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Holonomic Constraints

Pendulum

Constraint: x2 + y? = {2

Geometric Constraint. Restriction in coordinate values.
Configuration space is not R? but S?.



Nonholonomic Constraints

Chaplygin Sleigh

/" Contact Point

Kinematic Constraint:
ycos¢ = xsin¢

No constraint on the configurations.



Suslov Problem

Kinematic Constraint:

(a,2) =0

No constraint on the configurations. Q = SO(3).



Suslov Problem

Kinematic Constraint:

(a,2) =0

No constraint on the configurations. Q = SO(3).



Veselova Problem

Kinematic Constraint:

<63,w> =0

No constraint on the configurations. Q = SO(3).



Veselova Problem

Kinematic Constraint:

<€'3,w> =0

No constraint on the configurations. Q = SO(3).



Chaplygin Top

Kinematic Constraint: Rolling without slipping.
No constraint on the configurations. @ = SO(3) x R2.



Rigid body dynamics

Body frame. Not inertial. Attached to the body.

DA



Space and body frames

Change of basis matrix is B € SO(3).

q=BQ



Angular velocity vector

In body coordinates:

_ 0 —Q3 Qb
B'B=Q0=| Q3 0 -0
- U 0
Left invariant
In space coordinates:
) 0 —Ww3 w2
BB l=G=|ws 0 —w
—Ww?7 w1 0

Right invariant



Suslov Problem

Constraint:

<a7Q> =

Lagrangian:
L= (IQ,Q)



Suslov problem

. 1
Q= i ((h31 + h322)),

. 1
Q= E ((/1391 + /2392)91) .

1
E= 5(/119% + 10Q3)

Q,

/; 1L0+1.0:20
ij o,




Veselova problem

IQ = (IQ) x Q + Ay
) - I x Q1)

(7, I71y)
Y=7xQ

Equations on TS?



Chaplygin Top

u=B(pxQ)

mi = —mges + Ry, IQ=(1IQ) x Q+ R



Ry =mp x (2 x (px Q)+ mpx (pxQ)
+mp x (px Q)+ mgp x v

IQ = (IQ) x Q+ R,

p=—-Ry—(tE3 y=yxQ

Equations on 52 x R3



Smooth convex body rolling on the plane

Ry =mp x (2 x (px Q)+ mpx (pxQ)
+mp x (px Q)+ mgp x v

10 = (IQ) x Q+ R

If surface is given by f(p) =0 with f : R3 - R

V).
=R T



Ellipsoid rolling on the plane

Ry =mp x (2 x (p x Q)+ mp x (px Q)
+mp x (px Q)+ mgp x v

IQ = (IQ) x Q+ R,

—A
p=——2e, A= diag(a® 1%, )
(Av,7)

A=79xQ



Nonholonomic equations of motion

d (0L oL
() = R, Y —
g ( aq,) - 8(a) =0

Equivalent to:




Example: Chaplygin sleigh

xsinf — ycost =0

1 - ;
L= E((J + ma?)6? + m(x> + y?) + 2mab(y cos § — x sin 6))

m 0 0 0
D y—_m 9. = =
span{ 32 0 sinf cosf y}



Example: Chaplygin sleigh

ma
C112:07 C122:_J—|—m32

1
LC(u7waxay70) = 5((‘] + maz)w2 + mu2)

2

mu = maw (J 4+ ma®)i = —mauw



Example: Suslov problem

c) — Z=c _ v BYLEc o o
dt <6va> pala) aq’ Capla)v v’ q = pL(q)v

1
a=b5 {23 =0, Le(B, S, $) = 5(/11Q§ + h2Q3)

b1 = — (b3 + hs0)Q), koS = ((h3Q1 + h3Q2)Q) .
B = BQ.



Hamiltonian formulation

d (0L ;. Ole o 0L
dt <(9Va - pa(q) aq; aﬁ(q)v v
q' = palg)v®
Equivalent to:
OH . OH
-k o Y "
Po = pa(q) aqk a{)’(q)p'Y 8P5
i i, OH
¢ = pa(q)apa

Xah is tangent to F




Properties of F

1. Integrable if and only if constraints are holonomic.
2. F is symplectic
3. X, characterized by

anh Q’]‘— = dH|]'—

Distributional Hamiltonian approach Bates, Cushman, etc

4. Ibort, de Ledn, Marrero, Martin de Diego:

{f, g}nn(m) = Qm(Rm(Xz(m)), Rm(Xg(m)))

— The span of the "Hamiltonian” vector fields Xf"h with
f € C°°(D*) is the distribution F.

Conclusion: The bracket {-, -}, satisfies the Jacobi identity if and
only if the constraints are holonomic.



Example. Chaplygin sleigh

1
L. = 5 ((J + ma®)w?® + mu?) .
and ma
cL —o A =——"
12 ) 12 T+ ma2
We have
0L 0L 5
Pu= - =mu, pw—aw—(J+ma)w.

The Hamiltonian is

H:E L_ij .
2\J+ma2 m

The equations of motion:

. Pu . Pu . ; Pw
X = — cosf = —sinf 0= ——
m ’ Y =m ’ J+ ma?
map? . apup
Po =

p”:(J—i—maz)z’ I+ ma?



X 0 0 0 cos 6 0

J Y 0 0 0 sin 6 0

— 1o | = 0 0 0 0 1

dt Pu —cosf —sinf O 0 T P
Po 0 0 -1 _%,zﬁpw 0

Rank 4 matrix. Null space
(—sinf,cos6,0,0,0)
Constraint one-form

—sinf dx + cosf dy.

0 o 0 90 0
F = {cos@a+sm06 ' 597 apu 8pw}




Measure preservation of homogeneous systems in vector
spaces

K= f(x), xeR"
f homogeneous of degree k € N: i.e. f(Ax) = A\ f(x).

Kozlov ‘88: f preserves a smooth measure p(x) dx if and only if it
preserves the euclidean measure dx and p(x) is a conserved
quantity.



OH , OH
-k _ Y

OH

q = ﬂa(Q)a

Suppose there is no potential energy

H(d', pa) = 307 (An(@)) '

Kozlov: Invariant measure must be basic n(q) dg A dp.



Example: Suslov problem

. 1
Q= I ((h31 + h322)),

. 1
Q= T ((h31 + h322)1) .

Invariant measure if and only if /;3 = b3 axis of forbidden rotations
is a principal axis of inertia.



Symmetry reduction of nonholonomic systems

Nonholonomic system: @, L, D.
Free and proper action of Lie group G on @

V:GxQ—Q

Tangent lift
UV:6Gx TR —=TQ

Suppose that ] preserves L and D. Action on D

®:GxD—D, qag:ﬁng

Vector field X, is equivariant. Reduced dynamics on D/G=vector
bundle over S = Q/G.



Example: Chaplygin sleigh




Example: Suslov problem

Q = SO(3)

L= %@m,m, (2,Q) =0

D/G =R?

1
I ((h381 + h322)),

. 1
Q= = ((h31 + h3822)1) .

Q =



Example: Veselova problem

Q = S0(3)
Lz%(]IQ,Q), (7, Q) =w3 =0
D/G = TS?

vl =1, (v, ) =0



Example: Chaplygin top

Q = SO(3) x R?

D/G = Rank 3 vector bundle over S?

Q=1



Reduced equations of motion
Work on Hamiltonian formulation.
®:GxD*— D*
m:D* = D*/G:=R
Hamiltonian is invariant
H=hom, h:R—R
Nonholonomic bracket is invariant
{ho®g, ho®gtny={fi,f2}nno Py

Bracket on R:

{Fi,Rr={Fom Fom}mn



Coordinates on R = D*/G

R = D*/G is a vector bundle over S = Q/G

If the basis {X,} is equivariant then p, is invariant.
Coordinates for R = D*/G are (s', p,)

{Pas Pstr = —C5(s)py
{5i7 Sj}R = 07
{s', pa}r = (mXa)[s']



