Nonlinear Stability
of
Riemann Ellipsoids
with
Symmetric Configurations

Miguel Rodríguez-Olmos UPC, Spain joint work with Esmeralda Sousa-Dias IST, Portugal

GMC Summer School, Miraflores 2016

The Hydrodynamic Equation and Dirichlet's Problem

Motion of a self-gravitating ideal fluid (homogeneous and incompressible):

$$\rho \frac{du_i}{dt} = -\frac{\partial p}{\partial x_i} + \rho \frac{\partial \mathcal{B}}{\partial x_i},$$

 ρ : density, $p(\vec{x})$: pressure, $\vec{u}(\vec{x})$: velocity field and $\mathcal{B}(\vec{x})$ gravitational potential due to instantaneous configuration $V \subset \mathbb{R}^3$,

$$\mathcal{B}(\vec{x}) = G \int_{V} \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|} d^{3}\vec{x}'.$$

Dirichlet's Problem: When a homogeneous self-gravitating incompressible fluid mass can maintain at all time an ellipsoidal figure (which may be variable) in which the motion is, in an inertial frame, a linear function of the coordinates?.

 $\to \dots$ explanation of the figure of the Earth and planets. (Newton, Lagrange, Lyapunov, Poincaré,...).

Riemann-Lebovitz Solution to Dirichlet's Problem

▶ Instantaneous configuration at time *t*:

$$V_t = Q(t) \left(B(\vec{0},1) \right),$$

where $Q(t) \in \mathrm{SL}(3)$, and $B(\vec{0},1) \subset \mathbb{R}^3$ unit ball.

Singular Value Decomposition:

$$Q = L^T A S$$
,

with $L, S \in SO(3)$ and $A = diag(a_1, a_2, a_3)$.

Angular velocity and vorticity:

$$\Omega = \dot{L}L^T$$
, $\Lambda = \dot{S}S^T$, $(\Omega, \Lambda \in \mathfrak{so}(3))$.
 $Q \Leftrightarrow (A, L, S) \Leftrightarrow (A, \Omega, \Lambda)$

Riemann-Lebovitz:

 V_t is a solution for Dirichlet's problem iff Q(t) satisfies Riemann's equations:

$$\begin{cases} (1) & \ddot{A} + \Omega(\Omega A - \dot{A} - A\Lambda) + (-\Omega A + \dot{A} + A\Lambda)\Lambda \\ & + \frac{d}{dt}(A\Lambda - \Omega A) - L\left(\frac{\partial V}{\partial Q}\right)_{Q = L^{T}AS} S^{T} \\ &= \lambda L\left(\frac{\partial (\det Q)}{\partial Q}\right)_{Q = L^{T}AS} S^{T} \end{cases}$$

$$(2) \quad \det A = 1$$

where $V: \mathrm{GL}^+(3) \to \mathbb{R}^3$, is the self-gravitating potential:

$$V(Q) = -eta \int_0^\infty rac{ds}{\Delta}, \quad eta = rac{8}{15} \pi^2 G
ho^2,$$

and

$$egin{array}{lcl} \Delta & = & \left[s^3 + l_1(Q) s^2 + l_2(Q) s + 1
ight]^{rac{1}{2}} \ l_1(Q) & = & \mathrm{tr}\left(QQ^T
ight) \ l_2(Q) & = & rac{1}{2} \left(\mathrm{tr}^2(QQ^T) - \mathrm{tr}(QQ^T)
ight). \end{array}$$

Symmetries of Riemann's equations:

If $L_1, L_2 \in SO(3)$, a solution Q(t) is invariant under :

- $(A, \Omega, \Lambda) \longrightarrow (L_1 A L_2^T, L_1 \Omega L_1^T, L_2 \Lambda L_2^T),$
- ▶ $(A, \Omega, \Lambda) \longrightarrow (A, \Lambda, \Omega)$ (Dedekind's Theorem).

