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Double vector bundles
In geometry and applications one often encounters double vector bundles,
i.e. manifolds equipped with two vector bundle structures which are
compatible in a categorical sense. They were defined by Pradines and
studied by Mackenzie, Konieczna (Grabowska), and Urbański as vector
bundles in the category of vector bundles. More precisely:

Definition

A double vector bundle (D;A,B;M) is a system of four vector bundle
structures

D

qDA
��

qDB // B

qB
��

A
qA // M

in which D has two vector bundles structures, on bases A and B. The
latter are themselves vector bundles on M, such that each of the four
structure maps of each vector bundle structure on D (namely the bundle
projection, zero section, addition and scalar multiplication) is a morphism
of vector bundles with respect to the other structures.
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The structure of double vector bundles

In the above figure, we refer to A and B as the side bundles of D,
and to M as the double base.

In the two side bundles, the addition and scalar multiplication are
denoted by the usual symbols + and juxtaposition, respectively.

We distinguish the two zero-sections, writing 0A : M → A, m 7→ 0Am,
and 0B : M → B, m 7→ 0Bm.

In the vertical bundle structure on D with base A, the vector bundle
operations are denoted by +A and ·A , with 0̃A : A → D, a 7→ 0̃Aa ,
for the zero-section.

Similarly, in the horizontal bundle structure on D with base B we
write +B and ·B , with 0̃B : B → D, b 7→ 0̃Bb , for the zero-section.

The two structures on D, namely (D, qDB ,B) and (D, qDA ,A) will also
be denoted, respectively, by D̃B and D̃A, and called the horizontal
bundle structure and the vertical bundle structure.
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Double vector bundles - compatibility conditions

The condition that each vector bundle operation in D is a morphism with
respect to the other is equivalent to the following conditions, known as the
interchange laws:

(d1 +B d2) +A (d3 +B d4) = (d1 +A d3) +B (d2 +A d4),

t ·A (d1 +B d2) = t ·A d1 +B t ·A d2,

t ·B (d1 +A d2) = t ·B d1 +A t ·B d2,

t ·A (s ·B d) = s ·B (t ·A d),

0̃Aa1+a2
= 0̃Aa1

+B 0̃Aa2
,

0̃Ata = t ·B 0̃Aa ,

0̃Bb1+b2
= 0̃Bb1

+A 0̃Ab2
,

0̃Btb = t ·A 0̃Bb .
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The core

We denote by C the intersection of the two kernels:

C = {c ∈ D | ∃ m ∈ M such that qDB (c) = 0Bm, qDA (c) = 0Am},

which is called the core, and together with the map qC : c 7→ m,
(C , qC ,M) is also a vector bundle over M.
Eventually we can write the diagram below to emphasis the core of the
relevant double vector bundle.

D
qDB

  

qDA

~~
A

qA

  

C

qC
��

?�

OO

B
qB

~~
M
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Double vector bundles - reference example

Let qA : A→ M, qB : B → M, qC : C → M be vector bundles.
Consider the manifold

D = A×M B ×M C .

D is a double vector bundle (with side bundles A and B, and the core
C ) with respect to the obvious projections

qDA : D 3 (am, bm, cm) 7→ am ∈ A , qDB : D 3 (am, bm, cm) 7→ bm ∈ B ,

obvious embeddings

0̃A : A 3 am 7→ (am, 0
B
m, 0

C
m) ∈ D , 0̃B : B 3 bm 7→ (0Am, bm, 0

C
m) ∈ D ,

and obvious vector space structures in fibers:

(am, bm, cm) +A (am, b
′
m, c

′
m) = (am, bm + b′m, cm + c ′m) , etc.

Actually, every double vector bundle is locally of this form.
In particular, any Whitney direct sum A⊕M B, identified with
' A×M B, can be given a double vector bundle structure.
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Double vector bundles - canonical example

Let τ : E → M be a vector bundle.

Consider D = TE . Of course, as every tangent bundle D is
canonically a vector bundle over E with respect to the projection
τE : TE → E .

Applying the tangent functor to all vector bundle structures on E , we
get another vector bundle structure on TE , this time with the
projection Tτ : TE → TM:

T0E : TM → TE , T+ : TE ×TM TE → TE , Tht : TE → TE .

The proof that these structures are compatible with the ingredients of
the vector bundle structure consists of obvious but tiresome
calculations.

