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The Hydrodynamic Equation and Dirichlet's Problem

Motion of a self-gravitating ideal fluid (homogeneous and

incompressible):
du,- i 8p oB

Pae ~ ox  Pox
p : density, p(X) : pressure, t(X) : velocity field and B(X)
gravitational potential due to instantaneous configuration V C R3,

B(X) = G/V PX) g

X =X

Dirichlet's Problem: When a homogeneous self-gravitating
incompressible fluid mass can maintain at all time an ellipsoidal
figure (which may be variable) in which the motion is, in an
inertial frame, a linear function of the coordinates?.

— ... explanation of the figure of the Earth and planets. (Newton,
Lagrange, Lyapunov, Poincaré,...).



Riemann-Lebovitz Solution to Dirichlet's Problem

» Instantaneous configuration at time t:
Ve =Q(t) (B0, 1)),

where Q(t) € SL(3), and B(0,1) C R3 unit ball.

» Singular Value Decomposition:
Q=LTAS,

with L, S € SO(3) and A = diag(az1, a2, a3).

» Angular velocity and vorticity:
Q=1LLT, A=SST, (Q, A es0(3)).

Qe (ALS)= (AQN



Riemann-Lebovitz:
V4 is a solution for Dirichlet's problem iff Q(t) satisfies Riemann’s
equations:

(1) A+Q(QA A—AN) + (—QA+ A+ ANA

2(AN-QA) - L (55 )Q asST
=L ( (deé)Q)) L7 ns ST
(2) detA=1

where V : GL*(3) — R3, is the self-gravitating potential:

——5 [ F -G
and
A = [+ h(Q)s+ h(Q)s+1]?
h(Q) = (QQ")
h(@) = 3 (1%(QQ") - (@Q")).



Symmetries of Riemann’s equations:
If Ly, Lo € SO(3), a solution Q(t) is invariant under :

> (A, Q, /\) — (L]_AL2T, LlﬂLz—, L2/\L2T),

» (A, Q,N) — (AN, Q) (Dedekind’'s Theorem).
Therefore, Riemann’s equations (as well as V/, /1, ) are invariant
under the action of the semidirect product group

Zy x (SO(3) x SO(3)).

Riemann ellipsoids:
Solutions of Dirichlet's problem with: shape, angular velocity and
vorticity constants.Then

Q(t) Riemann ellipsoid < constants (A, 2, A) solution of
Riemann’s equations.



Examples:

» Spherical equilibrium: (A, Q,A) = (Id,0,0). This equilibrium
is Lyapunov stable, as can be seen using the potential energy
V as a Lyapunov function.

» Jacobi ellipsoid:
A = diag(a1, a2, a3), Q=we3, AN=0.

» Dedekind ellipsoid:
A = diag(a1, a2, a3), 2 =0, AN =we;s.

Note that the Jacobi and Dedekind ellipsoids are interchanged
by the Zy-symmetry.

» MaclLaurin Spheroids:

(A, Q,A) = (diag(a, a, ¢), ‘g’e}, —e3).



MacLaurin's condition (1742):

This family of solutions exist if a > ¢ and

2rG
W2 = £TeP

2\l 52 . 2

e ((1 e°)2(3 —2e%)arcsine — 3e(l — e )),
1

where e = <1 — (§)2> ? is the eccentricity.

Chandrasekhar:
Linearization of Riemann's equations shows that this solution is

spectrally stable in the range 0 < e < 0.953887.

Objective:
Study the geometry of Dirichlet’s problem and use it to improve
these results.



Symmetric Natural Systems with Holonomic Constraints

» (M, < -,- >, V, G) symmetric natural system on M.
1 *
Hu(pe) = 5 lIpel> + V() € CS(T* M),

Important: Assume G acts properly on M (for instance if G is
compact).

» f: M — R G-invariant constraint.

» (N, < -,- >y, Vi, G) induced system on N = f~1(1).
Induced Hamiltonian

1 *
Hn(px) = EIIPXH?V +Vn(x) € Co(TN).



Dirichlet's Problem as a Constrained System
» For Al, A € TFGL+(3) ~ L(3)

v

< AL Ay >i=atr (Al Ay), a= =P

v

V(Q)= -5 fooo % (self-gravitating potential).

v

Holonomic constraint: f(Q) = det(Q).

» N=f"1(1) =SL(3) c GL*(3).

v

Action of G = Z» x (SO(3) x SO(3)):

(1; (L, L2))- @ = LiQL],
(r:(L1,L2))- Q@ = LQTL].

v

< -,->, V and f are G-invariant.



Induced symmetric natural system in SL(3) which is equivalent to
the constrained system:

Q- grad V(Q) = Agrad det@Q (1)
detQ = 1 (2)

Using Q = LTAS, Q= LLT and A = SST, this set of equations is
exactly the same as Riemann’s equations.

