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Talk Outline:

® [ntroduction - why did we begin to think albout topology
and information?

® [he information theory of functions

® Motion primitives for robotic reconnaissance

® Beconnaissance as information acquisition

® [he topology of unknown fields

® Data induced partitions and topology induced partitions

® [opology guided information acquisition
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What is information?

Q

ﬁ

ne number o

yes-no’ guestions that must be

swered 1o a

NSwWer a given guestion.



What is information?

Typical (simple) question
decomposition:

Where is Shenyang?
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What is information?

Where Is Shenyang?

IS he here?



What is information?

Where Is Shenyang?

IS he here?



What is information?

Where Is Shenyang?




What is information’? Shannon’s answer (three
properties)

SUpPPOSE an experiment can have any of n outcomes, and the
probabilities of the outcomes are  p1, p2, -, Pa. I thereis a
measure of the amount of information contained in observing an

outcome, say H(pi, p2, -, Pn), itis reasonable to assume that H
satisfies the following.

1. H should be continuous in the p;.

2. If all the p; are equal, p; = ’1’ . then H should be a monotonic increasing

function of #n. With equally likely events there 1s more choice, or un-
certainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original
H should be the weighted sum of the individual values of H.

::\7> H(p17p27°"7pn — szlogQP'l,



What is information?

Shannon’s third property:




Motivation for connecting
iNnformation theory and topology.

® [he desire to understand decision making in tasks
iINvolved In search, survellence, reconnaissance.

® [he desire to understand the cognitive psychology of
perception In humans and animals.

® [he desire to understand compression and sensor
fusion for continuous data.

® [he desire to autonomously recognize regions of
interest In a data set:







Laser projector

lorqucmctm

/daq_publisher

Tom Daniels Lab, U. Washington




VWhat Is fundamental about human
knowledge of space?

Spatial knowledge consist[s] of several quite different types of knowledge. