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Higher order Lagrangians

The mechanics with a higher order Lagrangian L : TAQ — R is
traditionally constructed as a vakonomic mechanics, thanks to the
canonical embedding of of the higher tangent bundle TXQ into the
tangent bundle TT¥~1Q as an affine subbundle of holonomic vectors:

o (k=1) (k) . (k=1) . .. (k—=1) (k)
q?q’q7"'? q ’q H q7q7q7"'? q ?q’q7"'? q ’q *
Thus we work with the standard Tulczyjew triple for TM, where
M = Tk-1Q, with the presence of vakonomic constraint TEQ Cc TTF1Q:

TT*kalQ T*TkalQ 1 T*TkQ
e /
T*Tk—lQ \ Tk—lQ XQ T*Q
TTF1Q S THQ
~ N s
Tk_lQ Tk_]'Q
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Higher order Euler-Lagrange equations

k
The Lagrangian function L = L(q,q, ..., (q)) generates the phase dynamics

. . i oL oL oL
D= (V,p,V,p): Vi—1 = Vi, Pi+Pi—1:W,PO:877Pk—1:m
0q qa dq
This leads to the higher Euler-Lagrange equations in the traditional form:
() _dg .
q dtl ) ! ) 9 )
oL d /oL dk [ oL
0= —_ — (== e (=) | 2=
oq  dt (az;) o D g o9

These equations can be viewed as a system of ordinary differential
equations of order k on TXQ or, which is the standard point of view, as an
ordinary differential equation of order 2k on Q.
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Lagrangian framework for graded bundles

A weighted Lie algebroid on I(Fy) gives the Tulczyjew triple

//FT

y— ey Fk

Here, the diagram consists of relations, & : T*F—>T"I(Fx) — TI*(F),
and Mi(Fyx) = Fx—1 Xpm Fk is the so called Mironian of Fg. In the classical
case, Mi(TAM) = TF=IM xpy T*M.

T L is the Tulczyjew differential and A\, the Legendre relation.

The fact that we obtain the Euler-Lagrange equations of higher order
comes from the vakonomic constraint and the additional gradation.
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Let g be a Lie algebra and put F, = g» = g[1] x g[2], with coordinates
(x',Z/) on g and coordinates (x', ¥/, zK) on 1(g2) = g[1] x g[1] x g[2].
The vector bundle projection is 7(x, y, z) = x and the corresponding
diagram looks like

D . Tl&) .,
Tl*f )/é v\T* dt
82 82
N 7L ;\

The embedding ¢ : go < 1(g2) takes the form «(x,z) = (x,x,z). In
coordinates (x,y,z,a, 3,7) on T*I(g2), the phase relation
T T go——>T*I(g2) relates (x, z, a0 + (,7) with (x, x, z,«, 8,7).

Miraflores, 23/06/2016 5/23

J.Grabowski (IMPAN) Graded bundles 5



Example continued

The Lie algebroid structure € : T*1(g2) — T1*(g2) reads

(X7y7z7a767,‘y)H (X7/8777Z7ad;57a)7

so £ relates (X7 zZ,00+ /87 7) with (X7 67 rs a'd;k(57 a)'
Given a Lagrangian L : go — R, the Tulczyjew differential relation
TL:gy— TI"(g2) therefore reads

TL(x,z)—{< ,5, (X 2),z,ad’B, >:Oz+5—gi(x,z)}.

Hence, for the phase dynamics,

=%, adip=d, a=g(5n)

oL d /0L
B = a(xl) 4 (8z(X’Z)> .

and
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Higher Euler equations

This leads to the Euler-Lagrange equations on g»:

X = z,

di't <gi(x, 2)— d% <gi(x,z)>> — adt (gi(x,z) _cht (gi(x,z)>> .

These equations are second order and induce the Euler-Lagrange equations
on g which are of order 3:

3 (G & (8 <o (- & (09

For instance, the ‘free’ Lagrangian L(x,z) = 3 3, /i(z")? induces the
equations on g (c are structure constants, no summation convention):

le Zc lex'5

The latter can be viewed as ‘hlgher Euler equations’.
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Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid G and a Lagrangian L : A — R on
Ak = AK(G). We will refer to such systems as a k-th order Lagrangian
system on the Lie algebroid A(G). The relevant diagram here is

D CTIAX(G)) = T*I(AK(G)) < T*AX(G)
I*(A%(G))
v\
£ I(AK(G)) <——— AX(G)

Here, I(AX(G)) is the corresponding Lie algebroid prolongation,
D =corodL(AX(G)), and )/ is the Legendre relation.

Note that we deal with reductions: in the case G is a Lie group,

ANG)=TH(G)/G and I(AX()) =TT 1(G)/G.