Reduced equations of motion

. ;L Oh oh
pa = *PA(S)@ - Cfapﬁa

. ; Oh
Pa = M - Czﬂ(s)m%
- pA 8PA pa



Reduced equations of motion

) ; oh 3 oh
pa=—pa(s) 55 — CAapﬁ—apa
oh
N _C'y
Pa aﬁ(s)p’Y 9ps
¥ ; oh
§' = S§)—o
pA( )apA

Look for measure e”(5) ds A dpa A dpa:

) . oh o ( ;. . 0h
T o) i () 2 o) 2 | _ () 2L _
85,' <e pA(S)apA> +e 8PA ( pA(S)as,'

s) 9

Oh
U( - P =
+e o, ( C,5(s)py OpB) 0




Necessary conditions for invariant measure
e”(s) ds A dpa A dp,

)
pA()J a’;f‘+CAa_0 for all A

Cy,=0 for all a

Equivalent form given by Bloch, Zenkov 2003.



Example: Chaplygin sleigh

Dy C T4Orbg(q)

Z1 = cos 93 + sin Hg

ox dy
0
22 - %
ma
Gz =0 C122:_J+ma2

Invariant measure only if a =10

mu = maw?

(J + ma®)iy = —mauw

E=Z((J+ ma®)w?+ mu?).

N~






sleigh_in_vacuum.avi
Media File (video/avi)


Example: Chaplygin top

lmg Es

el

dim(Dg N T4O0rbg(g)) =1
One necessary condition
Ci(s)=0
s are coordinates on S?

Fedorov, GN, Marrero 2015: (In the absence of gravity) there
exists an invariant measure if and only if

Chaplygin L 0 O Routh
£=0 sphere or I=1 0 KL O sphere
1903 0 0 &K 1884




Homogeneous ellipsoid rolling on the plane

€3

b

el

Invariant measure if and only if two of the semi-axes are equal.



Rigid body with planar section that rolls over a sphere

m
Coy = ————(hs(! (2
ol = R3 det(T)( 3(h1 + mé°)s

— h3(ho + mt?)sy + ml(ly — In)s152).
Necessary conditions for existence of invariant measure:

ho=h3=h3=0 (h1 — hp)¢ =0.



Invariant measures for Chaplgyin systems

Tq=Dq® qu"bG(Q)

pfq(s)@ +55(5)+ Chals) =0 forall A



Inhomogeneous sphere rolling on a circular cylinder

Existence of invariant measure if and only if:
Sphere is homogeneous.



The modular vector field of an (almost) Poisson structure

Grabowski (2012), Marrero, GN, Fedorov (2015)
Consider bracket of functions in R™:

{F.G}(x) = (VF(x)) Tm(x)VG(x)

Skew-symmetry: T,3 = —T3q

Jacobi identity: Wgaaé%” +7r5V BX5 + 758 3 = =0

Hamiltonian vector fields:
OH

x = m(x)VH(x) == Xu(x); Xo = ﬂa[g(x)a—xﬁ(x)
Taking (euclidean) divergence
0
OTag oOH O?H

div(Xy(x)) = O (x x5 ——(x) + map(x) D (x)
= M(x) - VH(x). modular vector field



In general:

{o,H}
div(e?® Xy(x)) = e7™) | Vo (x) - Xp(x) + div(Xy(x))

= "0 (M(x) = Xs(x)) - VH(x)

Definition: If M(x) is Hamiltonian = 7 is unimodular

Unimodularity: Sufficient condition for the existence of an
invariant measure.

With some extra conditions (related to homogeneity of the
Hamiltonian vector fields) unimodularity is also a necessary
condition for the existence of an invariant measure.

Note: The definition of unimodularity and the above conclusions
only depend on the skew-symmetry of .



The modular class of a Poisson manifold

If the Jacobi identity holds then the entries of M satisfy

O M oM,

v Oxy * M O0xy IR Oxy

M

=0, Laym=0.

M is a Poisson vector field.

First Poisson _ {Vector fields that preserve 7 }
cohomology group ~ {Hamiltonian vector fields}

Representative of M is the modular class of m (Weinstein ‘96).