(1) A+QQA—A—AN) + (—QA+ A+ ANA

+9(AN—QA) - L <8Q>Q:LTA55T
=L (Ea((j?ei(tQC\)))Q:LTASST

(2) detA=1



Relative Equilibria

A relative equilibrium of a G-symmetric dynamical system on N is
a point x with orbit

(t) = e - x, 7(0) = x,

where £ € g is the velocity.
For a constrained symmetric natural system (M, < -,- > VG, f),
a point x € N = f~1(1) is a R.E. with velocity ¢ € g iff

d\/&g(X) = 0 and
f(x)

1, where

> Vae(x) = V(x) — Agrad f — 31(x)(&, )
augmented potential.

> I(x)(&,n) =< Em(x),mm(x) >  Eneg.
locked inertia tensor

» Its momentum value is p = I(x)(§) € g*.



Stability of Relative Equilibria.

Rodriguez-Olmos, M. “Stability of Relative Equilibria with Singular
Momentum Values in Simple Mechanical Systems”. Nonlinearity 19
(2006) 853-877.

Let x € N be a R.E. with velocity £ € g, momentum u € g*.
» Define Gy ={g € G : g-x=x},

G, = {g€ G : Adyu = p},(assume compact)
G, = GNG,
» Choose a Gp-invariant splitting
g=0xDpBt

satisfying g, = gp ® p and I(x)(p,t) = 0.
» Let &1 be the projection of ¢ onto p.
> lp = I(x)|p@t is non-degenerate and for vy, v, € T, M.

corr ¢(vi, v2) 1= %@P’p*@t* (DL v1)(E)], 05! (Pp-or- [(DI- v2)()])-



Define S, g* and L. by
»S=(g-x)'", T,N=g-xaS5,
» gt ={Aet: Py ladiy] =0}
> Tie={(x)+a: Aegtaes, (DI (An(x)+a)) () ep*}.
» Define the Arnold form, Ar: g* x g* — R as

Ar(A1, A2) = (ady p, Ig t(adyy 1) + Pyases [adA <ﬁ51u)]>
Theorem. If
Ar >0 and (di V\eL +correr (x))‘ 5. >0

then x is nonlinearly stable.

Nonlinear stability = (<£) Spectral stability.



Riemann Ellipsoids as Relative Equilibria
Let A(t) = diag(a1, a2, a3), 2, A € s0(3).

Theorem: A is a relative equilibrium with velocity (2, \) € g for
the geometric formulation of Dirichlet’s problem iff

Q(t) = (em) T At

is a Riemann ellipsoid. (i.e. A,Q, N\ are constants and solutions of
Riemann's equations).

If A= diag(a,a,c), a>c, Q=A\= %é the relative equilibrium
conditions
ds V)“(Q’/\) =0,detA=1

are equivalent to Maclaurin's formula

2nG
w2:77,0

> ((1 — €?)3(3 — 2¢?)arcsin e — 3e(1 — e2)) ,



Nonlinear Stability of the MacLaurin Spheroid

» A=diag(a,a,c), Q=A= Jes.
_ tr (A%)] — A2 —2det (A)A™1
> H(A) =a ( —2det (A)A™Y  tr(A2)] — A% |-

_ w — 87 pw o
H = H(A)(Q(e37e3)) 15(1—e2)%(e3’ e3)‘

v

v

GX = Zg X 80(2)53,
Gy = SO(2)e; X SO(2)es,
Then G, = G N G, =SO(2)8, gp ~ Res).

Splitting of g ~ R3 x R3:

v

v

v

o = {\2(%93)},

p = {\2(93,93)}7
t = {(e1,0),(0,e1),(e2,0),(0,e2)}.



b 0 0 0 O
R 0 i1 I 0 0
» =] 0 & i 0 0 |,
0 0 0 i1 h
0 0 0 I 1
4a _ (=)o - 2
p = , = , —2(1—-e
07—t i ? ( )
Al —A 0 0
> Ap— A A 0 0 7

0 0 A A
0 0 —-A A

1
Al = 4(8—4e’+e*)aw? Ay = 32(17e2)6aw2-

1 ’ X
e*(1—e?)3 €

Ar is positive-definite.



» Test space:

S1+ S S3 0
Ying = S3 51— 53 0 :5,%5,53 €ER

0 0 —2v1 — €25

Stability test:

(d2V (@.n) + corr (g pye ‘z = diag (51, S2, S2),
S _ 167%Gp?(9e(3—5e*+2e*)—/1—e?(27—36e%+8e*)arcsin e)
1 = 155
S, - 872G p*((1—e?)e(3+4e*)—v/1—e2(3+2e* —4e*)arcsin e)
2 = 15e°




with eg = 0.953887.

It follows that in the range e € (0,0.953887), MacLaurin spheroids
are nonlinearly stable.



