̄ = W0W1 · · ·WN−2WN−1 fixed. Therefore an arbitrary variation of
this sequence has the form

{νk(ε) , h−1
k (ε)Wk hk+1(ε) , νk+1(ε)}k=0,...,N−1,

with ε ∈ (−δ, δ) ∈ R (both ε and δ > 0 are real parameters) and ν0(ε) = ν0, νk(0) = νk ,
νN (ε) = νN , hk(ε) ∈ G and h0(ε) = hN (ε) = e, for all ε. Additionally hk(0) = e for all k.

The critical points of the discrete action sum subjected to the previous boundary condi-
tions are characterized by

0 =
d

dε

∣∣∣
ε=0

(
N−1∑
k=0

Ld(νk(ε) , h
−1
k (ε)Wk hk+1(ε) , νk+1(ε))

)

=
d

dε

∣∣∣
ε=0

{
Ld(ν0 , W0 h1(ε), ν1(ε)) + Ld(ν1(ε) , h−1

1 (ε)W1 h2(ε) , ν2(ε))

+ . . .+ Ld(νN−2(ε) , h−1
N−2(ε)WN−2 hN−1(ε) , νN−1(ε))

+Ld(νN−1(ε) , h−1
N−1(ε)WN−1 , νN )

}
.
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Taking derivatives we obtain

0 =
N−1∑
k=1

[
L∗
Wk−1

dLd
∣∣
(νk−1,νk)

(Wk−1)−R∗
Wk

dLd
∣∣
(νk,νk+1)

(Wk)
]
δhk

+

N−1∑
k=1

[
D2Ld

∣∣
(Wk−1)

(νk−1, νk) +D1Ld
∣∣
(Wk)

(νk, νk+1)
]
δνk,

where Ld
∣∣
(W )

: g∗ × g∗ → R and Ld
∣∣
(ν,ν′)

: G → R are defined by Ld
∣∣
(W )

(ν, ν ′) =

Ld
∣∣
(ν,ν′)

(W ) = Ld(ν,W, ν
′), where W ∈ G and ν, ν ′ ∈ g∗. Since δhk (which is defined as

d hk
dε |ε=0) and δνk (which is defined as d νk

dε |ε=0), k = 1, . . . , N − 1 are arbitrary, we deduce the
following discrete equations of motion:

L∗
Wk−1

dLd
∣∣
(νk−1,νk)

(Wk−1)−R∗
Wk

dLd
∣∣
(νk,νk+1)

(Wk) = 0,

(5.45)

D2Ld
∣∣
(Wk−1)

(νk−1, νk) +D1Ld
∣∣
(Wk)

(νk, νk+1) = 0,

for k = 1, . . . , N−1. Similarly to §5.1.4 we obtain the control inputs u−k and u+
k using (5.44).

5.2.5 Under-actuated case

The under-actuated case can now be considered by adding constraints. Similarly to §5.1.5
underactuation restricts the control forces to lie in a subspace spanned by vectors {es} of the
basis {es, eσ} of g∗, where {s, σ} = 1, ..., n. Then

f−k (Wk, u
−
k ) = a−k (Wk) + (b−k (Wk, u

−
k ))se

s,

f+
k (Wk, u

+
k ) = a+

k (Wk) + (b+k (Wk, u
+
k ))se

s,

where a−k (Wk), a
+
k (Wk) ∈ g∗ and (b−k (Wk, u

−
k ))s, (b

+
k (Wk, u

+
k ))s ∈ R, for all s. Additionally,

the embedding condition implies that rank b−k = rank b+k = dimU . Then, taking the dual
basis {es, eσ}, we induce the following constraints:

Φ−σ (νk,Wk, νk+1) = 〈R∗
Wk

dld(Wk)− νk − a−k (Wk), eσ〉 = 0, (5.46a)

Φ+
σ (νk,Wk, νk+1) = 〈νk+1 − L∗Wkdld(Wk)− a+

k (Wk), eσ〉 = 0. (5.46b)

Observe in (5.46) that, even though the constraints are functions Φ±σ : g∗×G×g∗ → R, neither
Φ−σ depends on νk+1 nor Φ+

σ on νk. Once we have defined the constraints we can implement
the Lagrangian multiplier rule in order to solve the underactuated problem. Namely, we
define the extended Lagrangian as:

L̃d(νk, λ
−
k ,Wk, νk+1, λ

+
k ) = Ld(νk,Wk, νk+1) +

+ (λ−k )σΦ−σ (νk,Wk, νk+1) + (λ+
k )σΦ+

σ (νk,Wk, νk+1).

Defining the discrete action sum

Sunder
d =

N−1∑
k=0

L̃d(νk, λ
−
k ,Wk, νk+1, λ

+
k ),
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we obtain the underactuated discrete equations of motion

L∗
Wk−1

dLd
∣∣
(νk−1,νk)

(Wk−1)−R∗
Wk−1

dLd
∣∣
(νk,νk+1)

(Wk)

+ L∗
Wk−1

(
(λ−k−1)σ d Φ−σ

∣∣
(νk−1,νk)

(Wk−1) + (λ+
k−1)σ d Φ+

σ

∣∣
(νk−1,νk)

(Wk−1)
)

−R∗
Wk−1

(
(λ−k )σ d Φ−σ

∣∣
(νk,νk+1)

(Wk) + (λ+
k )σ d Φ+

σ

∣∣
(νk,νk+1)

(Wk)
)

= 0,

D2 Ld
∣∣
(Wk−1)

(νk−1, νk) +D1 Ld
∣∣
(Wk)

(νk, νk+1) +
[
(λ+
k−1)σ − (λ−k )σ

]
eσ = 0,

Φ−σ (νk,Wk, νk+1) = 0,

Φ+
σ (νk,Wk, νk+1) = 0,

(5.47)

where the subscripts (Wk−1), (Wk), (νk−1, νk), (νk, νk+1) denoted variables that are fixed.

5.2.6 Numerical methods for systems on Lie groups

We now put the discrete optimal control equations (5.45) and (5.47) into a form suitable
for algorithmic implementation. The numerical methods are construsted using the following
guidelines:

1. good approximation of the dynamics and optimality,

2. globally valid parametrization,

3. guarantee for numerical robustness and convergence,

4. numerical efficiency.

The discrete mechanics approach provides an accurate approximation of the dynamics (re-
quirement 1) through momentum and symplectic form preservation and good energy be-
havior. In addition, we will satisfy requirement 2 for systems on Lie groups by lifting the
optimization to the Lie algebra through a retraction map that will be defined in this sec-
tion. The resulting algorithms are numerically robust in the sense that there are no issues
with coordinate singularities and the dynamics and optimality conditions remain close to
their continuous counterparts even at big time steps. Yet, as with any other nonlinear op-
timization scheme it is difficult to formally claim that the algorithm will always converge
(requirement 3). Nevertheless, in practice there are only isolated cases for underactuated
systems that fail to converge. A remedies for such cases has been suggested in [91]. In gen-
eral, the resulting algorithms require a small number of iterations, e.g. between 10 and 20 to
converge (requirement 4).

The optimization variables Wk are regarded as small displacements on the Lie group.
Thus, it is possible to express each term through a Lie algebra element that can be though of
the averaged velocity of this displacement. This is accomplished using the retraction maps
defined in §5.2.3 and considering the discrete Lagrangian ld to be ld(Wk) = hl(ξk).
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Next, the discrete forces and cost function are defined through a trapezoidal approxima-
tion, i.e.

f̃±k (ξk, u
±
k ) =

h

2
f(ξk, u

±
k ),

and

C̃d(u
−
k , ξk, u

+
k ) =

h

2
C(ξk, u

−
k ) +

h

2
C(ξk, u

+
k ),

respectively. With the choice of a retraction map and the trapezoidal rule the equations of
motion (5.37) become

µk −Ad∗τ(hξk−1)µk−1 =
h

2
f(ξk, u

−
k ) +

h

2
f(ξk−1, u

+
k−1), k = 1, ..., N − 1,

µk = (dτ−1
hξk

)∗∂ξl(ξk), k = 0, ..., N − 1,

gk+1 = gkτ(hξk), k = 0, ..., N − 1,

while the momenta defined in (5.44) take the form

νk = µk −
h

2
f(ξk, u

−
k ), (5.48)

νk+1 = Ad∗τ(hξk)µk +
h

2
f(ξk, u

+
k ). (5.49)

Finally, define the Lagrangian `d : g∗ × g× g∗ → R such that

`d(ν, ξ, ν
′) = Ld(ν, τ(hξ), ν ′).

Note that the Lagrangian is well-defined only on g∗ × U × g∗, where U ⊂ g is an open
neighborhood around the identity for which τ is a diffeomorphism. To make the notation as
simple as possible we retain the Lagrangian definition to the full space g∗ × g× g∗.

The optimality conditions corresponding to (5.45) become

(dτ−1
−hξk−1

)∗ d `d
∣∣
(νk−1,νk)

(ξk−1)− (dτ−1
hξk

)∗ d `d
∣∣
(νk,νk+1)

(ξk) = 0, (5.50)

D2 `d
∣∣
(ξk−1)

(νk−1, νk) +D1 `d
∣∣
(ξk)

(νk, νk+1) = 0, (5.51)

for k = 0, ..., N − 1. Here, `d
∣∣
(ξ)

(ν, ν ′) = `d
∣∣
(ν,ν′)

(ξ) = `d(ν, ξ, ν
′). Equations (5.50) and (5.51)

can be also obtained from (5.45) employing Lemma 6.6.3 and Lemma 6.6.4 in Appendix A.

In the underactuated case we define

˜̀
d(ν, ξ, ν

′, λ−, λ+) =Ld(ν, τ(hξ), ν ′)

+ (λ−)σΦ−σ
∣∣
(ν,ν′)

(τ(hξ)) + (λ+)σΦ+
σ

∣∣
(ν,ν′)

(τ(hξ)),
(5.52)

and from (5.47) obtain the equations

(dτ−1
−hξk−1

)∗ d ˜̀
d

∣∣
(νk−1,νk,λ

±
k−1)

(ξk−1)− (dτ−1
hξk

)∗ d ˜̀
d

∣∣
(νk,νk+1,λ

±
k )

(ξk) = 0,

D2 Ld
∣∣
τ(hξk−1)

(νk−1, νk) +D1 Ld
∣∣
τ(hξk)

(νk, νk+1) + λ+
k−1 − λ

−
k = 0,

Φ−σ (νk, τ(hξk), νk+1) = 0,

Φ+
σ (νk, τ(hξk), νk+1) = 0,

(5.53)

where we employed the notation λ± := (λ±)σeσ and used the definitions (5.46).
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Boundary conditions

Establishing the exact relationship between the discrete and continuous momenta, µk and
µ(t) = ∂ξl(ξ(t)), respectively, is particularly important for properly enforcing boundary con-
ditions that are given in terms of continuous quantities (see equations (5.38)). The following
equations relate the momenta at the initial and final times t = 0 and t = T and are used to
transform between the continuous and discrete representations:

µ0 − ∂ξl(ξ(0)) =
h

2
f(ξ(0), u−0 ),

∂ξl(ξ(T ))−Ad∗τ(hξN−1) µN−1 =
h

2
f(ξ(T ), u+

N ).

which also corresponds to the relations ν0 = ∂ξl(ξ(0)) and νN = ∂ξl(ξ(T )). These equations
can also be regarded as structure-preserving velocity boundary conditions, i.e., for given
fixed velocities ξ(0) and ξ(T ).

The exact form of the previous equations depends on the choice of τ . This choice will
also influence the computational efficiency of the optimization framework when the above
equalities are enforced as constraints. The numerical procedure to compute the trajectory is
summarized as follows:

Algorithm 5.2.5. Optimal control

Data: group G; mechanical Lagrangian l; control functions a, b; cost function C; final
time T ; number of segments N .

1. Input: boundary conditions (g(0), ξ(0)) and (g(T ), ξ(T )).

2. Set momenta ν0 = ∂ξl(ξ(0)) and νN = ∂ξl(ξ(T ))

3. Solve for (ξ0, ..., ξN−1, ν1, ..., νN−1, λ
±
1 , ..., λ

±
N−1) the relations:{

equations (5.53) for all k = 1, ..., N − 1,
τ−1

(
τ(hξN−1)−1...τ(hξ0)−1 g(0)−1g(T )

)
= 0

4. Output: optimal sequence of velocities ξ0, ..., ξN−1.

5. Reconstruct path g0, ..., gN by gk+1 = gkτ(hξk) for k = 0, ..., N − 1.

The solution is computed using root-finding procedure such as Newton’s method.

5.2.7 Example: optimal control effort

Consider a Lagrangian consisting of the kinetic energy only

l(ξ) =
1

2
〈I(ξ) , ξ〉,

full unconstrained actuation, no potential or external forces and no velocity constraint. The
map I : g→ g∗ is called the inertia tensor and is assumed full rank.
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In the fully actuated case we have f(ξk, u
±
k ) ≡ u±k . We consider a minimum effort control

problem, i.e.

C(ξ, u) =
1

2
‖u‖2.

The optimal control problem 5.2.3 for fixed initial and final states (g(0) , ξ(0)) and
(g(T ) , ξ(T )) can now be summarized as:

Compute: ξ0:N−1 , u±0:N ,

minimizing: h
4

∑N−1
k=0

(
‖ u−k ‖

2 + ‖ u+
k ‖

2
)
,

subject to:

µ0 − I(ξ(0)) = h
2 u
−
0 ,

µk −Ad∗τ(hξk−1) µk−1 = h(u−k + u+
k−1), k = 1, ..., N − 1,

I(ξ(T ))−Ad∗τ(hξN−1) µN−1 = h
2 u

+
N ,

µk = (dτ−1
h ξk

)∗ I(ξk),

gk+1 = gk τ(hξk), k = 0, ...N − 1,

τ−1(g−1
N g(T )) = 0.

On the other hand, the optimality conditions for this problem are derived as follows in
the approach developed in this chapter. The Lagrangian becomes

`d(νk, ξk, νk+1) =
1

4h

N−1∑
k=0

(
‖ νk − (d τ−1

hξk
)∗I(ξk) ‖2 + ‖ νk+1 − (d τ−1

−hξk)∗I(ξk) ‖2
)
,

where the momentum has been computed according to

νk =
1

2

(
(d τ−1

hξk
)∗I(ξk) + (d τ−1

−hξk−1
)∗I(ξk−1)

)
, (5.54)

Thus the optimality conditions become

(d τ−1
hξk

)∗ d`d
∣∣
(νk,νk+1)

(ξk)− (d τ−1
−hξk−1

)∗ d`d
∣∣
(νk−1,νk)

(ξk−1) = 0,

k = 1, ..., N − 1,

τ−1
(
τ(hξN−1)−1...τ(hξ0)−1 g−1

0 g(T )
)

= 0.