Important objects in the study (topology, classification) of Poisson
manifolds (Weinstein, Xu, Dufour, Grabowski, Lu, Evens,...)

Unimodularity <= modular class is zero.



Summary: Unimodularity and invariant measures for
(almost) Poisson Hamiltonian systems

Unimodularity

Existence of an invariant measure



Summary: Unimodularity and invariant measures for
(almost) Poisson Hamiltonian systems

Unimodularity

Extra conditions related
to homogeneity of
Hamiltonian vector fields

Existence of an invariant measure

Note: The discussion can be generalized to orientable (almost)
Poisson manifolds. The unimodularity is a global and intrinsic
concept.



Example: Hydrodynamic Chaplygin sleigh (zero circulation)

This system asymptotically approaches periodic orbits. No
invariant measures.

Fedorov, GN, (2010)



Example: Hydrodynamic Chaplygin sleigh with circulation

For low energies the system is driven by the circulation and the
behavior is Hamiltonian-like.

For large energies the system asymptotically approaches periodic
orbits. No invariant measures.

Fedorov, GN, Vankerschaver (2013).




n-Trailer vehicle

B, center of

Bravo, GN (2015)



Casea=0n=1

(mf? — J)ucos asin a(fw — usin a)

{((M 4 mcos? a)f2 + Jsin? o)




LR systems: Veselova problem

Q = S0(3)

1



Example: Chaplygin sleigh

xsinf — ycost =0

1 : ;
L= E((J + ma?)6? + m(x> + y?) + 2mab(y cos § — x sin 6))



Convex rolling body rolling on the plane

Equations of motion

K=KxQ+mpx(Qxp)+mgpxr
y=7xQ

K =1IQ+ mp x (2 x p) p=p(7)



Chaplygin top

hi 0 I3
p(v) = —Ry —(E;3 I=10 by bhs
hs h3 I3

Es

lmg

K=KxQ+mpx(Qxp)+mgpx~
Y=7xQ



Chaplygin sphere

K = K x Q + mp>~{Q=<p) + Mgp=7

y=7xQ

Linear first integral
F=(K,7)



Liouville Integrability of Hamiltonian systems

(M, Q) symplectic manifold, dim(M) = 2n.

n =number of degrees of freedom.

H € C*°(M) Hamiltonian function.

Xy Hamiltonian vector field on M defined by

ix, 2 = dH.
Poisson bracket F, G € C*°(M):
{F, G} := Q(Xr, Xo)
Closeness of 2 <= Jacobi identity.

dQ =0 < {F,{F, F3}}+{Fs3,{F1, F}}+{F>, {F3,F1}} = 0.



Theorem (Liouville, Complete Integrability)

Suppose that the smooth functions H = Fy, F;, ..., F, are
(pairwise) in involution {F;, F;} = 0.
Consider a level set of the functions F;:

Mg ={x e M : Fi(x) = f;, i=1,...,n}.

Assume that the n functions F; are independent on Mg and that
Ms is compact and connected. Then



Theorem (Liouville, Complete Integrability)

» M is a smooth manifold, invariant under the flow of Xy.

» Every connected component of Mg is diffeomorphic to
Tk x Rk,

> There are coordinates p1,...,px Mod 2w, Yi,...,Yn_k ON
Tk x R"=k in which Hamilton's equations on Ms take the form

Om = Wm, Vs =06 (w,c = const).



Action - Angle Variables

» If M is compact and connected then it is diffeomorphic to T".

» There exist action - angle coordinates
S,y dny ©1,...,00 mod 27 in a neighborhood of M:

» They are symplectic
Q=dJ/Ndp

» The functions F; depend only on J.
» In particular H = H(J). Hamilton's equations:

OH _ o _9OH _

737@/( , Pk = 57Jk = Wk(J)-

Ji =



Example: Pendulum

=
.




Example: Symplectic Reduction of Euler Top

o 5 = = £ DA



The Heavy Top

I = (IQ) x Q+ mgly x x
¥ o= vxQ

» Hamiltonian system. Lie Poisson equations on
se(3)* = {(M =1Q,7) € R3 x R3}.
» Casimirs of the bracket

(I2,7)  and ][,

» 4 dimensional symplectic leaves. Liouville integrability requires
extra first integral independent of the Hamiltonian.