TA(G)
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using x”* as base coordinates, and y? as fibre coordinates of
degree i =1,..., k in A¥, extended by the appropriate momenta 71‘{) of
degree j = 1,..., k in I*(AX), we get the equations for the Legendre
relation in the form (no Lie algebroid structure appears!):

1d /oL
Kk —1)r2 = _ a9t
(k= 1) ayp | kadt <ayf>

o L LS (LY Ly
97 oyd 21dt \ayd) " 31dt2 \ oy

(1) 1 d2 oL _(_1)kidk_1 L
(k— 1)l dth=2 \ ayd Kl dtk=1 \ ayd )’

which we recognise as the Jacobi—Ostrogradski momenta.
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d oL
dtﬂ-s_plaq( )a A+.leba( ) )

where p2' and Cf, are structure functions of the Lie algebroid A = A(G).
The above equat|on can then be rewritten as

b oL 1d (oL k1 d=! (oL
(055 — ¥ C(x)) (8yf g <8yc> (=1 g G (@))
which we define to be the k-th order Euler-Lagrange equations on A(G).

The above higher order algebroid Euler-Lagrange equations are in
complete agrement with the ones obtained by JéZzwikowski & Rotkiewicz,
Colombo & de Diego, as well as Martinez. We clearly recover the standard
higher Euler-Lagrange equations on TXM as a particular example.
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The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a
javelin defined on T2R3,

3
1 i\2 i\2
L(X,y,Z) = 5 (Zl(y) _(Z) ) .
We can understand G = R3 here as a commutative Lie group, and since L

is G-invariant, we get immediately the reduction to the graded bundle
R3[1] x R3[2]. The Euler-Lagrange equations on T?R3,

d (oL 1d (L _,
dt \ 9y 2dt\oz')) 7’

give in this case

dy’ 1 d?zf
dt  2dt2’
so the Euler-Lagrange equation on R3 (y = x, z = X) reads
d2x’ 1 d*x’
dt2  2.dt4
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Dynamics with the configuration space A"

@ We want to built a similar framework for higher dimensional objects,
being motivated by the study of dynamics of one-dimensional
non-parametrized objects (strings).

@ The motion of a system is given by an n-dimensional submanifold in
the manifold M ("space-time”). An infinitesimal piece of the motion
is the first jet of the submanifold. However, this model leads to
essential complications even in one-dimensional case (relativistic
particle). For instance, the infinitesimal action (Lagrangian) is not a
function on first jets, but a section of certain line bundle over the
first-jet manifold, a ‘dual’ of the bundle of "first jets with volumes".

@ Compromise: take for the space of infinitesimal pieces of motions the
space of simple n-vectors, which represent first jets of n-dimensional
submanifolds together with an infinitesimal volume.lt is technically
convenient to extend this space to all n-vectors, i.e. to the vector
bundle A"TM of n-vectors on M.
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Dynamics with the configuration space

@ A Lagrangian L is a function
L:AN"TM - R.

If L is positive homogeneous, the action functional does not depend
on the parametrization of the submanifold and the corresponding
Hamiltonian (if it exists) is a function on the dual vector bundle
A"T*M (the phase space).

The dynamics should be an equation (in general, implicit) for
n-dimensional submanifolds in the phase space, i.e.

DCA'TA"T*M.
A submanifold S in the phase space A"T*M is a solution of D if and
only if its tangent space T,S at o € A"T*M is represented by a
bivector from D,,.

If we use a parametrization, then the tangent bivectors associated
with this parametrization must belong to D.
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The Hamiltonian side for multivector bundles

Recall that AT A2 T*M is a double graded bundle (actually a GrL-bundle)
AT N2 T*M

/ \
M A2TM
\ M /

We have:
@ the canonical Liouville 2-form on A2T*M:

1
02, = §p‘”’ dx* A dx”;
@ the canonical multisymplectic form
1
w%/, =do3, = Edpm, Adx? AdxY;
@ the vector bundle morphism

By NPTATM = T A2T*M, u gwiy
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The Lagrangian side for multivector bundles

In local coordinates,
BI%/I(XM, Pk ).(Vga ygpv p’y,é,e,() = (Xua PXks _ygpa ).(VU) .

Using the canonical isomorphism of double vector bundles

R:T*N2T*M > T A2TM,
we can define oz%/, =TRo ,8,2\,,, which is another double graded bundle
morphism,

gt APTAPT*M = T* A2TM,
(of double graded bundles over A°TM and A2T*M).
In local coordinates,
A (X s X7, Yo Bysec) = (X, X7yl )

The map a%d can also be obtained as a certain ‘dual’ of the canonical
isomorphism
K2 TA2TM = A2TTM.
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The Tulczyjew triple and dynamics

Combining the maps 5%4 and oz%/,, we get the following Tulczyjew triple for
multivector bundles, consisting of double graded bundle morphisms:

2

A2T A2 T*/\/I T* A2 TM

/\ 2TM /\ 2TM™ /\ 2TM™
A2T*M 74/\%* 7L/@T* /

The way of obtaining the implicit phase dynamics D, as a submanifold of
AT A2 T*M, from a Lagrangian L : A°TM — R or from a Hamiltonian
H: A>T*M — R is now standard.