It is important to note that these last two equations define N · n equations in the Nṅ
unknowns ξ0:N−1. A solution can be found using nonlinear root finding. Once ξ0:N have
been computed, is possible to obtain the final configuration gN by reconstructing the curve
by these velocities. Beside, the boundary condition g(T ) is enforced through the relation
τ−1(g−1

N g(T )) = 0 without the need to optimize over any of the configurations gk.
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5.2.8 Extension: the configuration-dependent case

The developed framework can be extended to a configuration-dependent Lagrangian L :
G× g→ R, for instance defined in terms of a kinetic energy K : g→ R and potential energy
V : G→ R according to

L(g, ξ) = K(ξ)− V (g),

where g ∈ G and ξ ∈ g. The controlled Lie-Poisson equations are in this case

µ̇− ad∗ξµ = −L∗g ∂g V (g) + f,

µ = ∂ξK(ξ),

ġ = g ξ,

(recall that Lg denotes the left-translation by g) where the external forces are defined as
f : G × g × U → g∗. Our discretization choice Ld : G × G → R will be (recall that
ξk = τ−1(g−1

k gk+1)/h)

Ld(gk, gk+1) =
h

2
L(gk, ξk) +

h

2
L(gk+1, ξk)

= hK(ξk)− h
V (gk) + V (gk+1)

2
,

while the G-dependent discrete forces now become

f−k (gk, ξk, u
−
k ) =

h

2
f(gk, ξk, u

−
k ), f+

k (gk+1, ξk, u
+
k ) =

h

2
f(gk+1, ξk, u

+
k ).

This leads to the discrete equations

µk −Ad∗τ(hξk−1)µk−1 = −hL∗gk∂gV (gk)

+
h

2
f(gk, ξk, u

−
k ) +

h

2
f(gk, ξk−1, u

+
k−1), k = 1, ..., N,

µk = (dτ−1
hξk

)∗∂ξK(ξk), k = 0, ..., N − 1,

gk+1 = gkτ(hξk), k = 0, ..., N − 1.

The momenta become

νk = µk +
h

2
L∗gk ∂g V (gk)−

h

2
f(gk, ξk, u

−
k ),

νk+1 = Ad∗τ(hξk)µk −
h

2
L∗gk+1

∂g V (gk+1) +
h

2
f(gk+1, ξk, u

+
k ).

In consequence, we can define a discrete Lagrangian

Ld : g∗ × G× g× g∗ → R,
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depending on the variables (νk, gk, ξk, νk+1) which discrete equations of motion will be a
mixture between (5.45) and (5.50), (5.51), namely

D2 Ld
∣∣
(gk−1,ξk−1)

(νk−1, νk) +D1 Ld
∣∣
(gk,ξk)

(νk, νk+1) = 0,(
L∗
gk−1

dLd
∣∣
(νk−1,ξk−1,νk)

(gk−1) +R∗
gk

dLd
∣∣
(νk,ξk,νk+1)

(gk)
)

+
(

(dτ−1
−hξk−1

)∗ dLd
∣∣
(νk−1,gk−1,νk)

(ξk−1)− (dτ−1
hξk

)∗ dLd
∣∣
(νk,gk,νk+1)

(ξk)
)

= 0,

for k = 1, ..., N − 1.

5.2.9 Application 1: underwater vehicle

We illustrate the developed algorithm with an application to a simulated unmanned underwa-
ter vehicle. Figure (5.1) shows the model equipped with five thrusters which produce forces
and torques in all directions but the body-fixed “y”-axis. Since the input directions span only
a five-dimensional subspace the problem is solved through the underactuated framework.

a)

drag
u1

u2

u3

u4

u5y

xz

d

c

propellers

b)

flip

parallel

parking

reconfigurations

Figure 5.1: An underwater vehicle model (a) and a various computed optimal trajectories between chosen
states (b). Only a few frames along the path are shown for clarity.

The vehicle configuration space is G = SE(3). We make the identification SE(3) ∼
SO(3) × R3 using elements R ∈ SO(3) and x ∈ R3. The exact form of a group element
g ∈ SE(3) and an algebra element ξ ∈ se(3) are described in Appendix B, together with the
analytic form of the Cayley map. Elements of the Lie algebra are identified with body-fixed
angular and linear velocities denoted ω ∈ R3 and v ∈ R3, respectively, through

ξ =

(
ω̂ v

03×3 0

)
,
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where the hat map ·̂ : R3 → so(3) is defined is defined also in Appendix B. The algorithm is
thus implemented in terms of vectors in R6 rather than matrices in se(3).

The map τ = cay : se(3) → SE(3) is chosen, instead of the exponential, since it results
in more computationally efficient implementation. The matrix representation of the right-
trivialized tangent inverse dcay−1

(ω,v) : R3 × R3 → R3 × R3 becomes

[dcay−1
(ω,v)] =

[
I3 − 1

2 ω̂ + 1
4ωω

T 03

−1
2

(
I3 − 1

2 ω̂
)
v̂ I3 − 1

2 ω̂

]
. (5.55)

The vehicle inertia tensor I is computed assuming cylindrical mass distribution with mass
m = 3kg. The control basis vectors are {es}5s=1 = {e1, e2, e3, e4, e5}, while the non-actuated
direction is eσ = e6, where ei is the i-th standard basis vector of R6. The control functions
take the form

b(W,u)1 = d(u5 − u4),

b(W,u)2 = c((u1 + u2)/2− u3),

b(W,u)3 = (c sin
π

3
)(u2 − u1),

b(W,u)4 = u1 + u2 + u3,

b(W,u)5 = u4 + u5,

a(W ) = Hτ−1(W ),

here H is a negative definite viscous drag matrix and the constants c, d are the lengths of the
thrusting torque moment arms (see Figure 5.1).

We are interested in computing a minimum control effort trajectory between two given
boundary states, i.e. conditions on both the configurations and velocities. Such a cost func-
tion is defined in §5.2.7. The optimal control problem is solved using equations (5.53). The
computation is performed using Algorithm 5.2.5. Figure 5.2 shows the computed velocities
and controls for the “reconfiguration” trajectory shown in Figure 5.1. The algorithms re-
quires between 10-20 iterations depending on the boundary conditions and when applied to
N = 32 segments.
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Figure 5.2: Details of the computed optimal path for the reconfiguration maneuver given in Figure (5.1).



146 Extensions

5.2.10 Application 2: discontinuous control

One of the advantages of employing the discrete variational framework is the treatment of
discontinuous control inputs as illustrated in §5.1. The nature of the control curve depends
on the cost function. In the standard squared control effort case (i.e. L2 control curve
norm employed in §5.2.9) the resulting control is smooth. Another cost function of interest

is
∫ T

0 ‖u(t)‖dt (i.e. the L1 control curve norm) which is typically imposed along with the
constraints umin ≤ u(t) ≤ umax. This case results in a discontinuous optimal control curve.
Our formulation can handle such problems easily since the terms u−k and u+

k are regarded
as the forces before and after time tk, respectively. A computed scenario of a rigid body
actuated with two control torques around its principles axes of inertia (Fig. 5.3) illustrates
the discontinuous case.
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Figure 5.3: An optimal trajectory of an underactuated rigid body on SO(3) (a). The body is controlled using
two force inputs around the body-fixed x and y axes. An L1-control cost function results in a discontinuous
optimal trajectory (b) which our algorithm can handle.

5.3 Extensions

The methods developed in the previous sections are easily adapted to other cases which are of
great interest in real applications. In particular, this section will be devoted to the discussion
of two important extensions: the case of optimal control problems for Lagrangians of the
type l : TM × g → R (that is, reduction by symmetries on a trivial principal fiber bundle)
and the case of nonholonomic systems. Here, M denotes a smooth manifold. Observe that
the phase space TM × g unifies the previously studied cases of a tangent bundle and a Lie
algebra.

The notion of principal fiber bundle is present in many locomotion and robotic sys-
tems [16, 23, 120]. When the configuration manifold is Q = M ×G, there exists a canonical
splitting between variables describing the position and variables describing the orientation of
the mechanical system. Then, we distinguish the pose coordinates g ∈ G (the elements in
the Lie algebra will be denoted by ξ ∈ g), and the variables describing the internal shape of
the system, that is x ∈ M (in consequence (x, ẋ) ∈ TM). Observe that the Lagrangians
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of the type l : TM × g → R mainly appears as reduction of Lagrangians of the type
L : T (M × G) → R, which are invariant under the action of the Lie group G. Under
the identification T (M ×G)/G ≡ TM × g we obtain the reduced Lagrangian l. We first de-
velop the discrete optimal control problem for systems in an unconstrained principle bundle
setting in §5.3.1. Nonholonomic constraints are then added to treat the more general case of
locomotion systems in §5.3.2.

5.3.1 Discrete optimal control on principle bundles

The discrete case is modeled by a Lagrangian ld : M×M×G→ R which is an approximation
of the action integral in one time step

ld(xk, xk+1,Wk) '
∫ h(k+1)

hk
l (x(t), ẋ(t), ξ(t)) dt,

where (xk, xk+1) ∈M ×M and Wk ∈ G. Again, we make an election for the discrete control
forces f±k : M ×M ×G× U → T ∗M × g∗, where U ⊂ Rm:

f−k (xk, xk+1,Wk, u
−
k ) =

(
f̄−k (xk, xk+1,Wk, u

−
k ), f̂−k (xk, xk+1,Wk, u

−
k )
)
,

f+
k (xk, xk+1,Wk, u

+
k ) =

(
f̄+
k (xk, xk+1,Wk, u

+
k ), f̂+

k (xk, xk+1,Wk, u
+
k )
)
,

here f−k ∈ T
∗
xk
M × g∗ and f+

k ∈ T
∗
xk+1

M × g∗ (more concretely f̄−k ∈ T
∗
xk
M , f̄+

k ∈ T
∗
xk+1

M ,

f̂−k ∈ g∗, f̂+
k ∈ g∗).

Similarly to the developments in §5.1 and §5.2.4 we can formulate the discrete
Lagrange-D’Alembert principle:

δ

N−1∑
k=0

ld(xk, xk+1,Wk) +

N−1∑
k=0

〈f−k , (δxk, ηk)〉

+
N−1∑
k=0

〈f+
k , (δxk+1, ηk+1)〉 = 0,

which can be rewritten as

δ
N−1∑
k=0

ld(xk, xk+1,Wk) +
N−1∑
k=0

f̄−k δxk +
N−1∑
k=0

f̄+
k δxk+1

+

N−1∑
k=0

〈f̂−k , ηk〉+

N−1∑
k=0

〈f̂+
k , ηk+1〉 = 0,

for all variations {δxk}Nk=0 with δxk ∈ TxkM and δx0 = δxN = 0; also {δWk}Nk=0 with

δWk ∈ TgkG, such that δWk = −ηkWk + Wkηk+1, being {ηk}Nk=0 a sequence of independent
elements of g such that η0 = ηN = 0.
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Applying variations in the last expression and rearranging the sum, we finally obtain the
complete set of forced discrete Euler-Lagrange equations:

D1ld(xk, xk+1,Wk) +D2ld(xk−1, xk,Wk−1) + f̄−k + f̄+
k−1 = 0, (5.56)

l∗Wk−1
D3ld(xk−1, xk,Wk−1)− r∗Wk

D3ld(xk, xk+1,Wk) + f̂−k + f̂+
k−1 = 0, (5.57)

with k = 1, . . . , N − 1. Since we are dealing with an optimal control problem, we introduce
a discrete cost function Cd : M ×G×M × U × U → R. As in previous cases, our objective
is to extremize the following sum

N−1∑
k=0

Cd(xk,Wk, xk+1, u
−
k , u

+
k ),

subjected to equations (5.56) and (5.57). Let us initially restrict our attention to the case of
fully actuated systems.

Definition 5.3.1. (Fully actuated discrete system) We say that the discrete mechanical
control system is fully actuated if the mappings

f−k
∣∣
(x0,x1,W1)

: U → T ∗x0
M × g∗, f−k

∣∣
(x0,x1,W1)

(u) = f−k (x0, x1,W1, u),

f+
k

∣∣
(x0,x1,W1)

: U → T ∗x1
M × g∗, f+

k

∣∣
(x0,x1,W1)

(u) = f+
k (x0, x1,W1, u)

are both diffeomorphisms.

According to equations (5.56) and (5.57), we can introduce the momenta by means of the
following discrete Legendre transforms:

pk = −D1ld(xk, xk+1,Wk)− f̄−k ,
pk+1 = D2ld(xk, xk+1,Wk) + f̄+

k ,

µk = R∗Wk
D3ld(xk, xk+1,Wk)− f̂−k ,

µk+1 = L∗Wk
D3ld(xk, xk+1,Wk) + f̂+

k ,

where, we recall, L and R denote the left and right translations, respectively, in the Lie
group. In the fully actuated case, is possible to find the value of all control forces in terms of
xk, xk+1,Wk, pk, pk+1, µk, µk+1, that is:

u−k = u−k (xk, xk+1,Wk, pk, µk), (5.58)

u+
k = u+

k (xk, xk+1,Wk, pk+1, µk+1). (5.59)

Replacing (5.58) and (5.59) into Cd, we finally obtain the discrete Lagrangian that completely
describes our system:

Ld : T ∗M × g∗ ×G× g∗ × T ∗M −→ R.

The associated discrete cost functional is

Jd(x0:N , p0:N , µ0:N ,W0:N−1) =

N−1∑
k=0

Ld(xk, pk, µk,Wk, µk+1, xk+1, pk+1). (5.60)
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As usual, we take now variations in (5.60) in order to obtain the discrete Euler-Lagrange
equations for our optimal control problem (with some abuse of notation we denote Q̂k =
(xk, pk, µk,Wk, µk+1, xk+1, pk+1) the whole set of coordinates in the new phase space):

D6Ld(Q̂k−1) + D1Ld(Q̂k) = 0 ,

D7Ld(Q̂k−1) + D2Ld(Q̂k) = 0 ,

D5Ld(Q̂k−1) + D3Ld(Q̂k) = 0 ,

L∗Wk−1
D4Ld(Q̂k−1) − R∗Wk

D4Ld(Q̂k) = 0,

together with the forced discrete Euler-Lagrange equations (5.56) and (5.57).

Typically, actuation is achieved by controlling only a subset of the shape variables. In
our setting this is can be regarded as underactuation – the mappings in definition 5.3.1
become embeddings. If this is the case, it is necessary to introduce constraints and apply
constrained variational calculus as in §5.1.7 and §5.2.4.

5.3.2 Discrete optimal control of nonholonomic systems

This subsection is devoted to add nonholonomic constraints to the picture. Holonomic con-
straints might be considered as a particular case of the nonholonomic ones (see [110] for
further details). With this extension it would be possible consider examples of optimal con-
trol of robotic vehicles. In the following we will expose the theoretical framework, leaving for
future research the application to concrete examples.

A controlled discrete nonholonomic system on M × M × G is given by the following
quadruple (see [70, 93]):

i) A regular discrete Lagrangian ld : M ×M ×G→ R.

ii) A discrete constraint embedded submanifold Mc of M ×M ×G.

iii) A constraint distribution, Dc, which is a vector subbundle of the vector bundle
τTM×g : TM × g → M , such that dimMc = dimDc. Typically, there is a relation
between the constraint distribution and the discrete constraint, since from Mc we induce
for every x ∈M , the subspace Dc(x) of TxM × g given by

Dc(x) = T(x,x,e)Mc ∩ (TxM × g) ,

where we are identifying TxM ×g ≡ 0x×TxM ×TeG, with e being the identity element
of the Lie group G.

iv) The discrete control forces f±k : Mc × U → T ∗M × g∗ where U ⊂ Rm (again, forces f±k
split into f̄±k and f̂±k as in the previous section).