Known cases of integrability of the Heavy Top

» Euler-Poinsot case: ¢ =0 (Free rigid body). Extra integral:
F = (IQ,1Q)
> Lagrange Top: h = b, x1 = x2 = 0. Extra integral:
F=Q3

> Kovalevskaya Top: /1 = lh = 2/3 and x2 = x3 = 0. Extra
integral:

F = [(Q1+i22)* + x1(y1 + im2)l[(Q1 — i92)* + x1(n — i72)]-



Key ingredient in the proof of Liouville's Theorem

» The Hamiltonian vector fields Xg,, i =1,...,n
» tangent to Mg, (skew-symmetry of Poisson bracket)
» are linearly independent on M (non-degeneracy of Q)

» commute

[Xr Xp] = —Xr.p)

Consequence of the Jacobi identity!



Theorem (Jacobi's last Multiplier)
Consider the system

x = f(x), xeR"

and suppose that it preserves a smooth invariant measure. If the
system has n — 2 first integrals F1, F, ..., F,_o that are
independent on the invariant set
Ec.={xeR": Fs(x) =cs,1 <s < n—2} then
1. the solutions that belong to E. can be found by quadratures.
If Ec is compact and connected, and f # 0 on E. then

2. E. is a smooth surface diffeomorphic to a two-dimensional
torus,

3. it is possible to choose angle variables 1, p>» mod 2w on E.
so that,
. A . 7
T (o) 7T 0(pn02)
where \, i =const, |A| + |u] # 0 and ® is a smooth positive
function that is 2m-periodic in w1 and ©»:




Important ingredients in integrability of nonholonomic
systems

e Existence of first integrals.
e Existence of an invariant measure.

Reduction

Hamiltonization. When do the reduced equations possess a
Hamiltonian structure?



Example: Chaplygin sleigh

Reduced equations of motion

by — map? 5, = __2PuPu
Y+ ma?)?’ v J+ ma?’

The Hamiltonian is

oL e
2\J+maZ2 m

pu:{pUaH}a pw:{pwaH}

Where

{F7G}:

~_map,, OF 0G _8i8G
J+ ma? \Op, Op,  Op., Opy



Veselova problem

Q = SO(3)

L:%<]IQ,Q> w3 =0

Example of an LR system!
Exceptional class of nonholonomic systems that always have an
invariant measure (Veselov, Veselova 1988).



Veselova problem

Phase space TS2: ||[y]|=1, (7,Q2) =0

Existence of invariant measure.

\/ (7, I71y) dQ dy.

First integrals
1 1 1 5

Integrable by Jacobi's theorem.



Hamiltonization of Veselova system

Theorem (Chaplygin's Reducing Multiplier Theorem)

If a Chaplygin system with dim(S) = 2 possesses an invariant
measure, then it is Hamiltonizable.

After a time reparametrization the Veselova system is a
Liouville-integrable Hamiltonian system on TS2.

Fedorov, Jovanovi¢ (2004) have found integrability and
Hamiltonization of multi-dimensional versions of the Veselova
problem.



Chaplygin sphere

K=K xQ, y=v9xQ
K =1Q + mr?y x (2 x 7)

Phase space R3 x 2, (K,7)
First integrals

H=3(KQ), A=K, F=(KK)

Invariant measure
_1

1 5 2
Py <'y, (I+ mR*) > dK d~.

Integrable by Jacobi's theorem: Chaplygin 1903.



Hamiltonization of Chaplygin sphere

» Duistermaat [2000] Although the system is integrable in every
sense of the word, it neither arises as a Hamiltonian system,
nor is the integrability an immediate consequence of the
symmetries.

» Borisov and Mamaev [2002] Chaplygin’s Ball Rolling Problem
is Hamiltonian. After a time reparametrization write the
reduced equations of motion with respect to a nonlinear (yet
mechanical!) bracket of functions that satisfies the Jacobi
identity.