But we already know that what matters is only the multiplication by
reals, which is in this case the tangent lift dTh of the multiplication
by reals h in E .
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Double Graded Bundles

We can extend the concept of a double vector bundle of Pradines to
double graded bundles.

However, thanks to our simple description in terms of a homogeneity
structure, the ‘diagrammatic’ definition of Pradines can be
substantially simplified.

As two graded bundle structure on the same manifold are just two
homogeneity structures, the obvious concept of compatibility leads to
the following:

Definition (Grabowski-Rotkiewicz)

A double graded bundle is a manifold equipped with two homogeneity
structures h1, h2 which are compatible in the sense that

h1
t ◦ h2

s = h2
s ◦ h1

t for all s, t ∈ R .
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n-fold Graded Bundles

The above condition can also be formulated as commutation of the
corresponding weight vector fields, [∇1,∇2] = 0.

For vector bundles this is equivalent to the concept of a double vector
bundle in the sense of Pradines and Mackenzie.

Theorem (Grabowski-Rotkiewicz)

The concept of a double vector bundle, understood as a particular double
graded bundle in the above sense, coincides with that of Pradines.

All this can be extended to n-fold graded bundles in the obvious way:

Definition

A n-fold graded bundle is a manifold equipped with n homogeneity
structures h1, . . . , hn which are compatible in the sense that

hit ◦ hjs = hjs ◦ hit for all s, t ∈ R and i , j = 1, . . . , n .
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Double graded bundles - examples

Proposition

The tangent and phase lifts of graded bundles are compatible with the
vector bundle structures of the tangent (resp., cotangent) bundle.

First example: TE .

τ : E −→ M
(xa, y i ) 7−→ (xa)

τM : TM −→ M
(xa, ẋb) 7−→ (xa)

TE
Tτ

""

τE

~~
E

τ

  

E

τ0

��

?�

OO

TM

τM||
M

∇1 = ẋa∂ẋa + ẏ i∂ẏ i

∇2 = dT(y i∂y i ) = y i∂y i +ẏ j∂ẏ j
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Double graded bundles - examples

Second example: T∗E ∗.

πE∗ : T∗E ∗ −→ E ∗

(xa, ξi , pb, y
j) 7−→ (xa, ξi )

ζ : T∗E ∗ −→ E
(xa, ξi , pb, y

j) 7−→ (xa, y j)

T∗E ∗

ζ

""

πE∗

{{
E ∗

π

##

T∗M

πM
��

?�

OO

E

τ
||

M

∇1 = pa∂pa + y i∂y i , ∇2 = pa∂pa + ξi∂ξi .
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Canonical isomorphism

Canonical isomorphism: T∗E ∗ ' T∗E .

T∗E ∗

ζ

""

πE∗

{{
E ∗

π

##

T∗M

πM
��

?�

OO

E

τ
||

M

(xa, ξi , pb, y
j)

T∗E
πE

""

η

||
E ∗

π

""

T∗M

πM
��

?�

OO

E

τ
||

M

(xa, y i , pb, ξj)

T∗E ∗ is (symplectically) isomorphic to T∗E . The graph of the canonical
d.v.b. anti-symplectic isomorphism R is the lagrangian submanifold
generated in

T∗(E ∗ × E ) ' T∗E ∗ × T∗E by E ∗ ×M E 3 (ξ, y) 7−→ ξ(y) ∈ R.
R : (xa, y i , pb, ξj) 7−→ (xa, ξi ,−pb, y j) .
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Graded linear bundles

A double graded bundle whose one structure is linear we will call a
graded linear bundle (GrL-bundle). Canonical examples are TF and
T∗F with the lifted and the vector bundle structures.
Iterated lifts, TT∗F ' T∗TF lead to triple structures of this kind.

Example. The weight vector field of the lifted graded structure on
TT2M with coordinates (xa, ẋb, ẍc , δxd , δẋe , δẍ f ) is

∇2 = ẋb∂ẋb + ẍc∂ẍc + δẋe∂δẋe + δẍ f ∂δẍ f .

It yields a GrL-bundle with the standard Euler vector field of the
tangent bundle structure ∇1 = δxd∂δxd + δẋe∂δẋe + δẍ f ∂δẍ f .

Another example: if τ : E → M is a vector bundle, then ∧kTE is
canonically a GrL-bundle:

∧kTE

xx ''
E

''

∧kTM

vv
M

.
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Linearity

Linearity of different geometrical structures is usually related to some
double vector bundle structures.