We have the following discrete version of the Lagrange-D’Alembert principle for
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controlled nonholonomic systems:

δ
N−1∑
k=0

ld(xk, xk+1,Wk) +
N−1∑
k=0

〈f−k , (δxk, ηk)〉

+

N−1∑
k=0

〈f+
k , (δxk+1, ηk+1)〉 = 0,

for all variations {δxk}Nk=0, with δx0 = δxN = 0; and {δWk}Nk=0, such that δWk = −ηkWk +

Wkηk+1, being {ηk}Nk=0, verifying (δxk, ηk) ∈ Dc(xk) ⊆ TxkM × g such that η0 = ηN = 0.
Moreover, (xk, xk+1,Wk) ∈Mc, k = 0, . . . , N − 1 (see [70]).

Take a basis of sections {(Xa, η̃a)} of the vector bundle τDc : Dc −→M , whereXa ∈ X(M)
and η̃a : M → g for a = 1, ..., rank(Dc). Hence, the equations of motion derived from the
discrete Lagrange-D’Alembert principle for controlled nonholonomic systems are:

0 = 〈D1ld(xk, xk+1,Wk) +D2ld(xk−1, xk,Wk−1) + f̄−k + f̄+k−1 , X
a(xk)〉

(5.61)

+〈L∗
Wk−1

D3ld(xk−1, xk,Wk−1)−R∗
Wk
D3ld(xk, xk+1,Wk) + f̂−k + f̂+k−1 , η̃

a(xk)〉,

0 = Ψα(xk, xk+1,Wk), (5.62)

where Ψα(xk, xk+1,Wk) = 0 are the constraints which locally determine Md.

In a more geometric way, we can write equations (5.61) and (5.62) as follows

0 = (iDc)
∗
(
D1ld(xk, xk+1,Wk) + D2ld(xk−1, xk,Wk−1) + f̄−k + f̄+

k−1,

L∗Wk−1
D3ld(xk−1, xk,Wk−1) − R∗Wk

D3ld(xk, xk+1,Wk) + f̂−k + f̂+
k−1

)
,

where(xk, xk+1,Wk) ∈Mc and iDc : Dc ↪→ TM × g is the canonical inclusion.

Given a discrete cost function Cd : U ×Mc × U −→ R and the optimal control problem
is to minimize the action sum

N−1∑
k=0

Cd(u
−
k , xk,Wk, xk+1, u

+
k )

subject to equations (5.61) and (5.62) and to some given boundary conditions. We next
distinguish between the fully and under–actuated case using the following definition:

Definition 5.3.2. (Fully-actuated nonholonomic discrete system) We say that the
discrete nonholonomic mechanical control system is fully-actuated if the mappings

F−k
∣∣
(x0,x1,W1)

: U → D∗c , F−k
∣∣
(x0,x1,W1)

(u) = (iDc)
∗(f−k (x0, x1,W1, u)),

F+
k

∣∣
(x0,x1,W1)

: U → D∗c , F+
k

∣∣
(x0,x1,W1)

(u) = (iDc)
∗(f+

k (x0, x1,W1, u)),

are both diffeomorphisms for all (x0, x1,W1) ∈Mc.
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Regarding equation (5.61) and its geometric redefinition just below, let introduce the
following momenta:

πk = (iDc)
∗
(
−D1ld(xk, xk+1,Wk)− f̄−k , R

∗
Wk
D3ld(xk, xk+1,Wk)− f̂−k

)
,

πk+1 = (iDc)
∗
(
D2ld(xk, xk+1,Wk) + f̄+

k , L
∗
Wk
D3ld(xk, xk+1,Wk) + f̂+

k

)
,

where both πk and πk+1 belong to D∗c . In the fully actuated case, the value of all control
forces can be completely determined in terms of xk, xk+1,Wk, πk, πk+1, where the coordinates
(xk, xk+1,Wk) always belong to Mc. Therefore we can re-express the cost function in terms
of these variables and, in consequence, derive the discrete Lagrangian

Ld : (D∗c) ×τD∗c pr1 (Mc) ×pr2 τ∗
Dc

(D∗c)→ R,

where pri : Md ⊆M ×M ×G→M are the projections onto the first and second arguments
and τD∗c : D∗c →M the vector bundle projection.

Observe that we can consider this case as a constrained discrete variational problem taking
an extension

L̃d : D∗c ×G×D∗c → R

of Ld subjected to the constraints Ψα(xk, xk+1,Wk) = 0.

Therefore, denoting Q̂k = (xk, πk,Wk, xk+1, πk+1) as the whole set of coordinates of the
new phase space D∗c ×G×D∗c , we deduce that the equations of motion are

D4L̃d(Q̂k−1) +D1L̃d(Q̂k) = λk−1
α D2Ψα(xk−1, xk,Wk−1)

+λkαD1Ψα(xk, xk+1,Wk),

D5L̃d(Q̂k−1) +D2L̃d(Q̂k) = 0 ,

L∗Wk−1
D3L̃d(Q̂k−1)−R∗Wk

D3L̃d(Q̂k) = λk−1
α L∗Wk−1

D3Ψα(xk−1, xk,Wk−1)

−λkαR∗Wk
D3Ψα(xk, xk+1,Wk),

Ψα(xk, xk+1,Wk) = 0 ,

where λkα are the Lagrange multipliers of the new constrained problem. The underactuated
case can be handled by adding new constraints and applying discrete constrained variational
calculus similarly to §5.2.2.

A natural framework that simplifies the previous construction is based on discrete me-
chanics on Lie groupoids [118]. The Lie groupoid structure generalizes the case of Q × Q,
the Lie group G and also many intermediate situations. In particular, many of the exam-
ples studied in this chapter can be modeled using Lie groupoid techniques adapted to our
formalism (see [78]).
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5.3.3 Extension to Lie algebroids

All the previous cases can be considered as particular examples of optimal control systems
of mechanical type modeled on a Lie algebroid. The ideas developed in this subsection were
firstly introduced in [78]. Consider the reduced Lagrangian l : AG −→ R, where AG is the
Lie algebroid associated to the Lie groupoid G (see §1.5). The external forces are modeled,
in this case, by a mapping f : AG× U → A∗G, where U is the control space and A∗G is the
dual algebroid of AG, such that τ = τ∗ ◦ f |U (recall that τ : AG → Q and τ∗ : A∗G → Q,
where Q is the base manifold of the vector bundle that defines the algebroid).

Thus, is possible to adapt the derivation of the Lagrange-d’Alembert’s principle to the
case of mechanical systems defined on Lie algebroids. With that purpose, fix two points q0, q1

in the configuration manifold Q, then we look for admissible curves ξ : I ⊂ R → AG (that

is, curves such that ρ(ξ(t)) =
d

dt
τ(ξ(t))) which satisfy

δ

∫ T

0
l(ξ(t)) dt+

∫ T

0
〈f(ξ(t), u(t)), η(t)〉 dt = 0, (5.63)

where the infinitesimal variations to be considered are δξ = ηc, for all η(t) ∈ Γ(τ), where
Γ(τ) is the set of sections of the vector bundle τ , with η(0) = 0 and η(T ) = 0. Here, ηc is a
time-dependent vector field on AG along ξ(t), namely the complete lift, locally given by

ηc = ρiαη
α ∂

∂qi
+ (η̇α − Cαβγηβyγ)

∂

∂yα

where we have chosen coordinates (qi) on Q and we have fixed a basis of sections {eα} of
τ : AG→ Q, inducing local coordinates (qi, yα) on AG. Recall from §1.5.1 that Cαβγ and ρiα
are the local functions that determine the Lie algebroid structure on Q. From this principle
we derive the equations of motion for solution curve:

d

dt

(
∂l

∂yα

)
= ρiα

∂l

∂qi
− Cγαβy

β ∂l

∂yγ
+ fα(qi, yβ, u), fα = 〈f, eα〉,

dqi

dt
= ρiαy

α .

The force f is chosen in such a way it minimizes the cost functional:

J(ξ, u) =

∫ T

0
C(ξ(t), u(t)) dt (5.64)

where now C : AG× U → R.

We now consider the associated discrete problem. Let construct the discrete lagrangian
ld : G→ R as an approximation of the continuous action.

ld(gk) ≈
∫ (k+1)h

kh
l(ξ(t)) dt, (5.65)

where {gk}Nk=0 ∈ GN+1, G is the Lie groupoid. The discrete external forces are defined as

〈f−k (gk, u
−
k ), ηk〉+ 〈f+

k (gk, u
+
k ), ηk+1〉 ≈

∫ (k+1)h

kh
〈f(ξ(t), u(t)), η(t)〉 dt,
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where again we are allowing two different sequences of discrete controls
{
u±k
}N
k=0

. Moreover,

(f−k (gk, u
−
k ), f+

k (gk, u
+
k )) ∈ A∗α(gk)G × A

∗
β(gk)G and ηk ∈ A∗α(gk)G, for all k and η0 = ηN = 0.

Note that α and β are the submersions defining the Lie groupoid G⇒ Q (see §1.5.2).

Therefore, we derive a discrete version of the Lagrange-D’Alembert principle for
Lie groupoids:

δ
N−1∑
k=0

ld(gk) +
N−1∑
k=0

(
〈f−k (gk, u

−
k ), Xk(gk)〉+ 〈f+

k (gk, u
+
k ), Xk+1(gk)〉

)
= 0 (5.66)

for all variations {δgk}N−1
k=0 verifying the relation δgk =

←−−−
Xk+1(gk)−

−→
Xk(gk) with {Xk}Nk=0 an

arbitrary sequence of sections of τ : AG → Q with X0, XN = 0. Recall from §1.5.2 that
←−
X

and
−→
X belong to X(G) (they are left-invariant and right-invariant vector fields respectively).

Therefore, we deduce that

0 =
N−1∑
k=0

〈dld(gk), δgk〉+
N−1∑
k=0

〈f−k (gk, u
−
k ), Xk(gk)〉+ 〈f+

k (gk, u
+
k ), Xk+1(gk)〉

=

N−1∑
k=0

〈dld(gk),
←−−−
Xk+1(gk)−

−→
Xk(gk)〉+

N−1∑
k=0

〈(f−k (gk, u
−
k ), Xk(gk)〉+ 〈f+

k (gk, u
+
k ), Xk+1(gk)〉.

From this last expression we obtain the following discrete equations of motion:

←−
X (gk)(ld)−

−→
X (gk+1)(ld) + 〈f−k+1(gk+1, u

−
k+1) + f+

k (gk, u
+
k ), X(gk)〉 = 0, 0 ≤ k ≤ N − 1,

(5.67)
for all X ∈ Γ(τ).

As we did in §5.1.3 (tangent bundles case) and §5.2.3 (Lie algebras case), we take now an
approximation of the cost functional in the following manner

Cd(u
+
k , gk, u

−
k ) '

∫ (k+1)h

kh
C(ξ(t), u(t)) dt, (5.68)

where gk belongs to the groupoid G. This leads to the discrete cost functional:

Jd(g0:N−1, u
±
0:N−1) =

N−1∑
k=0

Cd(u
+
k , gk, u

−
k ).

Next, as we already did in §5.1.4 (tangent bundles case) and §5.2.4 (Lie algebras case),
we perform the fully-actuation by means of the following definition

Definition 5.3.3 (Fully-actuated discrete systems). We say that the discrete control
system is fully-actuated if the mappings

f−k
∣∣
gk

: U → A∗α(gk)G, f−k
∣∣
gk

(u−k ) = f−k (gk, u
−
k ),

f+
k

∣∣
gk

: U → A∗β(gk)G, f+
k

∣∣
gk

(u+
k ) = f+

k (gk, u
+
k ),

are both diffeomorphisms
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Therefore, we can construct the new discrete Lagrangian over the new phase space

Pτ
∗
G = A∗G τ∗×α G β×τ∗ A∗G,

which is the prolongation of the Lie groupoid G⇒ Q over τ∗ : A∗G→ Q (the definition of all
structure maps and sections can be found in §1.5.2). Therefore, taking into account equations
(3.16) in §3.5 (see [118]), the equations of motion of a discrete Lagrangian Ld : Pτ

∗
G → R

are −→
Z (ν, g, ν ′)(Ld)−

←−
Z (ν ′, h, ν ′′)(Ld) = 0,

where (ν, g, ν ′) and (ν ′, h, ν ′′) belong to Pτ
∗
G, (g, h) ∈ G(2) and Z ∈ Γ(A(Pτ

∗
G)). The

previous equations, with some abuse of notation, can be written as

〈D2Ld
∣∣
g
(ν, ν ′)−D1Ld

∣∣
h
(ν ′, ν ′′), Y (ν ′)〉+

←−
X (g)(Ld)−

−→
X (h)(Ld) = 0, (5.69)

where D2Ld
∣∣
g
(ν, ν ′) = D3Ld(ν, g, ν

′), D1Ld
∣∣
h
(ν ′, ν ′′) = D1Ld(ν

′, h, ν ′′). These equations hold

for every X ∈ Γ(τ) and Y ∈ X(A∗G) verifying that Tβ(X) = Tτ∗(Y ).

When G is just a Lie group, Pτ
∗
G = g∗×G×g∗ ⇒ g∗, which is the space where the discrete

Lagrangian (5.43) is defined. The associated Lie algebroid is A(g∗×G×g∗) = g∗×Tg∗ → g∗.
The sections of this Lie algebroid are of the form a∗ → (ξ, Y (a∗)), where a∗ ∈ g∗, ξg and
Y ∈ X(g∗). Therefore, for a discrete Lagrangian Ld : g∗×G×g∗ → R, we obtain from (5.69):

L∗gk−1
dLd

∣∣
(νk−1,νk)

(gk−1)−R∗gkdLd
∣∣
(νk,νk+1)

(gk) = 0,

D2Ld
∣∣
gk−1

(νk−1, νk) +D1Ld
∣∣
gk

(νk, νk+1) = 0,

where k = 1, ..., N − 1, and Ld
∣∣
g
(ν, ν ′) = Ld

∣∣
(
ν, ν ′)(g) = Ld(ν, g, ν

′). In the last expression

we recognize the equations (5.45). Take the equivalence

νk = −R∗gkdld(gk)− f−k (gk, u
−
k ),

νk+1 = l∗gkdld(gk) + f+
k (gk, u

+
k ),

where ld is defined in (5.65). We recover, just by considering the composability condition
(see §1.5.2) of the groupoid g∗ × G × g∗ → g∗, the forced discrete Euler-Poincaré equations
(5.32):

L∗gk−1
dld(gk−1)−R∗gkdld(gk) + f+

k−1(gk−1, u
+
k−1) + f−k (gk, u

+
k ) = 0,

with k = 1, . . . , N − 1.

Thus, by choosing a concrete instance of Lie groupoid G (namely a Lie group) in the
formalism presented in this subsection, we are able to revisit the case of discrete optimal
control on Lie groups developed in §5.2.4.



Chapter 6

Geometric Nonholonomic
Integrator (GNI)

As was mentioned in the introduction, the geometric perspective has been introduced in the
study of nonholonomic systems in the last decades. This new perspective allows us to use
techniques from differential geometry to handle problems in nonholonomic constraints. This
chapter accounts for new developments in the line of [44, 45, 93], where the Geometric Non-
holonomic Integrator (GNI) and some of its properties were presented. More concretely, we
study the GNI extensions of Euler-symplectic methods (see [61]) and discuss some of their
convergence properties following the methodology developed in [45]. Additionally, we gener-
alize the method proposed for nonholonomic reduced systems, which represent an important
subclass of examples in nonholonomic dynamics. Moreover, we construct extensions of the
GNI in the cases of affine constraints and Lie groupoids.