Therefore, Riemann's equations (as well as V, I_1, I_2) are invariant under the action of the semidirect product group

$$\mathbb{Z}_2 \ltimes (SO(3) \times SO(3))$$
.

Riemann ellipsoids:

Solutions of Dirichlet's problem with: shape, angular velocity and vorticity constants. Then

Q(t) Riemann ellipsoid \Leftrightarrow constants (A, Ω, Λ) solution of Riemann's equations.

Examples:

- ▶ Spherical equilibrium: $(A, \Omega, \Lambda) = (\mathrm{Id}, 0, 0)$. This equilibrium is Lyapunov stable, as can be seen using the potential energy V as a Lyapunov function.
- ▶ Jacobi ellipsoid: $A = \operatorname{diag}(a_1, a_2, a_3), \ \Omega = \omega \ \widehat{\mathbf{e_3}}, \ \Lambda = 0.$
- ▶ Dedekind ellipsoid: $A = \text{diag}(a_1, a_2, a_3), \ \Omega = 0, \ \Lambda = \omega \ \widehat{e_3}.$

Note that the Jacobi and Dedekind ellipsoids are interchanged by the \mathbb{Z}_2 -symmetry.

► MacLaurin Spheroids:

$$(A, \Omega, \Lambda) = (\operatorname{diag}(a, a, c), \frac{|\omega|}{2} \widehat{\mathbf{e}_3}, \frac{|\omega|}{2} \widehat{\mathbf{e}_3}).$$

MacLaurin's condition (1742):

This family of solutions exist if a > c and

$$\omega^2=\frac{2\pi G\rho}{e^3}\left((1-e^2)^{\frac{1}{2}}(3-2e^2)\arcsin e-3e(1-e^2)\right),$$
 where $e=\left(1-\left(\frac{c}{a}\right)^2\right)^{\frac{1}{2}}$ is the eccentricity.

Chandrasekhar:

Linearization of Riemann's equations shows that this solution is spectrally stable in the range 0 < e < 0.953887.

Objective:

Study the geometry of Dirichlet's problem and use it to improve these results.

Symmetric Natural Systems with Holonomic Constraints

▶ $(M, \ll \cdot, \cdot \gg, V, G)$ symmetric natural system on M.

$$H_M(p_x) = \frac{1}{2} ||p_x||^2 + V(x) \in C^G(T^*M).$$

Important: Assume G acts properly on M (for instance if G is compact).

- $f: M \to \mathbb{R}$ G-invariant constraint.
- ► $(N, \ll \cdot, \cdot \gg_N, V_N, G)$ induced system on $N = f^{-1}(1)$. Induced Hamiltonian

$$H_N(p_x) = \frac{1}{2} \|p_x\|_N^2 + V_N(x) \in C^G(T^*N).$$

Dirichlet's Problem as a Constrained System

▶ For $A_1, A_2 \in T_F \mathrm{GL}^+(3) \simeq \mathrm{L}(3)$

$$\ll A_1, A_2 \gg := \alpha \operatorname{tr}(A_1^T A_2), \quad \alpha = \frac{4\pi}{15} \rho.$$

- $V(Q) = -\beta \int_0^\infty \frac{ds}{\Delta}$ (self-gravitating potential).
- ▶ Holonomic constraint: $f(Q) = \det(Q)$.
- ► $N = f^{-1}(1) = SL(3) \subset GL^{+}(3)$.
- ▶ Action of $G = \mathbb{Z}_2 \ltimes (SO(3) \times SO(3))$:

$$(1; (L_1, L_2)) \cdot Q = L_1 Q L_2^T,$$

$$(\tau; (L_1, L_2)) \cdot Q = L_2 Q^T L_1^T.$$

 $\blacktriangleright \ll \cdot, \cdot \gg$, V and f are G-invariant.