» Ehlers, Koiller, Montgomery, Rios [2004] failed to obtain the
Hamiltonian structure of the reduced equations by their
(geometric) methods.

» GN[2007] Understand the geometry of B.& M. bracket and tie
it with the general theory of almost Poisson brackets for
nonholonomic systems.



Families of Almost Poisson Brackets for a nonholonomic
system (GN [2010])

» ldea: Equations of motion

k
ix Qo=dH+> N6, Xon(m) € Fpy
i=1

can also be written as:

k
ix (Qq+B)=dH+> N,
i=1
for a 2-form B satisfying anh B=0.

» Construct bracket using the non-canonical form
QQ = QQ + B.



Gauged Almost Symplectic Structures

Definition
A nontrivial two-form B on T*Q defines a Gauged (almost)
Symplectic Structure, Q¢ := Q¢ + B, for our nonholonomic
system if the following conditions hold:

> iXH B =0.

» The form B is linear semi-basic.

B = Bf(q) px dg' A dq.



Gauged Almost Poisson Brackets

Theorem

» A Gauged Almost Symplectic Structure QQ is non-degenerate
(not necesarilly closed!)

v

The equations of motion can be written as

k
ix Qo=dH+)> N7
i=1

v

Constraints remain the same: Xyn(m) € Fr, ¥Ym € D*.

v

For all m € M we have the symplectic decomposition

T(T*Q) = Fy & FiC.

v

Same relevant properties as S1q!



Definition of B-Gauged Brackets

> Let Py i T(T*Q) — Fi be the projector associated to the
decomposition T(T*Q) = Fm Fne.

> Xon(m) = P Xp(m).

» For fi,f, € C*°(D*) define the B-gauged bracket:

{flv ﬁ}fh(m) = QQ(ﬁmxﬁ(m)vﬁmxﬁ(m))v
with X; defined by ig Qo = df;, j=1,2.
J

» Equations of motion can be written with respect to the new
bracket

Xon(F)(m) = {f, H} 5 (m),
» Both brackets have the same characteristic distribution F.

> In general {fi, fz}fh # {f, i} nn. Different way of encoding
the constraint forces!



Suslov problem with potential

> The system has a smooth preserved measure <= ais an
eigenvector of I
Restrict to this case. Assume a = E;.



First integrals

Q0 = (HQ)xQ+7xa—U+)\a,
Oy

¥o= 4xQ

» Constraint (a,2) = 0.
» Geometric integral ||| = 1.
> Energy H = 3(IQ, Q) + U(v).

Integrability? (In the sense of Jacobi's last multiplier Theorem)
Depends on the existence of one additional independent integral.
(Reminiscent of Heavy top)



Known cases of integrability of the Suslov Problem

» Lagrange Top: h = bk, U(y) = x373. Extra integral:
F = (IQ,~)

(Constraint is a preserved quantity. The system is
Hamiltonian.)

» Generalized Kharlamova and Klebsh-Tisserand cases:

hsh  U®)=U(11.7% +73) + Ua(72,7%3 +13).

Extra integral:

1
K= §<HQ,HQ> + hUi (71,7 +73) + hUs(72,73 +73).



Okuneva's Work

» Okuneva (1986,1987) studied the particular integrable case:

U(v) = Ui(n1) + Ua(2)

Striking result:

Two dimensional invariant manifolds may have genus
from zero to fivel
Very different from integrable Hamiltonian Systems.
Very different from integrable, Hamiltonizable nonholonomic
systems (Chaplygin sphere, Veselova problem) where the
system describes non-uniform rectilinear motion on tori.



Open problems in nonholonomic systems

Rolling of bodies with non-smooth surfaces

» Gomboc



Open problems in nonholonomic systems

» Perturbations of systems with an invariant measure.

» Perturbations of integrable nonholonomic systems.
Nonholonomic KAM theory?

» Validity of Lagrange-D’'Alembert principle and better
understanding of friction-related phenomena.

» Discrete nonholonomic mechanics. Nonholonomic standard
map?



And finally...

Thank YOu!



	The modular vector field of an (almost) Poisson manifold