6.1 Nonholonomic mechanical systems

In §2.4.2 nonholonomic dynamics has been widely treated. As a summary, let us recall some
basics. Our configuration manifold will be denoted by Q, with local constraints qi, i = 1, ..., n,
while the local coordinates for the tangent bundle will be (qi, q̇i). The Lagrangian function
will be denoted L : TQ → R. Let consider the nonholonomic distribution D defined by the
set of linear constraints

φa
(
qi, q̇i

)
= µai (q) q̇i = 0, 1 ≤ a ≤ m, (6.1)

where rank (D) = n−m. The annihilator D◦ is locally given by

D◦ = span
{
µa = µai (q) dq

i; 1 ≤ a ≤ m
}
,

where the 1-forms µa are independent.

As was mentioned in §2.4.2, a way to establish the nonholonomic dynamics is the
Lagrange-d’Alembert principle, namely:

δ

∫ T

0
L (q (t) , q̇ (t)) dt = 0
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for all variations such that δq (t) ∈ Dq(t), 0 ≤ t ≤ T , and if the curve itself satisfies the
constraints. From this principle we arrive to the nonholonomic equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= λaµ

a
i , (6.2a)

µai (q) q̇
i = 0, (6.2b)

where λa, a = 1, ...,m is a set of Lagrange multipliers. The right-hand side of equation (6.2a)
represents the force induced by the constraints, and equations (6.2b) represent the constraints
themselves.

Now we restrict ourselves to the case of nonholonomic mechanical systems where the
Lagrangian is of mechanical type. Now, there is a Riemannian metric G defined on the
configuration space Q. Thus, the Lagrangian function will be defined by

L(vq) =
1

2
G(vq, vq)− V (q), vq ∈ TqQ,

where V : Q → R is a potential function. Locally, the metric is determined by the matrix
M = (Gij)1≤i,j≤n where Gij = G(∂/∂qi, ∂/∂qj).

Using some basic tools of Riemannian geometry (see §1.2 for further details), we may
write the equations of motion of the unconstrained system as

∇ċ(t)ċ(t) = −grad V (c(t)), (6.3)

where ∇ is the Levi–Civita connection associated to G. Observe that if V ≡ 0 then the Euler–
Lagrangian equations are the equations of the geodesics for the Levi-Civita connection.

When the system is subjected to nonholonomic constraints, the equations become

∇ċ(t)ċ(t) = −grad V (c(t)) + λ(t), ċ(t) ∈ Dc(t),

where λ is a section of D⊥ along c. Here D⊥ stands for the orthogonal complement of
D with respect to the metric G. Obviously, D stands for the distribution determining the
nonholonomic constraints.

In coordinates, by defining the n3 functions Γkij (Christoffel symbols for ∇) by

∇ ∂

∂qi

∂

∂qj
= Γkij

∂

∂qk
,

we may rewrite the nonholonomic equations of motion as

q̈k(t) + Γkij(c(t))q̇
i(t)q̇j(t) = −Gki(c(t))∂V

∂qi
+ λa(t)G

ki(c(t))µai (c(t))

µai (c(t))q̇
i(t) = 0

where t 7→ (q1(t), . . . , qn(t)) is the local representative of c and (Gij) is the inverse matrix of
M .
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Since G is a Riemannian metric, the m ×m matrix (Cab) = (µai G
ijµbj) is symmetric and

regular. Define now the vector fields Za, 1 ≤ a ≤ m on Q by

G(Za, Y ) = µa(Y ), for all vector fields Y, 1 ≤ a ≤ m;

that is, Za is the gradient vector field of the 1-form µa. Thus, D⊥ is spanned by Za,
1 ≤ a ≤ m. In local coordinates, we have

Za = Gijµai
∂

∂qj
.

We can construct two complementary projectors

P : TQ→ D,

Q : TQ→ D⊥,

which are orthogonal with respect to the metric G. The projector Q is locally described by

Q = CabZ
a ⊗ µb = CabG

ijµai µ
b
k

∂

∂qj
⊗ dqk.

Using these projectors we may rewrite the equations of motion as follows. A curve c(t) is a
motion for the nonholonomic system if it satisfies the constraints, i.e., ċ(t) ∈ Dc(t), and, in
addition, the “projected equation of motion”

P(∇ċ(t)ċ(t)) = −P(grad V (c(t))) (6.4)

is fulfilled.

Summarizing, we have obtained the dynamics of the nonholonomic system (6.4) applying
the projector P to the dynamics of the free system (6.3). Next, we will use P and Q to obtain
a geometric integrator for nonholonomic systems.

6.2 The Geometric Nonholonomic Integrator (GNI)

In [44, 45, 93] a numerical method for the integration of nonholonomic systems is proposed
and developed (GNI henceforth). It is not truly variational; however, it is geometric in
nature. It is shown that GNI preserves the discrete nonholonomic momentum map in the
presence of horizontal symmetries. Moreover, the energy of the system is preserved under
certain symmetry conditions.

Now, we employ the notions concerning discrete mechanics developed in §3. Consider a
discrete Lagrangian Ld : Q×Q→ R. The proposed discrete nonholonomic equations are

P∗qk(D1Ld(qk, qk+1)) + P∗qk(D2Ld(qk−1, qk)) = 0, (6.5a)

Q∗qk(D1Ld(qk, qk+1))− Q∗qk(D2Ld(qk−1, qk)) = 0, (6.5b)

where the subscript qk emphasizes the fact that the projections take place in the fiber over qk.
The first equation is the projection of the discrete Euler–Lagrange equations to the constraint
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distribution D, while the second one can be interpreted as an elastic impact of the system
against D (see [69]). This is what will provide the preservation of energy. Note that we can
combine both equations into

D1Ld(qk, qk+1) + (P∗ − Q∗)D2Ld(qk−1, qk) = 0,

from which we see that the system defines a unique discrete evolution operator if and only
if the matrix (D12Ld) is regular, that is, if the discrete Lagrangian is regular. Locally, the
method can be written as

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = (λk)b µ
b(qk) (6.6a)

Gij(qk)µ
a
i (qk)

(
∂Ld

∂qj0
(qk, qk+1)− ∂Ld

∂qj1
(qk−1, qk)

)
= 0. (6.6b)

Using the discrete Legendre transformations defined in §3.2, define the pre- and post-
momenta, which are covectors at qk, by

p+
k−1,k = p+(qk−1, qk) = FL+

d (qk−1, qk) = D2Ld(qk−1, qk)

p−k,k+1 = p−(qk, qk+1) = FL−d (qk, qk+1) = −D1Ld(qk, qk+1).

In these terms, equation (6.6b) can be rewritten as

Gij(qk)µ
a
i (qk)

(
(p−k,k+1)j + (p+

k−1,k)j

2

)
= 0

which means that the average of post- and pre-momenta satisfies the constraints. In this
sense the proposed numerical method also preserves the nonholonomic constraints.

We may rewrite the discrete nonholonomic equations as

p−k,k+1 = (P− Q)∗qk (p+
k−1,k). (6.7)

We interpret this equation as a jump of momenta during the nonholonomic evolution. Com-
pare this with the condition p−k,k+1 = p+

k−1,k imposed by the discrete Euler–Lagrange equations
(that is, for unconstrained systems). In our method, the momenta are related by a reflection
with respect to the image of the projector P∗ : T ∗Q→ (D⊥)o.

6.2.1 Left-invariant discrete Lagrangians on Lie groups

Consider a discrete nonholonomic Lagrangian system on a Lie group G, with a discrete
Lagrangian Ld : G×G→ R that is invariant with respect to the left diagonal action of G on
G×G (see [18, 121]) We do not impose yet any invariance conditions on the distribution D.
If we write Wk = g−1

k gk+1, then we can define the reduced discrete Lagrangian ld : G→ R as
ld(Wk) = Ld(gk, gk+1). Note that dld(Wk) ∈ T ∗Wk

G.

Computing the derivative, we obtain

p−k,k+1 = −D1Ld(gk, gk+1) = L∗
g−1
k

R∗Wk
dld(Wk),
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where L∗ and R∗ are the mappings on T ∗G induced by left and right multiplication on the
group, respectively (this shall not be confused with the Lagrangian L). We use this to write

p+
k,k+1 = D2Ld(gk, gk+1) = L∗

g−1
k

dld(Wk) = L∗
g−1
k

R∗
W−1
k

L∗gkp
−
k,k+1 = R∗

W−1
k

p−k,k+1.

Therefore, the discrete nonholonomic equations (6.7) become

p−k,k+1 = (P− Q)∗
(
R∗
W−1
k−1

p−k−1,k

)
. (6.8)

The relationships between the pre- and post-momenta are depicted in the figure 6.1:

Figure 6.1: Evolution of momenta, depicted here as solid arrows. The right translations are a consequence
of the left-invariance of Ld, and the reflection at gk is the proposed method.

Note that we do not need here that the metric used to build the projectors is the metric
giving the kinetic energy in the Lagrangian.

6.2.2 Properties

• Preserving energy on Lie groups:

Let us now consider the case where Q is a Lie group G, the nonholonomic distribution
D is not necessarily G-invariant, and L is regular and bi-invariant.

Since we are restricting ourselves to Lagrangians of mechanical type, the potential
energy is necessarily zero. The left-invariance of L implies that it must be of the form

L(vg) =
1

2
〈I(g−1vg), g

−1vg〉, (6.9)

where I : g→ g∗ is a symmetric non-singular inertia tensor. The bi-invariance, however,
imposes the equivariance condition Ad∗g−1◦I = I◦Adg for all g ∈ G, as is straightforward
to check. We remark that in this section, the metric used to build the projectors will
be the same that defines the Lagrangian. If we take a discretization Ld : G × G → R

(which needs to be left-invariant only), the equations of motion (6.8) hold. Then the
following result can be proven (see [44] for the proof):
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Theorem 6.2.1. Consider a nonholonomic system on a Lie group with a regular,
bi-invariant Lagrangian and with an arbitrary distribution D, and take a discrete La-
grangian that is left-invariant. Then the proposed discrete nonholonomic method (6.5)
is energy-preserving.

• The average momentum

Take a discrete nonholonomic system on G as in the previous section, but add the
condition that D is right-invariant. Since the metric on the group is right-invariant, so
is the projector P. Take a trajectory of the system and define at each gk the average
momentum

p̃k =
1

2

(
p+
k−1,k + p−k,k+1

)
. (6.10)

Using (6.7), (6.8) and the fact that (P− Q)∗ is its own inverse, we have

p̃k =
1

2

(
(P− Q)∗(p−k,k+1) + p−k,k+1

)
= P∗(p−k,k+1) = P∗(R∗

W−1
k−1

p−k−1,k)

= R∗
W−1
k−1

P∗(p−k−1,k) = R∗
W−1
k−1

p̃k−1.

Since the norm ‖ · ‖I on each fiber of T ∗G defined in the proof of Theorem 6.2.1 is
right-invariant, we obtain ‖p̃k‖I = ‖p̃k−1‖I, so

H(gk, p̃k) = H(gk−1, p̃k−1).

In addition, by equation (6.7), we have that Q∗(p̃k) = 0, so p̃k satisfies the constraints.

• Preservation of the nonholonomic momentum map

Let us recall some concepts regarding symmetries of nonholonomic systems. Suppose
that a Lie group G acts on the configuration manifold Q. Define, for each q ∈ Q, the
vector subspace gq consisting of those elements of g whose infinitesimal generators (see
definition 1.4.10) at q satisfy the nonholonomic constraints, i.e.,

gq = {ξ ∈ g | ξQ(q) ∈ Dq} .

The (generalized) bundle over Q whose fiber at q is gq is denoted by gD.

A horizontal symmetry is an element ξ ∈ g such that ξQ(q) ∈ Dq for all q ∈ Q. Note
that a horizontal symmetry is related naturally to a constant section of gD.

Now consider a discrete Lagrangian Ld : Q×Q → R, and define the discrete nonholo-
nomic momentum map Jnh

d : Q×Q→ (gD)∗ as in [38] by

Jnh
d (qk−1, qk) : gqk → R

ξ 7→ 〈D2Ld(qk−1, qk), ξQ(qk)〉 .

For any smooth section ξ̃ of gD we have a function (Jnh
d )

ξ̃
: Q × Q → R, defined as

(Jnh
d )

ξ̃
(qk−1, qk) = Jnh

d (qk−1, qk)
(
ξ̃(qk)

)
. Taking this into account, the following theo-

rem and corollary can be proven, ensuring nonholonomic momentum preservation (see
[44] for the proof):
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Theorem 6.2.2. Assume that Ld is G-invariant, and let ξ̃ be a smooth section of
gD. Then, under the proposed nonholonomic integrator, (Jnh

d )
ξ̃

evolves according to the
equation

(Jnh
d )

ξ̃
(qk, qk+1)− (Jnh

d )
ξ̃
(qk−1, qk) =

〈
D2Ld(qk, qk+1), (ξk+1 − ξk)Q (qk+1)

〉
where ξk, ξk+1 ∈ g are the result of dropping the base points of ξ̃(qk) and ξ̃(qk+1) respec-
tively.

Corollary 6.2.3. If Ld is G-invariant and ξ is a horizontal symmetry, then the pro-
posed nonholonomic integrator preserves (Jnh

d )ξ.

6.3 GNI extensions of symplectic-Euler methods

Consider the autonomous dynamical system

ẋ = f(x),

x(0) = x0,

where x(t), x0 ∈ Rn, ẋ is the time derivative of x and f : Rn → Rn. In Hairer’s terminology
[61] there are two types of Euler integrators: explicit and implicit.

xk+1 = xk + hf(xk) Euler explicit,

xk+1 = xk + hf(xk+1) Euler implicit,

where, as usual in numerical integration of ordinary differential equations (see [62]), xk ≈
x(tk) with tk = hk (h is the time step and k is a positive integer).

Let consider now the tangent TQ and cotangent T ∗Q bundles of the configuration mani-
fold Q = Rn and its local coordinates, (qi, q̇i) and (qi, pi), i = 1, ..., n, respectively. Moreover,
let consider the mechanical Lagrangian system L(q, q̇) = 1

2 q̇
T M q̇−V (q), where M is a n×n

constant regular matrix and V : Q → R the potential function. On the other hand, the
function H(q, p) = 1

2 p
T M−1 p+ V (q) is its Hamiltonian counterpart.

It is well-known that that explicit and implicit Euler methods applied to the Hamilton’s
equations (2.9) are not symplectic. Nevertheless, the so-called symplectic-Euler methods
indeed are. In the sequel, we will denote these methods by Euler A and Euler B. This
result corresponds to the following theorem:

Theorem 6.3.1. The so-called symplectic-Euler methods

qk+1 = qk + h∂H∂p (pk, qk+1), pk+1 = pk − h∂H∂q (pk, qk+1), Euler A,

qk+1 = qk + h∂H∂p (pk+1, qk), pk+1 = pk − h∂H∂q (pk+1, qk), Euler B,

are symplectic methods of order 1.
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See [61] for the proof and §3.4.2 for more details regarding the order of accuracy. In
addition, Euler A and Euler B methods are adjoint of each other (see §3.4.4). Applied to the
specific mechanical Hamiltonian H(q, p) = 1

2 p
T M−1 p+ V (q), Euler A and B methods look

like

Euler A Euler B
qk+1 = qk + hM−1pk, qk+1 = qk + hM−1pk+1,

pk+1 = pk − h∂V∂q (qk) , pk+1 = pk − h∂V∂q (qk+1) .