 \Rightarrow

Induced symmetric natural system in $\mathrm{SL}(3)$ which is equivalent to the constrained system:

$$\ddot{Q} - \operatorname{grad} V(Q) = \lambda \operatorname{grad} \operatorname{det} Q$$
 (1)

$$\det Q = 1 \tag{2}$$

Using $Q = L^T A S$, $\Omega = \dot{L} L^T$ and $\Lambda = \dot{S} S^T$, this set of equations is exactly the same as Riemann's equations.

$$\begin{cases} (1) & \ddot{A} + \Omega(\Omega A - \dot{A} - A\Lambda) + (-\Omega A + \dot{A} + A\Lambda)\Lambda \\ & + \frac{d}{dt}(A\Lambda - \Omega A) - L\left(\frac{\partial V}{\partial Q}\right)_{Q = L^T AS} S^T \\ &= \lambda L\left(\frac{\partial (\det Q)}{\partial Q}\right)_{Q = L^T AS} S^T \end{cases}$$

$$(2) \quad \det A = 1$$

Relative Equilibria

A relative equilibrium of a G-symmetric dynamical system on N is a point x with orbit

$$\gamma(t) = e^{t\xi} \cdot x, \ \gamma(0) = x,$$

where $\xi \in \mathfrak{g}$ is the velocity.

For a constrained symmetric natural system $(M, \ll \cdot, \cdot \gg, V, G, f)$, a point $x \in N = f^{-1}(1)$ is a R.E. with velocity $\xi \in \mathfrak{g}$ iff

$$\mathbf{d}V_{\lambda,\xi}(x) = 0$$
 and $f(x) = 1$, where

- ▶ $V_{\lambda,\xi}(x) = V(x) \lambda \operatorname{grad} f \frac{1}{2}\mathbb{I}(x)(\xi,\xi)$ augmented potential.
- ▶ $\mathbb{I}(x)(\xi,\eta) = \ll \xi_M(x), \eta_M(x) \gg \xi, \eta \in \mathfrak{g}.$ locked inertia tensor
- ▶ Its momentum value is $\mu = \mathbb{I}(x)(\xi) \in \mathfrak{g}^*$.

Stability of Relative Equilibria.

Rodríguez-Olmos, M. "Stability of Relative Equilibria with Singular Momentum Values in Simple Mechanical Systems". Nonlinearity **19** (2006) 853–877.

Let $x \in N$ be a R.E. with velocity $\xi \in \mathfrak{g}$, momentum $\mu \in \mathfrak{g}^*$.

▶ Define
$$G_x = \{g \in G : g \cdot x = x\}$$
,
$$G_{\mu} = \{g \in G : \operatorname{Ad}_g^* \mu = \mu\}, \text{(assume compact)}$$
$$G_{p} = G_x \cap G_{\mu}.$$

▶ Choose a G_p -invariant splitting

$$\mathfrak{g}=\mathfrak{g}_{\mathsf{x}}\oplus\mathfrak{p}\oplus\mathfrak{t}$$

satisfying $\mathfrak{g}_{\mu}=\mathfrak{g}_{p}\oplus\mathfrak{p}$ and $\mathbb{I}(x)(\mathfrak{p},\mathfrak{t})=0.$

- Let ξ^{\perp} be the projection of ξ onto \mathfrak{p} .
- ullet $\hat{\mathbb{I}}_0 = \mathbb{I}(x)|_{\mathfrak{p} \oplus \mathfrak{t}}$ is non-degenerate and for $v_1, v_2 \in \mathcal{T}_x M$.

$$\operatorname{corr}_{\boldsymbol{\xi}}(\boldsymbol{v}_1,\boldsymbol{v}_2) := \frac{1}{2} \langle \mathbb{P}_{\mathfrak{p}^* \oplus \mathfrak{t}^*} \left[(\mathbf{D}\mathbb{I} \cdot \boldsymbol{v}_1)(\boldsymbol{\xi}) \right], \hat{\mathbb{I}}_0^{-1} \left(\mathbb{P}_{\mathfrak{p}^* \oplus \mathfrak{t}^*} \left[(\mathbf{D}\mathbb{I} \cdot \boldsymbol{v}_2)(\boldsymbol{\xi}) \right] \right) \rangle.$$