A bivector field Π on a vector bundle E is linear if the corresponding
map

Π̃ : T∗E −→ TE

is a morphism of double vector bundles.
A two-form ω on a vector bundle E is linear if the corresponding map

ω̃ : TE −→ T∗E

is a morphism of double vector bundles.
A (linear) connection on a vector bundle E is a morphisms of double
vector bundles Γ : E ×M TM → TE , that acts as the identity on the
vector bundles E and TM:

(∇Xσ)v = Tσ(X )− Γ(X , σ) ,

where σv = y i (x)∂ẏ i is the vertical lift of the section σ:

M 3 x 7→ σ(x) = (y i (x)) ∈ E .
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Lie algebroids

τ : E → M is a rank-n vector bundle over an m-dimensional manifold
M, and π : E ∗ → M its dual;

Ai (E ) = Sec(∧iE ), for i = 0, 1, 2, . . . , the module of sections of the
bundle ∧iE .

A(E ) =
⊕

i∈ZAi (E ) the Grassmann algebra of multisections of E .

We use affine coordinates (xa, ξi ) on E ∗ and the dual coordinates (xa, y i )
on E .

Definition

A Lie algebroid structure on E is given by a linear Poisson tensor Π on E ∗,
[Π,Π]Schouten = 0. In local coordinates,

Π =
1

2
ckij (x)ξk∂ξi ∧ ∂ξj + ρbi (x)∂ξi ∧ ∂xb ,

where ckij (x) = −ckji (x).
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Lie algebroids - equivalent definitions

The bivector field Π defines a Poisson bracket {·, ·}Π on the algebra
C∞(E ∗) of smooth functions on E ∗ by {φ, ψ}Π = 〈Π, dφ ∧ dψ〉.

Theorem

A Lie algebroid structure (E ,Π) can be equivalently defined as

a Lie bracket [·, ·]Π on the space Sec(E ), together with a vector
bundle morphisms ρ : E → TM (the anchor), such that

[X , fY ]Π = ρ(X )(f )Y + f [X ,Y ]Π, (1)

for all f ∈ C∞(M), X ,Y ∈ Sec(E ),

or as a homological derivation dΠ of degree 1 in the Grassmann
algebra A(E ∗) (de Rham derivative). The latter is a map

dΠ : A(E ∗)→ A(E ∗) such that dΠ : Ai (E ∗)→ Ai+1(E ∗), dΠ2
= 0,

and that, for α ∈ Aa(E ∗), β ∈ Ab(E ∗) we have

dΠ(α ∧ β) = dΠα ∧ β + (−1)aα ∧ dΠβ . (2)
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Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

ι([X ,Y ]Π) = {ι(X ), ι(Y )}Π,

π∗(ρ(X )(f )) = {ι(X ), π∗f }Π ,

(dΠµ)v = [Π, µv ]S .

where ι(X )(e∗p) = 〈X (p), e∗p〉, µv is the natural vertical lift of a k-form

µ ∈ Ak(E ∗) to a vertical k-vector field on E ∗, and [·, ·]S is the Schouten
bracket of multivector fields. In a local basis of sections {e1, . . . , en} of E
and the corresponding local coordinates,

[ei , ej ]Π(x) = ckij (x)ek ,

ρ(ei )(x) = ρai (x)∂xa ,

dΠf (x) = ρai (x)
∂f

∂xa
(x)e i ,

dΠe i (x) = c ilk(x)ek ∧ e l .

J.Grabowski (IMPAN) Graded bundles 2 Miraflores, 21/06/2016 17 / 23



Lie algebroids - examples

A Lie algebroid over a single point, with the zero anchor, is a Lie
algebra.

The tangent bundle, TM, of a manifold M, with bracket the Lie
bracket of vector fields and with anchor the identity of TM, is a Lie
algebroid over M. Any integrable sub-bundle of TM, in particular the
tangent bundle along the leaves of a foliation, is also a Lie algebroid.

If (M,Λ) is a Poisson manifold, then the cotangent bundle T∗M is a
Lie algebroid over M. The anchor is the map Λ# : T∗M → TM The
Lie bracket [, ]Λ of differential 1-forms satisfies [df , dg ]Λ = d{f , g}Λ.