As variational integrators (see §3.4) they correspond to the following discrete Lagrangians:

LAd (qk, qk+1) = hL(qk,
qk+1 − qk

h
), LBd (qk, qk+1) = hL(qk+1,

qk+1 − qk
h

). (6.11)

Applying the GNI equations (6.6) to the Lagrangians in (6.11) we obtain the following nu-
merical schemes:

• Euler A:

qk+1 − 2qk + qk−1 = −h2M−1
(
Vq(qk) + µT (qk) λ̃k

)
, (6.12a)

0 = µ(qk)

(
qk+1 − qk−1

2h
+
h

2
M−1Vq(qk)

)
. (6.12b)

• Euler B:

qk+1 − 2qk + qk−1 = −h2M−1
(
Vq(qk) + µT (qk) λ̃k

)
, (6.13a)

0 = µ(qk)

(
qk+1 − qk−1

2h
− h

2
M−1Vq(qk)

)
, (6.13b)

where λ̃k = λk/h and Vq = ∂V/∂q. By means of the momentum relations p̃k = M(qk+1 −
qk−1)/2h and pk+1/2 = M(qk+1 − qk)/h, we can rewrite equations (6.12) and (6.13) as:

• Euler A:

pk+1/2 = p̃k −
h

2

(
Vq(qk) + µT (qk)λ̃k

)
, (6.14a)

qk+1 = qk + hM−1pk+1/2, (6.14b)

µ(qk)M
−1

(
p̃k +

h

2
Vq(qk)

)
= 0, (6.14c)

p̃k+1 = pk+1/2 −
h

2

(
Vq(qk+1) + µT (qk+1)λ̃k+1

)
, (6.14d)

µ(qk+1)M−1

(
p̃k+1 +

h

2
Vq(qk+1)

)
= 0. (6.14e)
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• Euler B:

pk+1/2 = p̃k −
h

2

(
Vq(qk) + µT (qk)λ̃k

)
, (6.15a)

qk+1 = qk + hM−1pk+1/2, (6.15b)

µ(qk)M
−1

(
p̃k −

h

2
Vq(qk)

)
= 0, (6.15c)

p̃k+1 = pk+1/2 −
h

2

(
Vq(qk+1) + µT (qk+1)λ̃k+1

)
, (6.15d)

µ(qk+1)M−1

(
p̃k+1 −

h

2
Vq(qk+1)

)
= 0. (6.15e)

These numerical schemes provides k + 1 values through an intermediate momentum step
k + 1/2, i.e:

(qk, p̃k, λ̃k)→ (qk+1, pk+1/2, λ̃k)→ (qk+1, p̃k+1, λ̃k+1).

We recognize in (6.14c) and (6.15c) a Hamiltonian version for the discretization of the non-
holonomic constraints (6.12b) and (6.13b) (Lagrangian version). These constraints are pro-
vided by the GNI equations (6.5b) or (6.6b).

Remark 6.3.2. Method (6.12) (and the corresponding B version) clearly reminds the exten-
sion of the SHAKE method (see [151]) proposed by R. McLachlan and M. Permuttler [132] as a
reversible method for nonholonomic systems not based on the discrete Lagrange-d’Alembert
principle. Namely

qk+1 − 2qk + qk+1 = −h2M−1
(
Vq(qk) + µT (qk)λ̃k

)
,

0 = µ(qk)

(
qk+1 − qk−1

2h

)
.

At the same time, SHAKE method is an extension of the classical Störmer-Verlet method in
the presence of holonomic constraints. The RATTLE method is algebraically equivalent to
SHAKE (this equivalence is shown in [102]). Its nonholonomic extension, that is:

pk+1/2 = p̃k −
h

2

(
Vq(qk) + µT (qk)λ̃k

)
,

qk+1 = qk + hM−1pk+1/2,

µ(qk)M
−1p̃k = 0,

p̃k+1 = pk+1/2 −
h

2

(
Vq(qk+1) + µT (qk+1)λ̃k+1

)
,

µ(qk+1)M−1p̃k+1 = 0,

clearly reminds (6.14).

As shown in [44], the nonholonomic SHAKE extension can be obtained by applying GNI
equations to the discrete Lagrangian

Ld(qk, qk+1) =
h

2
L(qk,

qk+1 − qk
h

) +
h

2
L(qk+1,

qk+1 − qk
h

), (6.16)

which also provides the Störmer-Verlet method in the variational integrators sense. Moreover,
as shown in [45], the nonholonomic RATTLE method is globally second-order convergent.
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Next we present one of the main results of this chapter

Theorem 6.3.3. The nonholonomic extension of the Euler A (B) method is globally first-
order convergent.

The scheme of the proof is equivalent to that followed in [45] to show that the non-
holonomic RATTLE method is second-order convergent. Therefore, it will be useful in
the sequel to give a Hamiltonian version of nonholonomic equations (6.2) when H(q, p) =
1
2 p

TM−1p+ V (q), namely

q̇ = M−1p,

ṗ = −Vq − µTλ,
µ(q)M−1p = 0.

Since the constraints are satisfied along the solutions, we can differentiate them with respect
to time in order to obtain the actual values of the Lagrange multipliers, i.e.

λ = C−1
(
µq[M

−1p,M−1p]− µM−1Vq
)
,

where C(q) = µ(q)M−1µT (q) is a regular matrix and µq[M
−1p,M−1p] is the m × 1 ma-

trix
∂µαi
∂qj

(
M−1

)jj′
pj′
(
M−1

)ii′
pi′ . Taking this into account, the Hamiltonian nonholonomic

system becomes

q̇ = M−1p, (6.17a)

ṗ = −Vq − µTC−1
(
µq[M

−1p,M−1p]− µM−1Vq
)
, (6.17b)

with initial condition satisfying µ(q)M−1p = 0.

Proof. We present the proof for Euler A method, the corresponding to Euler B is equivalent.

Consider the unconstrained problem

q̇ = M−1p,

ṗ = φ (q, p) ,

with a smooth enough function φ : R2n → R. These equations can be discretized by

qk+1 = qk + hpk+1/2, (6.18a)

pk+1/2 = pk−1/2 + hφ
(
qk, pk+1/2

)
, (6.18b)

which is a first-order global convergent method, using standard arguments of Taylor expan-
sions. Therefore, taking into account equations (6.17), from (6.18) we deduce the following
first-order method for the nonholonomic system

qk+1 = qk + hM−1pk+1/2, (6.19a)

pk+1/2 = pk−1/2 − hVq (qk) + hµT (qk)C
−1 (qk)µ (qk)M

−1Vq (qk)

− hµT (qk)C
−1 (qk)µq[M

−1pk+1/2,M
−1pk+1/2]. (6.19b)
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The next step is to prove that the nonholonomic Euler A method (6.14) reproduces (6.19).
From equations (6.14) we see that the nonholonomic Euler A method assumes the form

qk+1 = qk + hM−1pk+1/2,

pk+1/2 = pk−1/2 − hVq(qk)− hµT (qk)λ̃k,

0 = µ(qk)M
−1

(
pk+1/2 + pk−1/2

2
+
h

2
Vq(qk)

)
or, after some computations

qk+1 = qk + hM−1pk+1/2, (6.20a)

pk+1/2 = pk−1/2 − hVq(qk)− 2µT (qk)C
−1(qk)µ(qk)M

−1pk−1/2. (6.20b)

On the other hand we can expand the nonholonomic constraints around q (0):

µ (q (h)) q̇ (h) = µ (q (0)) q̇ (0) + hµ (q (0)) q̈ (0) + hµq[q̇ (0) , q̇ (0)] + O
(
h2
)
.

Since the constraints are satisfied at t = 0 and t = h, the previous expression becomes

hµ (q (0)) q̈ (0) = −hµq[q̇ (0) , q̇ (0)] + O
(
h2
)
.

Now, taking standard approximations for first and second derivatives we deduce that

− 2µ(qk)M
−1pk−1/2 = −hµq[M−1pk+1/2,M

−1pk+1/2]

+ hµ(qk)M
−1Vq(qk) + O(h2). (6.21)

Therefore, substituting (6.21) in (6.20b) we recognize equation (6.19b) up to O(h2) terms.
Thus, we conclude that the nonholonomic Euler A method (6.14) is first-order convergent.

We recall now the definition of adjoint methods given in §3.4.4 since it will be useful in
the following Theorem.

Definition 6.3.4. For a one-step method F : T ∗Q→ T ∗Q, the adjoint method F ∗ : T ∗Q→
T ∗Q is defined by

(F ∗)h ◦ F−h = Id
T∗Q .

Theorem 6.3.5. The nonholonomic extensions of the Euler A and B methods are each
other’s adjoint.

Proof. We will use a shorthand notation to define both integrators:

FA,B(qk, p̃k, λ̃k) = (qk+1, p̃k+1, λ̃k+1).

Equations (6.14) and (6.15) can be rewritten to give a one step method instead of the leap-frog
presented, namely:
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qAk+1 = qk + hM−1p̃k −
h2

2
M−1Vq(qk)−

h2

2
M−1µT (qk)λ̃k, (6.22a)

p̃Ak+1 = p̃k −
h

2
Vq(qk)−

h

2
µT (qk)λ̃k −

h

2
Vq(qk+1)− h

2
µT (qk+1)λ̃k+1, (6.22b)

0 = µ(qk+1)M−1p̃k −
h

2
µ(qk+1)M−1Vq(qk)−

h

2
µ(qk+1)M−1µT (qk)λ̃k

− h

2
µ(qk+1)M−1µT (qk+1)λ̃Ak+1, (6.22c)

where p̃Ak+1 and λ̃Ak+1 are implicitly obtained from (6.22b) and (6.22c). The same occurs for
FB:

qBk+1 = qk + hM−1p̃k −
h2

2
M−1Vq(qk)−

h2

2
M−1µT (qk)λ̃k, (6.23a)

p̃Bk+1 = p̃k −
h

2
Vq(qk)−

h

2
µT (qk)λ̃k −

h

2
Vq(qk+1)− h

2
µT (qk+1)λ̃k+1, (6.23b)

0 = −µ(qk)M
−1pk+1 −

h

2
µ(qk)M

−1µ(qk)λ̃k −
h

2
µ(qk)M

−1Vq(qk+1)

− h

2
µ(qk)M

−1µ(qk+1)λ̃Bk+1. (6.23c)

The point of the proof is to show that F hA ◦ F
−h
B (qk, p̃k, λ̃k) = (qk, p̃k, λ̃k). In order to that,

we are going to use the following notation:

F−hB (qk, p̃k, λ̃k) = (qk+1, p̃k+1, λ̃k+1) = (q′k, p̃
′
k, λ̃
′
k),

F−hB (q′k, p̃
′
k, λ̃
′
k) = (q′k+1, p̃

′
k+1, λ̃

′
k+1),

so that, the proof ends if (q′k+1, p̃
′
k+1, λ̃

′
k+1) = (qk, p̃k, λ̃k). After setting the time step as −h

and replacing (6.23a) and (6.23b) into (6.22a) is easy to check that q′k+1 = qk. Furthermore,
again fixing −h as time step and taking into account equation (6.15e), from (6.23c) we arrive
to

−h
2
M−1µ(q′k)λ̃

′
k =

−M−1p̃k − h

2
Vq(qk)−M−1p̃′k +

h

2
Vq(q

′
k) +

h

2
M−1µT (qk)λ̃k.

Replacing this expression into (6.22c), considering that q′k+1 = qk and taking into account
(6.14e) we find that

h

2
µ(qk)M

−1µ(qk)
T λ̃k −

h

2
µ(qk)M

−1µ(qk)
T λ̃′k+1,

which means
λ̃′k+1 = λ̃k

since C(qk) is regular. Finally, replacing (6.23b) into (6.22b) we find that p̃′k+1 = p̃k.
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Remark 6.3.6. As shown in [124], the composition of Hamiltonian discrete flows, in the
variational integrators sense, generated by the discrete Lagrangians (6.11) reproduces the
RATTLE algorithm in the free case (that is, not constrained). More concretely, the compo-
sition

F
h/2
LA
◦ F h/2LB

provides the algorithm

pk+1/2 = p̃k −
h

2
Vq(qk),

qk+1 = qk + hM−1pk+1/2,

p̃k+1 = pk+1/2 −
h

2
Vq(qk+1).

Unfortunately, we have check that this is no longer true in the nonholonomic case, i.e.,
the composition (with time step h/2) of methods (6.14) and (6.15) does not reproduce the
equations presented in remark 6.3.2. However, this composition still generates a second-order
method since the intermediate steps are one-order methods which are each other’s adjoint (as
we have just proved).

6.4 Affine extension of the GNI

We consider in this section the case of affine noholonomic constraints (see §2.4.2 for the
definition of affine constraints) determined by an affine bundle A of TQ modeled on a vector
bundle D. We will assume, in the sequel, that there exists a globally defined vector field
Y ∈ X(Q) such that vq ∈ Aq if and only if vq − Y (q) ∈ Dq. Therefore, if D is determined by
constraints µai (q)q̇

i = 0, then A is locally determined by the vanishing of the constraints

φa
(
qi, q̇i

)
= µai (q)

(
q̇i − Y i(q)

)
= 0, 1 ≤ a ≤ m. (6.24)

where Y = Y i ∂
∂qi

.

In consequence, the initial data defining our nonholonomic affine problem is denoted
by the 4-upla (D,G, Y, V ), where D is the distribution, G the Riemannian metric, Y the
globally defined vector field and V is a potential function. By means of the metric, from Y ,
we can univocally define a 1-form, i.e. G(Y, ·) = Π ∈ Λ1Q. Locally, Π = GijY

j dqi.

In terms of momenta the nonholonomic constraints (6.24) can be rewritten as

µai (q)G
ij (pj −Πj(q)) = 0. (6.25)

where pi = Gij q̇
j .

Consider a discrete Lagrangian Ld : Q × Q → R. The proposed extension of the GNI
method for affine nonholonomic equations is given by following equations:

P∗qk (D1Ld (qk, qk+1)) + P∗qk (D2Ld (qk−1, qk)) = 0, (6.26a)

Q∗qk (D1Ld (qk, qk+1))− Q∗qk (D2Ld (qk−1, qk)) + 2Q∗qkΠ = 0, (6.26b)
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where Q and P are the projectors defined in §6.1. Locally, the method (6.26) can be written
as:

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = (λk)b µ
b(qk), (6.27a)

Gij(qk)µ
a
i (qk)

(
∂Ld
∂yj

(qk, qk+1)− ∂Ld
∂xj

(qk−1, qk)− 2Πj(qk)

)
= 0. (6.27b)

Using the discrete Legendre transformations defined in §3.2, equation (6.27b) can be rewritten
as

Gij(qk)µ
a
i (qk)


(
p−k,k+1

)
j

+
(
p+
k−1,k

)
j

2
−Πj(qk)

 = 0,

which corresponds to the discretization of the affine constraints (6.25) on the Hamiltonian
side.