Define $\boldsymbol{S},\mathfrak{q}^{\mu}$ and $\boldsymbol{\Sigma}_{\text{int}}$ by

$$ightharpoonup \mathbf{S} = (\mathfrak{g} \cdot x)^{\perp_N}, \quad T_x N = \mathfrak{g} \cdot x \oplus \mathbf{S},$$

$$\blacktriangleright \ \Sigma_{\mathsf{int}} = \left\{ \lambda_{\mathsf{N}}(x) + a \, : \, \lambda \in \mathfrak{q}^{\mu}, a \in \mathsf{S}, \, \left(\mathsf{D}\mathbb{I} \cdot (\lambda_{\mathsf{N}}(x) + a)\right)(\xi^{\perp}) \in \mathfrak{p}^{*} \right\}.$$

▶ Define the Arnold form, $Ar: \mathfrak{q}^{\mu} \times \mathfrak{q}^{\mu} \to \mathbb{R}$ as

$$\operatorname{Ar}(\lambda_1, \lambda_2) = \langle \operatorname{ad}_{\lambda_1}^* \mu, \hat{\mathbb{I}}_0^{-1}(\operatorname{ad}_{\lambda_2} \mu) + \mathbb{P}_{\mathfrak{p}^* \oplus \mathfrak{t}^*} \left[\operatorname{ad}_{\lambda} \left(\hat{\mathbb{I}}_0^{-1} \mu \right) \right] \rangle$$

Theorem. If

$$|\operatorname{Ar}>0$$
 and $\left.\left(\mathbf{d}_{x}^{2}V_{\lambda,\xi^{\perp}}+\operatorname{corr}_{\xi^{\perp}}(x)\right)\right|_{\Sigma_{\operatorname{int}}}>0$

then x is nonlinearly stable.

Nonlinear stability \Rightarrow (\Leftarrow) Spectral stability.

Riemann Ellipsoids as Relative Equilibria

Let $A(t) = \operatorname{diag}(a_1, a_2, a_3), \Omega, \Lambda \in \mathfrak{so}(3)$.

Theorem: A is a relative equilibrium with velocity $(\Omega, \Lambda) \in \mathfrak{g}$ for the geometric formulation of Dirichlet's problem iff

$$Q(t) = \left(e^{\Omega t}\right)^T A e^{\Lambda t}$$

is a Riemann ellipsoid. (i.e. A, Ω, Λ are constants and solutions of Riemann's equations).

If $A = \operatorname{diag}(a, a, c)$, a > c, $\Omega = \Lambda = \frac{\omega}{2} \hat{e}_3$ the relative equilibrium conditions

$$\mathbf{d}_A V_{\lambda,(\Omega,\Lambda)} = 0$$
, $\det A = 1$

are equivalent to MacLaurin's formula

$$\omega^2 = \frac{2\pi G \rho}{e^3} \left((1 - e^2)^{\frac{1}{2}} (3 - 2e^2) \arcsin e - 3e(1 - e^2) \right),$$

Nonlinear Stability of the MacLaurin Spheroid

$$A = \operatorname{diag}(a, a, c), \ \Omega = \Lambda = \frac{\omega}{2} \mathbf{e_3}.$$

$$\mathbb{I}(A) = \alpha \begin{pmatrix} \operatorname{tr}(A^2)I - A^2 & -2\det(A)A^{-1} \\ -2\det(A)A^{-1} & \operatorname{tr}(A^2)I - A^2 \end{pmatrix}.$$

•
$$\mu = \mathbb{I}(A)(\frac{\omega}{2}(\mathbf{e_3}, \mathbf{e_3})) = \frac{8\pi\rho\omega}{15(1-\mathbf{e}^2)^{\frac{1}{6}}}(\mathbf{e_3}, -\mathbf{e_3}).$$

$$G_{\mu} = SO(2)_{\mathbf{e}_3} \times SO(2)_{\mathbf{e}_3},$$
Then $G = G = GO(2)^D$

► Then
$$G_p = G_x \cap G_\mu = SO(2)_{\mathbf{e_3}}^D$$
, $\mathfrak{g}_p \simeq \mathbb{R}\langle \mathbf{e_3} \rangle$.