T* A2 T*M
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The phase dynamics - Lagrangian side

A2TM - (kinematic) configurations, L : A°TM — R - Lagrangian
2
D& AT A2 T*M T /\2Tl\/lg\/-
AN TM A2TM

A2T*M A2T*M

D = (ajy) "M (dL(A\*TM)))

oL oL }

P {(X””’M’X'”"’yﬁp’bvéec) Y= g P g

Thus we get Lagrange (phase) equations.

J.Grabowski (IMPAN) Graded bundles 5 Miraflores, 23/06/2016

17 / 23



The phase dynamics - Hamiltonian side

H:A°T*M — R

2
T* A2 T*M L AT A2 T*M <D

% . .
/\2TI\/I A,?TM

/\2T* /\2T*M

= (Bi) " (dH(A*T" M)

OH

. ) . oOH
D= {(vap)\naxyoaygpup'ﬂse() : ng - _@7 XVG - apya} .

Thus we get Hamilton equations.
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The EL and Hamilton equations

For a surface in the phase space A°T*M,
(t7 S) = (Xu(t7 S)a pn)\(S, t)) )

the Euler-Lagrange equations read

OxH Ox¥  OxH* Ox¥

v _
x dt ds  9s Ot
oL oxto (oL N oo (oL,
dxc ot ds \axme\° s ot \ oxpe % )
As for the Hamilton equations, we have

oH  OxMox¥ B OxH Ox¥

Opuw Ot Os Os Ot '’

B Bi  OxM Opue B Ox* Opys

ox° Ot Os ds Ot

Miraflores, 23/06/2016 19 / 23

J.Grabowski (IMPAN) Graded bundles 5



AT ET S

In the dynamics of strings, the manifold of infinitesimal configurations is
A2TM, where M is the space time with the Lorentz metric g. This metric
induces a scalar product h in fibers of A2TM: for

1 0 0 1 0 1o}
:7-;11/7/\7 :7'/;1,1/7/\
v 2X OxH  Oxv’ “ 2X OxH  OxV
we have
(U’W) — h‘uyﬂ/\>'<M1/)-</,‘<)\7
where

h,u,l/l'{)\ = Burx8vX — Bu)8usk -

The Lagrangian is a function of the volume with respect to this metric,
the so called Nambu-Goto Lagrangian,

L(w) = v/ (w|w) = \/ hypeaxt XA

which is defined on the open submanifold of positive bivectors.
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AT ET S

The dynamics D C A?T A? T*M is the inverse image by a%,, of the image
dL(A?TM) and it is described by the Lagrange (phase) equations

o _ 1 Ohurro ok oo
yoa/ - Tp OxY XH X ’
_ 1 oA
Puv = 7h/il/)\l’ix Ka

p
where
P =1/ h,ul/)\nk’uVXAK .

The dynamics D is also the inverse image by ﬁﬁ, of the lagrangian
submanifold in T* A? T* M, generated by the Morse family

H  NPT*MxR, -R,
2 (p,r) = r(y/(plp) — 1).

In the case of minimal surface, i.e. the Plateau problem, we replace the
Lorentz metric with a positively defined one.
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Plateau problem

In particular, if M = R3 = {(x! = x,x? = y, x> = z)} with the Euclidean
metric, the Lagrangian reads

Lix x5 = 37 (502
Ry

The Euler-Lagrange equation for surfaces, being graphs

(x,y) — (x,y,2z(x,y)), provides the well-known equation for minimal
surfaces, found already by Lagrange :

0 Zy 0 z,

x|\ o ol Ty
X 1—|—z§—|—z§ Y 1—|—z§—|—z}%

In another form:

=0.

(1+22)z,y — 22:2,24 + (1 + z}%)zxx =0.
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A generalization

We have a straightforward generalization for all integer n > 1 replacing 2:
n n

153 «
T*N’T*M M /\”T/\”T*M M T*N’TM

/\”TI\/I /\”Tl\/l /\”Tl\/l

/\I‘IT* / /\nT* / /\n-l-* /

The map ,BM comes from the canonlcal multisymplectic (n + 1)—form Wi
on A"T*M, being the differential of the canonical Liouville n-form 67,

By ATTATT*M — T APT*M
DU LW
The map aj}, is just the composition of 37, with the canonical

isomorphism of double vector bundles T* A” T*M and T* A" TM.
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