6.4.1 A theoretical example: nonholonomic SHAKE and RATTLE exten-
sions for affine systems

Let consider again the mechanical Lagrangian L(q, q̇) = 1
2 q̇
T M q̇−V (q) and the discretization

presented in (6.16). Applying the affine GNI equations (6.27) we obtain:

qk+1 − 2qk + qk−1 = −h2M−1
(
Vq(qk) + µT (qk) λ̃k

)
, (6.28a)

0 = µ(qk)

(
qk+1 − qk−1

2h
− Y (qk)

)
, (6.28b)

which can be considered the nonholonomic extension of the SHAKE algorithm for affine
systems. Denoting p̃k = M(qk+1 − qk−1)/2h and pk+1/2 = M(qk+1 − qk)/h, from (6.28) we
arrive to

pk+1/2 = p̃k −
h

2

(
Vq(qk) + µT (qk)λ̃k

)
,

qk+1 = qk + hM−1pk+1/2,

µ(qk)M
−1 (p̃k −Π(qk)) = 0,

p̃k+1 = pk+1/2 −
h

2

(
Vq(qk+1) + µT (qk+1)λ̃k+1

)
,

µ(qk+1)M−1 (p̃k+1 −Π(qk+1)) = 0,

which can be considered the nonholonomic extension of the RATTLE algorithm for affine
nonholonomic systems.

6.5 Reduced systems

In this section we are going to consider configuration spaces of the form Q = M×G, where M
is a n-dimensional differentiable manifold and G is a m-finite-dimensional Lie group (g will
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be its corresponding Lie algebra.) Therefore, there exists a global canonical splitting between
variables describing the position and variables describing the orientation of the mechanical
system. Then, we distinguish the pose coordinates g ∈ G, and the variables describing the
internal shape of the system, that is x ∈ M (in consequence (x, ẋ) ∈ TM). It is clear that
Q = M × G is the total space of a trivial principal G-bundle over M , where the bundle
projection φ : Q → M is just the canonical projection on the first factor. We may consider
the corresponding reduced tangent space E = TQ/G over M . Identifying the tangent bundle
to G with G × g by using left translation, thus, the reduced tangent space E = TQ/G is
isomorphic to the product manifold TM × g and the vector bundle projection is τM ◦ pr1,
where pr1 : TM × g→ TM and τM : TM →M are the canonical projections.

6.5.1 The case of linear constraints

Now suppose that (G,D, V ) is an standard mechanical nonholonomic system on TQ such that
all the ingredients are G-invariant. In other words

Gx,g((Xx, gξ), (Yx, gη)) = Gx,e((Xx, ξ), (Yx, η)), ∀Xx, Yx ∈ TxM, ξ, η ∈ g

(Xx, ξ) ∈ D(x,e) then (Xx, gξ) ∈ D(x,g)

V (x, g) = V (x, e) ≡ Ṽ (x) .

Therefore, we obtain a new triple (G̃, D̃, Ṽ ) on TM×g where G̃ : (TM×g)×(TM×g) −→ R

is a bundle metric, D̃ is a vector subbundle of TM × g → M and Ṽ : M → R is the
reduced potential. With all these ingredients it is possible to write the reduced nonholonomic
equations or nonholonomic Lagrange-Poincaré equations (see [16, 37] for all the details,
also for the non-trivial case).

Our objective is to find a discrete version of the GNI for the nonholonomic Lagrange-
Poincaré equations. As in the previous sections, we can split the total space E as E =
D̃⊕D̃⊥, now using the fibered metric G̃, and regard the corresponding projectors P : E → D̃,
Q : E → D̃⊥. In order to propose the discrete nonholonomic equations, is necessary to set a
discrete Lagrangian Ld : M ×M × G → R, and the discrete Legendre transforms. Namely
(see [118]):

FL−d : M ×M ×G → T ∗M × g∗

(xk, xk+1, gk) 7−→ (xk,−D1Ld(xk, xk+1, gk), R
∗
gk
D3Ld(xk, xk+1, gk)),

FL+
d : M ×M ×G → T ∗M × g∗

(xk, xk+1, gk) 7−→ (xk+1, D2Ld(xk, xk+1, gk), L
∗
gk
D3Ld(xk, xk+1, gk)) .

Thus, the proposed reduced GNI equations are

P∗xk
(
FL−d (xk, xk+1, gk)

)
− P∗xk

(
FL+

d (xk, xk+1, gk)
)

= 0, (6.29a)

Q∗xk
(
FL−d (xk, xk+1, gk)

)
+ Q∗xk

(
FL+

d (xk, xk+1, gk)
)

= 0, (6.29b)

where the subscript xk emphasizes the fact that the projections take place in the fiber over
xk.
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To understand why (6.29b) represents a discretization of the nonholonomic constraints,
we will work in local coordinates. Take now local coordinates (xi) on M and a local basis of

sections {ẽα, ẽa} of Γ(TM × g) adapted to the decomposition D̃ ⊕ D̃⊥, that is ẽα(x) ∈ D̃x

and ẽa(x) ∈ D̃⊥x , for all x ∈M . We have that

G̃(ẽα, ẽβ) = G̃αβ, G̃(ẽa, ẽβ) = 0, G̃(ẽa, ẽb) = G̃ab .

Consider the induced adapted local coordinates (xi, yα, ya) for Γ(TM × g). The non-
holonomic constraints are represented by ya = 0 on E. Taking the dual basis {ẽα, ẽa} of
Γ(T ∗M ×g∗), we have induced local coordinates (xi, pα, pa) on the hamiltonian side, now the
nonholonomic constraints are represented pa = 0.

On the other hand, the projector Q has the following expression in this basis

Q = ẽa ⊗ ẽa, (6.30)

Define the pre- and post-momenta by

p−xk = FL−d (xk, xk+1, gk) ∈ T ∗xkM × g∗,

p+
xk

= FL+
d (xk, xk+1, gk) ∈ T ∗xkM × g∗.

Finally, looking at equations (6.29b) and (6.30) we realize that

Q∗xk

(
p+
xk

+ p−xk
2

)
= 0 . (6.31)

If p+
xk

= p+
α e

α(xk) + p+
a e

a(xk) and p−xk = p−α e
α(xk) + p−a e

a(xk), then condition (6.31) is
expressed as

p+
a + p−a

2
= 0,

which means that the average of post and pre-momenta satisfies the nonholonomic constraints
written in the Hamiltonian side.

6.5.2 A theoretical example: RATTLE algorithm for reduced spaces

Let consider M = Rn. Thus, Q = Rn ×G and E = TQ/G ∼= TRn × g. Take a basis {Es} of
the Lie algebra g, and consider the following local basis of Γ(TRn × g){(

∂

∂xi
, 0

)
, (0, Es)

}
.

Therefore, its dual basis is generated by{(
dxi, 0

)
, (0, Es)

}
'
{

dxi, Es
}
.

In this base of sections the metric G̃ is written as

G̃ = G̃ijdx
i ⊗ dxj + G̃itdx

i ⊗ Et + G̃sjE
s ⊗ dxj + G̃stE

s ⊗ Et,
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Assume that, in this local basis of section, the coefficients of the metric are constant, that is,
they do not depend on the base coordinates x. For instance, a typical example would be

L(x, ẋ, ξ) =
1

2
ẋTMẋ+

1

2
〈ξ, Iξ〉

where M is a constant regular symmetric matrix and the configuration manifold Q = Rn×G.
In addition, I : g→ g∗ is a symmetric positive definite inertia operator. More concretely, M
has the following form:

M =

(
G̃ij G̃it
G̃sj G̃st

)
Consider the following discrete Lagrangian Ld : Rn ×Rn ×G→ R defined by

Ld(xk, xk+1, gk) =
h

2
G̃ij

(
xik+1 − xik

h

)(
xjk+1 − x

j
k

h

)
+ hG̃it

(
xik+1 − xik

h

) (
τ−1(gk)

)t
h

+
h

2
G̃st

(
τ−1(gk)

)s
h

(
τ−1(gk)

)t
h

− h

2
(V (xk) + V (xk+1)) ,

where τ : g → G is a general retraction map (see §5.2.3 for its definition and properties).
Observe that τ−1(gk) ∈ g and τ−1(gk) =

(
τ−1(gk)

)s
Es.

Additionally, we have the vector subbundle D̃ of TRn × g prescribing the nonholonomic
constraints. Assume that D̃0 = span {µai (dxi, 0) + ηas (0, Es)}.

Under these statements, the equation of the GNI method (6.29a) splits into

1

h
G̃ij(x

j
k+1 − 2xjk + xjk−1) +

1

h
G̃is
(
(τ−1(gk))

s − (τ−1(gk−1)t)
)

+hVxi(xk) = −λa,k µai (xk), (6.32a)

L∗gk−1
D3Ld(xk−1, xk, gk−1)−R∗gkD3Ld(xk, xk+1, gk) = λa,k η

a
s (xk)E

s, (6.32b)

where Vxi stands for ∂V/∂xi, and λa,k are the Lagrange multipliers which might vary in each
step. From (6.29a) is easy to see that

FL−d (xk, xk+1, gk)− FL+
d (xk−1, xk, gk−1) ∈ D̃0(xk).

Taking into account the definition of the right-trivialized tangent retraction map (also given
in §5.2.3) and lemmae presented in Appendix A, equation (6.32b) can be rewritten as

(dτ−1
−hξk)∗dld

∣∣
(xk−1,xk)

(ξk)− (dτ−1
hξk+1

)∗dld
∣∣
(xk,xk+1)

(ξk+1) = λa,k η
a
t (xk)E

t, (6.33)

where ld
∣∣
(xk,xk+1)

(ξk) = Ld
∣∣
(xk,xk+1)

(τ(hξk)), being gk = τ(hξk). However, thanks to the

retraction map, in most applications the choice for ld is just ld
∣∣
(x,ẋ)

(ξk) = hL
∣∣
(x,ẋ)

(ξk).
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As we already know (6.29b) provides a discretization of the nonholonomic constraints on
the hamiltonian side:

Ai,a(xk)

(
G̃ij

(xjk+1 − x
j
k−1)

2h
+

1

2h
G̃is((τ

−1(gk))
s + (τ−1(gk−1))s)

)
+

1

2
Ba,s(xk)

(
L∗gk−1

D3Ld(xk−1, xk, gk−1) +R∗gkD3Ld(xk, xk+1, gk)
)
s

= 0, (6.34)

or, equivalently,

Ai,a(xk)

(
G̃ij

(xjk+1 − x
j
k−1)

2h
+

1

2
G̃it(ξ

t
k + ξtk−1)

)
+

1

2
Ba,t(xk)

(
(dτ−1
−hξk−1

)∗dld
∣∣
(xk−1,xk)

(ξk−1) + (dτ−1
hξk

)∗dld
∣∣
(xk,xk+1)

(ξk)
)
t

= 0,

where

Ai,a(xk) = (G̃−1)ijµaj (xk) + (G̃−1)itηat (xk),

Bt,a(xk) = (G̃−1)tiµai (xk) + (G̃−1)tsηas (xk),

being (G̃−1) the inverse matrix of (G̃) =

(
G̃ij G̃sj
G̃it G̃st

)
.

Our aim in the following is to find an extension to the nonholonomic RATTLE algorithm
presented in remark 6.3.2 for systems defined on TRn × g. With that purpose we define

(p̃k)i = G̃ij
(xjk+1 − x

j
k−1)

2h
+

1

2
G̃is(ξ

s
k + ξsk−1),

(pk+1/2)i = G̃ij
(xjk+1 − x

j
k)

h
+

1

h
G̃isξ

s
k+1 ∈ T ∗xkM,

Φ̃k = (dτ−1
hξk

)∗dld
∣∣
(xk,xk+1)

(ξk),

Φk+1/2 = Ad∗τ(hξk)Φ̃k −
1

2
λ̃a,k η

a
s (xk)E

s,

where λ̃a,k = λa,k/h. We also recall that ξk = τ−1(gk)/h. After these redefinitions, equations
(6.32a), (6.33) and (6.34) can be translated into the following algorithm
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pk+1/2 = p̃k −
h

2

(
Vx(xk) + λ̃a,k µ

a(xk)
)
, (6.35a)

Φk+1/2 = Ad∗τ(hξk)Φ̃k −
1

2
λ̃a,k η

a(xk), (6.35b)

xik+1 = xik + h(G̃−1)ij
(

(pk+1/2)j − G̃it ξ
t
k+1

)
, (6.35c)

Aa(xk) p̃k +Ba(xk)
(

Ad∗τ(hξk) Φ̃k + Φ̃k+1

)
= 0, (6.35d)

p̃k+1 = pk+1/2 −
h

2

(
Vx(xk+1) + λ̃a,k+1 µ

a(xk+1)
)
, (6.35e)

Φ̃k+1 = Φk+1/2 −
1

2
λ̃a,k η

a(xk), (6.35f)

Aa(xk+1) p̃k+1 +Ba(xk+1)
(

Ad∗τ(hξk+1) Φ̃k+1 + Φ̃k+2

)
= 0, (6.35g)

where ηa(xk) = ηat (xk)E
t; moreover, most of the equations are written in a matrix form.

Departing from initial data (xk, p̃k, ξk, Φ̃k, λ̃a,k), equations (6.35a) and (6.35b) determine
pk+1/2 and Φk+1/2. Furthermore, (6.35c) and (6.35d) determine xk+1 and ξk+1 once we know

pk+1/2 and Φk+1/2 (notice, from (6.35b) and (6.35f), that Φ̃k+1 is completely determined in

terms of Φ̃k, λ̃a,k and xk). The definition of p̃k+1 and Φ̃k+1 needs a step forward in (6.32a),
(6.33) and the constraint equation (6.34). That step is encoded in the last three equations of
the algorithm. Once we have determined (xk+1, pk+1/2, ξk+1,Φk+1/2, λ̃a,k), we calculate Φ̃k+1

by (6.35f) and the remaining p̃k+1 and λ̃a,k+1 using (6.35e) and (6.35g) (notice that Φ̃k+2 is
completely determined in terms of Φ̃k+1, λ̃a,k+1). Summarizing, our algorithm follows the
squeme:

(xk, p̃k, ξk, Φ̃k, λ̃a,k)→ (xk+1, pk+1/2, ξk+1,Φk+1/2, λ̃a,k),

(xk+1, pk+1/2, ξk+1,Φk+1/2, λ̃a,k)→ (xk+1, p̃k+1, ξk+1, Φ̃k+1, λ̃a,k+1),

and that’s why we consider it the nonholonomic RATTLE extension for TRn×g reduced
systems.

Remark 6.5.1. After the redefinition of our variables presented above, equation (6.34) can
be translated into

Φ̃k+1 = Ad∗τ(hξk)Φ̃k − λ̃a,k ηa(xk).

This equation clearly shows that Φ̃k+1 can be completely determined in terms of Φ̃k, λ̃a,k, xk;
Φ̃k+2 in terms of Φ̃k+1, λ̃a,k+1, xk+1, etc. One could say that the intermediate k + 1/2 step
given in equations (6.35b) and (6.35f) is arbitrary and completely unnecessary. Nevertheless,
we fix that intermediate step in order to preserve the RATTLE structure.

6.6 Extension to Lie groupoids

Let G ⇒ Q be a Lie groupoid and τAG : AG → Q its associated Lie algebroid (recall both
notions introduced in §1.5). Consider a mechanical system subjected to linear nonholonomic
constraints, that is, a pair (L,D) (see [118, 70] for more details), where
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i) L : AG→ R is a Lagrangian function of mechanical type

L(a) =
1

2
G(a, a)− V (τAG(a)), where a ∈ AG.

ii) D is the total space of a vector subbundle τD : D→ Q of AG.