▶ Splitting of
$$\mathfrak{g} \simeq \mathbb{R}^3 \times \mathbb{R}^3$$
:

$$\mathfrak{g}_{x} = \{\frac{1}{\sqrt{2}}(\mathbf{e_{3}}, \mathbf{e_{3}})\},$$

$$\mathfrak{p} = \{\frac{1}{\sqrt{2}}(\mathbf{e_{3}}, -\mathbf{e_{3}})\},$$

$$\mathfrak{t} = \{(\mathbf{e_{1}}, 0), (0, \mathbf{e_{1}}), (\mathbf{e_{2}}, 0), (0, \mathbf{e_{2}})\}.$$

$$Ar = \begin{pmatrix} A_1 & -A_2 & 0 & 0 \\ -A_2 & A_1 & 0 & 0 \\ 0 & 0 & A_1 & -A_2 \\ 0 & 0 & -A_2 & A_1 \end{pmatrix},$$

$$\frac{1}{1}\alpha\omega^2$$
,

 $A_1 = \frac{4(8-4e^2+e^4)\alpha\omega^2}{e^4(1-e^2)^{\frac{1}{3}}} \text{ , } A_2 = \frac{32(1-e^2)^{\frac{1}{6}}\alpha\omega^2}{e^4}.$ Ar is positive-definite.

$$i_1$$

 $(-e^2)c_1$
 $(-e^2)^{\frac{1}{3}}$

 $i_0 = \frac{4\alpha}{(1-e^2)^{\frac{1}{3}}}, \ i_1 = \frac{(2-e^2)\alpha}{(1-e^2)^{\frac{1}{6}}}, \ i_2 = -2(1-e^2)^{\frac{1}{6}}\alpha.$

Test space:

$$\Sigma_{\mathsf{int}} = \left\{ \left(egin{array}{cccc} s_1 + s_2 & s_3 & 0 \ s_3 & s_1 - s_3 & 0 \ 0 & 0 & -2\sqrt{1 - e^2} s_1 \end{array}
ight) : s_1, s_2, s_3 \in \mathbb{R}
ight\}.$$

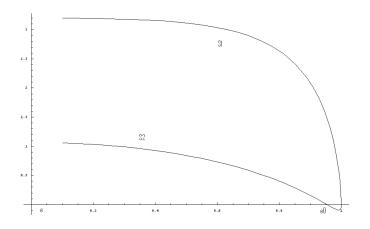
Stability test:

$$\left.\left(\mathbf{d}_{x}^{2}V_{\lambda,(\Omega,\Lambda)^{\perp}}+\operatorname{corr}_{(\Omega,\Lambda)^{\perp}}(x)\right)\right|_{\Sigma_{\mathrm{int}}}=\operatorname{diag}\left(S_{1},S_{2},S_{2}\right),$$

$$S_1 = \frac{16\pi^2 G \rho^2 (9e(3-5e^2+2e^4)-\sqrt{1-e^2}(27-36e^2+8e^4)\arcsin e)}{15e^5}$$

$$S_1 = 8\pi^2 G \rho^2 ((1-e^2)e(3+4e^2)-\sqrt{1-e^2}(3+2e^2-4e^4)\arcsin e)$$

$$S_2 = \frac{8\pi^2 G \rho^2 ((1-e^2)e(3+4e^2) - \sqrt{1-e^2}(3+2e^2-4e^4)\arcsin e)}{15e^5}.$$



with $e_0 = 0.953887$.

It follows that in the range $e \in (0, 0.953887)$, MacLaurin spheroids are nonlinearly stable.