If P is a principal bundle with structure group G , base M and
projection p, the G -invariant vector fields on P are the sections of a
vector bundle with base M, denoted E = TP/G , and called the
Atiyah algebroid of the principal bundle P. This vector bundle is a Lie
algebroid, with bracket induced by the Lie bracket of vector fields on
P, and with surjective anchor induced by Tp.
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Lie algebroids - related objects

For any section X ∈ Sec(E ), the Lie derivative LX , acting in A(E )
and A(E ∗), is defined in the standard way:

LX (f ) = ρ(X )(f ) , for f ∈ C∞(M) ,

LX (Y1 ∧ · · · ∧ Yl) =
l∑

i=1

Y1 ∧ · · · ∧ [X ,Yi ]Π ∧ · · · ∧ Ya ,

LX (α) = iXdΠ + dΠiX .

We know that the linear bivector field Π on E ∗ induces a morphism of
double vector bundles Π# : T∗E ∗ → TE ∗, covering the identity on
E ∗. Composing it with the canonical isomorphism R : T∗E → T∗E ∗,
we get a morphism of double vector bundles

εΠ : T∗E → TE ∗ ,

covering the identity on E ∗.
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General algebroids

A general algebroid is a double vector bundle morphism covering the
identity on E ∗:

T∗E
ε //

πE

!!
T∗τ

��

TE ∗

Tπ

##
τE∗

��

E
ρ //

τ

��

TM

τM

��

E ∗
id //

π

""

E ∗

π

""
M

id // M

In local coordinates,

ε(xa, y i , pb, ξj) = (xa, ξi , ρ
b
k(x)yk , ckij (x)y iξk + σaj (x)pa) .
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Algebroids

Any such morphism is associated with a linear tensor field on E ∗,

Πε = ckij (x)ξk∂ξi ⊗ ∂ξj + ρbi (x)∂ξi ⊗ ∂xb − σ
a
j (x)∂xa ⊗ ∂ξj .

We speak about a skew algebroid (resp. Lie algebroid) if the tensor Πε is
skew-symmetric (resp., Poisson tensor).

Theorem

An algebroid structure (E , ε) can be equivalently defined as a bilinear
bracket [·, ·]ε on sections of τ : E → M, together with vector bundle
morphisms aεl , a

ε
r : E → TM (left and right anchors), such that

[fX , gY ]ε = f (aεl ◦ X )(g)Y − g(aεr ◦ Y )(f )X + fg [X ,Y ]ε

for f , g ∈ C∞(M), X ,Y ∈ Sec(E ).
For skew-algebroids the bracket is skew-symmetric, thus aεl = aεr = ρε, and
for Lie algebroids it satisfies the Jacobi identity,

[[X ,Y ]ε,Z ]ε = [X , [Y ,Z ]ε]ε − [Y , [X ,Z ]ε]ε .
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Non-holonomic reduction

Let ε be a Lie algebroid structure on a vector bundle E over M associated
with the tensor Πε.
For a linear subbundle D in E , supported on the whole M, consider a
decomposition

E = D ⊕M D⊥ (3)

and the associated projection P : E → D. With such a decomposition we
can associate a skew-algebroid structure on D.
The projection P induces a map on sections: P : Sec(E )→ Sec(D) and
thus a bracket

[X ,Y ]εP = P[X ,Y ]ε (4)

on sections of D – the nonholonomic restriction of [·, ·] along P.
This is a skew algebroid bracket with the original anchor.
A particular case of this construction can be applied to a vector subbundle
D of TM, for M equipped with a Riemannian structure.
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Homework
Problem 1. Prove that the tangent and cotangent bundles of a double
graded bundle are canonically triple graded bundles.
Problem 2. On the space of curves γ : R→ M in a manifold M,
consider the (R, ·)-action ĥt(γ)(s) = γ(ts).
Prove that this action induces the canonical homogeneity structure on
the space T2M of second jets of these curves.
Problem 3. Show that the second tangent lift of a homogeneity
structure h on F , defined by (T2h)t = T2(ht), is a homogeneity
structure on T2F . Here T2φ : T2M → T2N denotes the obvious
second-jet prolongation of φ : M → N to the second tangent bundles.
Problem 4. Prove that the lifted homogeneity structure T2h from the
previous problem is compatible with the canonical homogeneity
structure on the second tangent bundle T2F .
Problem 5. Show that the anchor map induces, for any Lie algebroid
E , a homomorphism of the Lie algebroid bracket into the Lie bracket
of vector fields:

ρ([X ,Y ]ε) = [ρ(X ), ρ(Y )]vf .
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