Here G : AG ×Q AG → R is a bundle metric on AG. We also consider the orthogonal
decomposition AG = D⊕D⊥ and the associated projectors P : AG→ D and Q : AG→ D⊥.

Consider a discretization Ld : G → R of the Lagrangian L. It is possible to define two
Legendre transformations FL±d : G→ A∗G by

FL−d (h)(vε(α(h))) = −vε(α(h))(Ld ◦ rh ◦ i),
FL+

d (g)(vε(β(g))) = vε(β(g))(Ld ◦ Lg),

(Ld denotes the discrete Lagrangian while here Lg denotes the left-translation in the groupoid
by g ∈ G, see §1.5) where vε(α(h)) ∈ Aα(h)G and vε(β(g)) ∈ Aβ(g)G. Therefore FL−d (h) ∈
A∗α(h)G and FL+

d (g) ∈ A∗β(g)G. Since the Euler-Lagrange equations are given by the matching
of momenta, in the Lie groupoid setting they read

FL−d (h) = FL+
d (g),

where (g, h) is in the set G2.

The proposed nonholonomic integrator is

P∗q
(
FL−d (h)− FL+

d (g)
)

= 0 (6.36a)

Q∗q
(
FL−d (h) + FL+

d (g)
)

= 0, (6.36b)

where the subscript q emphasizes the fact that the projections take place in the fiber over qk.
Let {Xα, Xa} be a local basis adapted to D ⊕D⊥, in the sense that locally D = span {Xα}
and D⊥ = span {Xa}. We can rewrite equations (6.36) as

FL−d (h) (Xα(q))− FL+
d (g) (Xα(q)) = 0, (6.37a)

FL−d (h) (Xa(q)) + FL+
d (g) (Xa(q)) = 0, (6.37b)

where q ∈ Q and (g, h) ∈ G2 (that is, are composable). Let us denote

p+
g = FL+

d (g) ∈ A∗qG,
p−h = FL−d (h) ∈ A∗qG,

so equation (6.37b) becomes (
p+
g + p−h

2

)
(Xa(q)) = 0.

If µa ∈ Γ(A∗G) are such that D◦ = span {µa}, then this last equation becomes

G

(
p+
g + p−h

2
, µa

)
= 0,
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where, by a slight abuse of notation, we denote the bundle metric A∗G naturally induced by
the bundle metric on AG using the same symbol G. Note that the set of η ∈ A∗G such that
G(η, µa) = 0 for all a form the constraint submanifold D̄ = LegG(D). Therefore the average

momentum p̃ = (p+
g + p−h )/2 ∈ D̃ satisfies in this sense the constraint equations.
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Conclusions and future work

The closing chapter of this memory is devoted to summarize the contributions of the work.
An outlook of the future research is also provided.

Chapter 4 has been devoted to the geometric study of the relationship between Hamil-
tonian dynamics and constrained variational calculus. Under regularity conditions we find
that both are equivalent. This result, which is one of the main contributions of this thesis, is
presented in Theorem 4.2.4. Furthermore, we have extended the interest in this connection to
the discrete framework. As a result, we find the relationship between symplectic integrators
and discrete variational calculus in presence of constraints, which is enclosed in Theorem
4.3.4. This relationship enlightens the geometric structure of symplectic integrators in terms
of Lagrangian submanifolds. How to take advantage of the previous result in the context of
geometrical integration of Hamiltonian systems is illustrated with several examples in §4.4.
We have also analyzed in parallel the case of classical nonholonomic mechanics in the dis-
crete (§4.3.3) and continuous cases (§4.2.3). Moreover, a natural algorithm for comparison of
nonholonomic solutions and constrained variational solutions is given, generalizing the one
provided in [35].

In chapter 5 we have built numerical methods for mechanical optimal control problems.
More concretely, we extend the the theory of discrete mechanics to enable solutions for this
kind of problems by means of the discretization of variational principles. Our method is based
in the following key idea: to solve the optimal control problem as a variational integrator of a
specially constructed higher-dimensional system. More concretely, the Lagrangian formalism
where the mentioned variational integrators come from is introduced in §5.1.4 and §5.2.4, for
systems defined on tangent bundles and Lie algebras, respectively. On the other hand, the
specific relationships between the control space and the velocity phase space of the studied
problems, relationships our approach is built upon, are established in the following definitions:

• TQ: def.5.1.5 and def.5.1.7, fully-actuated case and under-actuated case respectively.

• g: def.5.2.4 and def.5.2.5, fully-actuated case and under-actuated case respectively.

Simulations for the optimal control of an underwater vehicle are shown in fig.5.1 and fig.5.2.
We would like to stress the adaptability of the proposed techniques to reduced problems
and systems subject to nonholonomic constraints. These extensions are discussed in §5.3.
Moreover, one of the outstanding features of the proposed method is the capacity to allow
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discontinuous controls. This capacity is presented in §5.2.10 and depicted in fig.5.3. As a
consequence of this property, we expect that our techniques will be widely applied in future
research concerning optimal control and its applications to engineering, since discontinuous
input controls are very usual in practical problems.

Chapter 6 accounts for new developments regarding the Geometric Nonholonomic Inte-
grator. Namely, we have extended the results in [44, 45, 93] to the case of affine constraints
(§6.4) and reduced systems (§6.5). Both cases are illustrated with a theoretical example: the
nonholonomic extension of the RATTLE algorithm within the GNI setting. Finally, we find
a generalized setting for the GNI integrator in the framework of Lie groupoids (§6.6).

In [44, 45] was shown that the nonholonomic SHAKE method can be obtained by applying
the GNI equations to a specific discretization of the mechanical Lagrangian. Moreover, it is
proved that the associated RATTLE method (which is equivalent to the SHAKE) is globally
second-order convergent. This result establishes a clear parallelism with the unconstrained
case. Following this line, we have applied the GNI to the discretizations that further produce
the symplectic-Euler methods as variational integrators. We have denoted these methods
as Euler A and Euler B. In Theorem 6.3.3 we prove that Euler A and Euler B methods
are globally first-order convergent. Furthermore, we prove in Theorem 6.3.5 that Euler A
and Euler B methods are adjoint to each other. Since symplectic-Euler methods are first-
globally convergent and adjoint to each other, these two results, apart from being some of the
more important contributions of chapter 6, reinforce the parallelism with the unconstrained
mechanics mentioned above.

Finally, in §6.5 we have studied how to extend the GNI method to other cases of interest,
namely reduced systems and systems subjected to affine nonholonomic constraints.

The results presented in this thesis have been published in

• KOBILAROV M, JIMÉNEZ F AND MARTÍN DE DIEGO D, Discrete Variational Op-
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of Nonlinear Science. Some results in this paper have been further applied in

– COLOMBO L, JIMÉNEZ F AND MARTÍN DE DIEGO D, Discrete second-order
Euler-Poincaré equations. Applications to optimal control. Journal of Geometric
methods of Modern Physics, 9, (2012), arXiv:1109.4716.

• JIMÉNEZ F, DE LEÓN M, AND MARTÍN DE DIEGO D, Hamiltonian dynamics
and constrained variational calculus: continuous and discrete settings. Accepted for
publication in Journal of Physics A. arXiv:1108.5570, (2011).

• JIMÉNEZ F AND MARTÍN DE DIEGO D, Continuous and discrete approaches to
vakonomic mechanics. Revista de la Real Academia de las Ciencias Exactas, F́ısicas y
Naturales, Serie A. Springer, 106(1), pp. 75-87, (2011), DOI.

• JIMÉNEZ F AND MARTÍN DE DIEGO D, A geometric approach to Discrete mechan-
ics for optimal control theory. Proceedings of the 49th IEEE Conference on Decision
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http://arxiv.org/abs/1109.4716
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and Control (CDC), pp. 5426-5431. Atlanta, Georgia, USA, (2010).

In addition, the results contained in this thesis have been presented in the following
international meetings:

• Discrete variational optimal control (F Jiménez). Friedrich-Alexander University of
Nürnberg-Erlangen, Chair of Applied Dynamics, invited talk, Erlangen, Germany, Jan-
uary 2012.

• On discrete mechanics for optimal control theory (F Jiménez). IMAC Symposium on
Dynamical Systems: Trends and Perspectives, Castellón, Spain, September 2011.

• A new approach to discrete optimal control theory (F Jiménez). California Institute of
Technology, invited talk, Pasadena, U.S.A., August 2011.

• New developments in discrete variational calculus and discrete optimal control theory (D
Mart́ın de Diego). Mathematisches Forschungsinstitut Oberwolfach, Germany, August
2011.

• Lagrangian submanifolds and constrained variational calculus (F Jiménez). Workshop
on Rough Paths and Combinatorics in Control Theory, San Diego, U.S.A., July 2011.

• Lagrangian submanifolds and constrained variational calculus (F Jiménez). 5th Inter-
national Summer School on Geometry, Mechanics and Control, Madrid, Spain, June
2011.

• Lagrangian submanifolds and discrete constrained mechanics (D Mart́ın de Diego). XI
Congreso Dr. Antonio Monteiro, Bah́ıa Blanca, Argentina, May 2011.

• A geometric approach to discrete mechanics for optimal control theory (D Mart́ın de
Diego). 49th IEEE Conference on Decision and Control, Atlanta, U.S.A., December
2010.

• Optimal control of mechanical systems on Lie groups (D Mart́ın de Diego). VI Inter-
national symposium HAMSYS-2010, Honoring EA Lacomba in his 65th Anniversary,
invited talk, Mexico city, Mexico, December 2010.

• Optimal control of mechanical systems on Lie groups: continuous and discrete (D
Mart́ın de Diego). Workshop on Geometry of Constraints and Control - New Develop-
ments, Banach Center, Warszawa, Poland, November 2010.

Future work

Once we have explored the insight that the geometry (both continuous and discrete) and
numerical methods can provide on mechanical systems, there remains a lot to be done.
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Higher-order methods. Constrained Lagrangian systems with symmetries

Many higher-order symplectic methods are obtained using composition of methods of lower-
order. In the approach developed in chapter §4, this notion seems to be related with the
notion of composability of canonical relations (which may fail even to be a manifold without
appropriate transversality conditions [164]). This study is a promising line for numerical
simulation of Hamiltonian dynamics and also constrained systems.

Other interesting case that is worth to explore is the extension of the theory developed
in chapter 4 to reduced systems using the geometric framework given by the Lie algebroid
and Lie groupoid formalisms [114]. For instance, in the discrete case, is interesting to derive
the dynamics using also Lagrangian submanifolds of the so-called tangent groupoid [39]. In
this context, the departing point would be a submanifold N of a Lie groupoid G⇒ Q, and a
discrete Lagrangian Ld : N → R. Following Theorem 4.1.1, the Lagrangian submanifold ΣLd

of the cotangent groupoid T ∗G would be introduced. The Hamiltonian side is determined
by a Poisson flow defined on A∗G, the dual bundle of the associated Lie algebroid AG to G.
Therefore, we would have the following scheme:

ΣLd
� �

iΣLd //
� _

��

T ∗G

πG

~~

α̃

!!
β̃

!!
N �
� iN //

Ld

��

G

α

  

β

  

A∗G

τA∗G

||
R Q

which, in principle, will allow us to extend the theory presented chapter 4 and give a unified
framework to understand symmetries in constrained Lagrangian systems. Furthermore, due
to the relationship between constrained Lagrangian systems and Hamiltonian systems estab-
lished in Theorem 4.2.4, this is the suitable setup to study generalized Hamiltonian dynamics
with symmetries and its relationship with morphisms of Lie algebroids (see [119]). Examples
of systems this theory could be applied to are the following: subriemannian geometry and
optimal control problems.

Advances on discrete variational optimal control

As shown in fig.5.1 and fig.5.2, simulations of an underactuated underwater vehicle illustrate
an application of the method developed in chapter 5. Yet, further numerical studies and
comparisons would be necessary to exactly quantify the advantages and the limitations of
the proposed algorithm. An important future direction is thus to study the convergence
properties of the optimal control system. Convergence for general nonlinear systems is a
complex issue (not only in what optimal control regards but also concerning nonholonomic
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mechanics, as will be discussed in the next subsection). In this respect, it is interesting to
note that the discrete mechanics and optimal control on Lie groups such as the example
in using the Cayley map results in polynomial form without further approximation or Taylor
series truncation. A useful future direction is then to study the regions of attraction of the
numerical continuation using tools from algebraic geometry.

To be more precise, it has been shown in chapter 5 that many interesting optimal control
problems defined on Lie algebras the momenta can be expressed as

µ = (dτ−1
hξ )∗I ξ.

where µ ∈ g∗, ξ ∈ g, h is the time step, 1
2〈I(ξ) , ξ〉 is the kinetic energy of the system

and I : g → g∗ is the inertia tensor. On one hand, the convergence of the optimal control
problem is related to the invertibility of this expression when h → 0 (which is the desired
situation when looking for accuracy in the simulations of real systems). On the other hand,
the previous expression turns into an algebraic system of equations when fixing the Lie group
and τ as the Cayley map. Therefore, it is definitely interesting to understand algebraically
the properties of the mentioned system of equations in the limit h→ 0.

More generally, the theoretical framework introduced in §5.3 can serve as a basis for
deriving algorithms for control systems such as multi-body locomotion systems or robotic
vehicles with nonholonomic constraints. Furthermore, the developed classes of systems can be
unified through the recently developed groupoid framework [70, 165]. Each of the considered
product spaces (e.g. Q × Q) can be regarded as a single groupoid space with equations of
motion resulting from a single generalized discrete variational principle. This will enable the
automatic solution of optimal control problems for various complex systems and a convenient
unified framework for implementing practical optimization schemes such as [15, 91, 101,
139]. More importantly, this viewpoint can be used to apply standard discrete Lagrangian
regularity conditions (e.g. [124]) to optimal control problems evolving on the groupoid space.
This would provide a deeper insight into the solvability of the resulting optimization schemes.

In §5.3.1 a geometric integrator for optimal control problems in trivial principal bundles
has been built. This particular choice of the velocity phase space has been made because of
its usual presence in practical applications (indeed, if the velocity phase space is eventually
non-trivial it is treated locally). In any case, it is interesting from the geometric point of
view to extend the developed setting to general principal bundles, which means to use tools
associated to discrete connections (see [118]).

The discrete framework presented in §5.3.2 to integrate nonholonomic problems is, so
far, completely theoretical. In the next future it will be applied to specific examples of
nonholonomic problems. We expect that our techniques will be of great use when modelizing
wheeled vehicles (which is an instance of nonholonomic system) with discontinuous (bang-
bang like) input controls.

Regarding the regularity of solutions, in chapter 5 only regular solutions for the optimal
control problem have been considered. It would be of great interest to extend our analysis
to abnormal solutions. Some examples of systems with abnormal solutions and their study
can be found in [6, 7, 8].
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New perspectives in discrete nonholonomic mechanics

One of the main problems of discrete nonholonomic mechanics is the lack of preservation
of geometric structures (non-preservation of the nonholonomic bracket, non-preservation of
the nonholonomic momentum in general) mimicking the non-preservation of the continuous
nonholonomic system. As has been already mentioned, [44, 45] introduced the GNI integra-
tor, which is an integrator for nonholonomic problems with interesting geometric properties.
In chapter 6 we have applied this method to different kinds of systems, such as affine of
reduced systems. Due to the lack of preservation properties just mentioned, it is difficult to
compare from the geometric perspective the nonholonomic integrators obtained from discrete
nonholonomic mechanics with standard methods. One possibility is to use the comparison
algorithms developed in §4.2.3 and §4.3.3 in order to detect if one particular nonholonomic
integrator is preserving the common solutions of the continuous nonholonomic problem and
its associated constrained variational problem.

GNI method, in some cases, gives rise to explicit integrators. As a consequence, these
integrators show high efficiency at a computational level (see [93]). Thus, it would be in-
teresting to connect the GNI method developed in chapter 6 to the techniques presented in
chapter 5 in order to derive efficient numerical methods to integrate optimal control problems
in the presence of nonholonomic constraints (type of problems which usually suppose high
computational cost).

The lack of attention the numerical community has paid to nonholonomic problems so far,
implies also a lack of knowledge about the convergence behavior of their numerical integrators.
It was shown in [45] that the SHAKE extension to nonholonomic mechanics via GNI method is
globally second-order convergent. In this work has been also proved (Theorem 6.3.3) that the
Euler-symplectic extensions are globally first-order convergent. These proofs are obviously
interesting but non-systematic, that is each case is treated independently. On the other
hand, a clear parallelism between variational integrators and their extensions to nonholonomic
mechanics via GNI has been established in [45] and Theorem 6.3.3 and Theorem 6.3.5 in
§6.3. In regard to variational integrators, a systematic study of their convergence behavior
has been accomplished by means of Backward Error Analysis (see [61]) in [124, 140]; it has
been carefully introduced in §3.4.3. The key tool in this analysis is the exact Lagrangian

LEd (q0, q1, h) =

∫ h

0
L(q(t), q̇(t)) dt,

presented in (3.3.2). Thus, it is extremely interesting to figure an exact Lagrangian for
nonholonomic systems (in other words, when our system is defined on a discrete constraint
submanifold) and find the way to, mimicking the process in the case of variational integrators,
systematically understand their error behavior.

Related to this last topic is the systematic study of the error behaviour of the nonholo-
nomic integrators. These integrators, either based on discrete variational calculus (see [38])
or on the GNI approach, present a bounded oscillation of the total energy of the system. A
possible tool to approach the understanding of this behavior would be also Backward Error
Analysis, as happens in the unconstrained case.
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El caṕıtulo final de esta memoria está dedicado a resumir las contribuciones presentadas en
este trabajo de tesis.

El caṕıtulo 4 se ha dedicado al estudio geométrico de la relación entre la dinámica Hamilil-
toniana y el cálculo variacional con ligaduras (calcúlo vakónomo). Bajo ciertas condiciones
de regularidad encontramos que ambos son equivalentes. Este resultado, que es una de las
principales contribuciones de esta tesis, ha sido presentado en el Teorema 4.2.4. Además,
hemos extendido esta relación al marco discreto. Como resultado encontramos la conexión
entre los integradores simplécticos y el cálculo variacional en presencia de ligaduras, resultado
contenido en el Teorema 4.3.4. Esta relación esclarece la estructura geométrica de los inte-
gradores simplécticos en términos de subvariedades Lagrangianas. El modo de aprovecharse
del resultado anterior en el contexto de la integración geométrica de sistemas Hamiltonianos
es presentado con varios ejemplos en §4.4. Asimismo, hemos analizado en paralelo el caso
de mecánica noholónoma en los marcos discreto (§4.3.3) y cont́ınuo (§4.2.3). Finalmente,
hemos encontrado un algoritmo para la comparación de soluciones noholónomas y soluciones
vakónomas, generalizando el ya presentado en [35].

En el caṕıtulo 5 hemos construido métodos numéricos para problemas de control óptimo
de tipo mecánico. Más concretamente, extendemos la teoŕıa de de la mecánica discreta con
el objetivo de habilitar soluciones para este tipo de problemas por medio de la discretización
de los principios variacionales. Nuestro método se basa en la siguiente idea: resolver el
problema de control óptimo como un integrador variacional construido especialmente para un
sistema de dimensión mayor. El formalismo Lagrangiano del que los mencionados integradores
variacionales proceden se introduce en §5.1.4 y §5.2.4 para sistemas definidos en fibrados
tangentes y álgebras de Lie respectivamente. Por otro lado, la relación concreta entre el
espacio de control y el espacio de fase (tipo velocidades) de los problemas bajo estudio,
relación sobre la que se basa nuestro método, se establece en las siguientes definiciones:

• TQ: def.5.1.5 y def.5.1.7: sistemas completamente actuados e infraactuados respecti-
vamente.

• g: def.5.2.4 y def.5.2.5: sistemas completamente actuados e infraactuados respectiva-
mente.

Simulaciones del control óptimo de un veh́ıculo subacuático son mostradas en fig.5.1 y fig.5.2.
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Nos gustaŕıa enfatizar la capacidad de adaptación de las técnicas propuestas a problemas
reducidos o sujetos a ligaduras noholónomas. Estas extensiones se discuten en §5.3. Además,
una de las propiedades más destacadas del método propuesto es su capacidad de admitir
controles discontinuos. Esta capacidad se presenta en §5.2.10 y se ilustra en fig.5.3. Como
consecuencia de esta propiedad, esperamos que nuestras técnicas sean ampliamente utilizadas
en investigación futura relacionada con control óptimo y sus aplicaciones a ingenieŕıa. Esta
expectativa se basa en el hecho de que los controles discontinuous son muy habituales en
problemas prácticos.

El caṕıtulo 6 contiene nuevos desarrollos relacionados con el Integrador Noholónomo
Geométrico (GNI). Hemos extendido los resultados presentados en [44, 45, 93] al caso de
ligaduras afines (§6.4) y sistemas reducidos (§6.5). Ambos casos se ilustran con un ejemplo
teórico: la extensión noholónoma del algoritmo RATTLE en el contexto del GNI. Finalmente,
encontramos un marco generalizado para el integrador GNI en el contexto de los grupoides
de Lie (§6.6).

En las referencias [44, 45] se demostró que el método SHAKE noholónomo puede ser
obtenido mediante la aplicación de las ecuaciones GNI a una discretización concreta del La-
grangiano mecánico. Además, se prueba que el método RATTLE asociado (que es equivalente
al SHAKE) es globalmente convergente de segundo orden. Este resultado establece un par-
alelismo claro con el caso libre. Siguiendo esta ĺınea, hemos aplicado las ecuaciones GNI a
la discretización que produce los métodos Euler-simpléctico como integradores variacionales.
Hemos denotado estos métodos como Euler A y Euler B. En el Teorema 6.3.3 demostramos
que los métodos Euler A y Euler B son globalmente convergentes de orden uno. Además,
demostramos en el Teorema 6.3.5 que los métodos Euler A y Euler B son adjuntos el uno
del otro. Puesto que los métodos Euler-simpléctico son también globalmente convergentes
de primer orden y adjuntos el uno del otro, estos dos resultados, aparte de ser dos de las
contribuciones más importantes del caṕıtulo 6, refuerzan el paralelismo con el caso libre
mencionado anteriormente.

Finalmente, en §6.5 hemos estudiado cómo extender el método GNI a otros casos de
interés: sistemas reducidos y sistemas sujetos a ligaduras noholónomas de tipo af́ın.
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la padecen) de la maldición roja y blanca. Nunca le estaré lo suficientemente agradecido por
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temores, dudas y alegŕıas a la hora de encarar el futuro en la ciencia. Por encima de todo es
para mı́ un agujero blanco: de la misma forma que los agujeros negros no dejan escapar la
luz, Emilio atrapa la oscuridad haciendo de lo que hay a su alrededor algo más limpio.
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Appendix A:
Lemmae

This Appendix deals with the set of Lemmae and proofs, involving the right-trivialized tan-
gent and inverse right-trivialized tangent of a general retraction map (see definition 5.2.2),
necessary for the derivation of the algorithms obtained in §5.

Lemma 6.6.1. (See [123]) Let g ∈ G, λ ∈ g and δf denote the variation of a function f
with respect to its parameters. Assuming λ is constant, the following identity holds

δ(Adg λ) = −Adg [λ , g−1δg],

where [· , ·] : g × g → R denotes the Lie bracket operating or equivalently [ξ , η] ≡ adξη, for
given η, ξ ∈ g.

Lemma 6.6.2. The following identity holds

∂ξ(Adτ(ξ)λ) = −[Adτ(ξ) , dτξ].

Proof. By lemma 6.6.1

∂ξ(Adτ(ξ)η) = −Adτ(ξ)[λ , τ(−ξ) δτ(ξ)]

= −[Adτ(ξ)λ , ∂τ(ξ) τ(−ξ)]
= −[Adτ(ξ)η , dτξ],

obtained from the tangent Definition 5.2.2 and using the fact that Adg[λ , η] = [Adgλ , Adgη].

The following lemmae can be found in [22].

Lemma 6.6.3. The following identity holds

dτξ η = Adτ(ξ) dτ−ξ η,

for any ξ, η ∈ g.
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Proof. Differentiation of τ(ξ) τ(−ξ) = e implies that

∂ξτ(−ξ) η = −TLτ(−ξ) TRτ(−ξ) (∂ξτ(ξ) η) ,

where TL , TR are the tangent of the left and right translations in the group respectively.
On the other hand, the chain rule implies that

∂ξτ(−ξ) η = −TRτ(−ξ) dτ−ξ η.

Combining both expressions we obtain

TLτ(ξ) dτ−ξ η = TRτ(ξ) dτξ η,

which proves the identity.

Lemma 6.6.4. The following identity holds

dτ−1
ξ η = dτ−1

−ξ
(
Adτ(−ξ) η

)
,

for any ξ, η ∈ g.

Proof. The proof follows directly from Lemma 6.6.3. Let η → dτ−1
ξ η in that identity to

obtain
η = Adτ(ξ) dτ−ξ dτ−1

ξ η.

Solving this last equation for dτ−1
ξ η we prove the identity

dτ−1
ξ η = dτ−1

−ξ
(
Adτ(−ξ) η

)
.



Appendix B:
Cayley transform for matrix groups

This Appendix is devoted to specify the operators required to implement equations (5.37),
(5.50) and (5.51) for typical rigid body motion groups and general real matrix subgroups.
While we have given more than one general choice for τ in §5.2.3, for computational efficiency
we recommend the Cayley map since it is simple and does not involve trigonometric functions.
In addition, it is suitable for iterative integration and optimization problems since its deriva-
tives do not have any singularities that might otherwise cause difficulties for gradient-based
methods.

A. SO(3):

The group of rigid body rotations is represented by 3 × 3 matrices with orthonormal
column vectors corresponding to the axes of a right-handed frame attached to the body.
Define the map ·̂ : R3 → so(3) by

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (6.38)

A Lie algebra basis for SO(3) can be constructed as {ê1, ê2, ê3}, êi ∈ so(3), where {e1, e2, e3}
is the standard basis for R3. Elements ξ ∈ so(3) can be identified with the vector ω ∈ R3

through ξ = ωα êα, or ξ = ω̂. Under such identification the Lie bracket coincides with the
standard cross product, i.e., adω̂ ρ̂ = ω × ρ, for some ρ ∈ R3. Using this identification we
have

cay(ω̂) = I3 +
4

4+ ‖ ω ‖2

(
ω̂ +

ω̂2

2

)
, (6.39)

where I3 is the 3 × 3 identity. The linear maps dτξ and dτ−1
ξ are expressed as the 3 × 3

matrices

dcayω =
2

4+ ‖ ω ‖2
(2I2 + ω̂), dcay−1

ω = I3 −
ω̂

2
+
ω ωT

4
. (6.40)

We point out that with the choice τ = cay the optimization domain is not restricted, i.e.
Dcay = g since the maps (6.40) are not singular for any ξ ∈ g. This is not the case for the
exponential map for which Dexp = {ξ ∈ g, ‖ ξ ‖< 2π/h} since the exponential map derivative
is singular whenever the norm of its argument is a multiple of 2π [61], and the origin requires
special handling.
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B. SE(2):

The coordinates of SE(2) are (θ, x, y) with matrix representation g ∈ SE(2) given by

g =

 cos θ −sinθ x
sin θ cosθ y

0 0 1

 .

Using the isomorphic map ·̂ : R3 → se(2) given by:

v̂ =

 0 −v1 v2

v1 0 v3

0 0 0

 ,

where v = (v1, v2, v2)T ∈ R3. Thus, {ê1, ê2, ê3} can be used as a basis for se(2), where
{e1, e2, e3} is the standard basis of R3. The map cay : se(2)→ SE(2) is given by

cay(v̂) =

 1
4+v2

1

(
4− v2

1 −4v1 −2v1v3 + 4v2

4v1 4− v2
1 2v1v2 + 4v3

)
0 0 1

 ,

while the map dτ−1
ξ becomes the 3× 3 matrix

dcay−1
v̂ = I3 −

1

2
adv +

1

4
(v1v 03×2) ,

where

adv =

 0 0 0
v3 0 −v1

−v2 v1 0

 .

C. SE(3):

We make the identification SE(3) ∼ SO(3)×R3 using elements R ∈ SO(3) and x ∈ R3

through

g =

(
R x

03×3 1

)
, g−1 =

(
RT −RTx
03×3 1

)
.

Elements of the Lie algebra ξ ∈ se(3) are identified with body-fixed angular and linear
velocities denoted ω ∈ R3 and v ∈ R3, respectively, through

ξ =

(
ω̂ v

03×3 0

)
,

where the map ·̂ : R3 → so(3) is defined in (6.38). Using this

cay(ξ) =

(
cay(ω̂) dτω v

0 1

)
,
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where cay : so(3)→ SO(3) is given by (6.39) and dcay : R3 → R3 by (6.40)2.

D. General matrix subgroups:

The Lie algebra of a matrix Lie group coincides with the one-parameter subgroup gen-
erators of the group. Assume that we are given a k-dimensional Lie subalgebra denoted
g ⊂ gl(n,R). It is isomorphic to the space of generators of a unique connected k-dimensional
matrix subgroup G ⊂ GL(n,R). Therefore, a subalgebra g determines the subgroup G in a
one-to-one fashion

g ⊂ gl(n,R)⇐⇒ G ⊂ GL(n,R).

Assume that the Lie algebra basis elements are {Eα}kα=1, Eα ∈ g, i.e., every element ξ ∈ g
can be written as ξ = ξαEα. Define the following inner product for any ξ, η ∈ g

� ξ, η �= tr (B ξT η),

where B is an n×n matrix such that� Eα , Eβ �= δαβ. Correspondingly, a pairing between
any µ ∈ g∗ and ξ ∈ g can be defined by

〈µ , ξ〉 = tr(B µη),

since the dual basis for g∗ is
{

[Eα]T
}k
α=1

.

As example, we can consider the Kinetic Energy-Type Metric: after having defined
a metric pairing, a kinetic energy operator I can be expressed as

〈I(ξ) , η〉 = tr(B Id ξ
T η),

for some symmetric matrix Id ∈ GL(n,R).

2note that cay denotes a map to either SO(3) or SE(3) which should be clear from its argument.



...At this time he had no messages for anyone. Nothing. Not a single word.

Saul Bellow, “Herzog”.
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[6] Barbero-Liñán M, A geometric study of abnormality in optimal control problems
for control and mechanical control systems. PhD thesis, Universidad Politécnica de
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[77] Jiménez F, de León M and Mart́ın de Diego D, Hamiltonian dynamics and con-
strained variational calculus: continuous and discrete settings. Accepted for publication
in Journal of Physics A. arXiv:1108.5570, (2011).
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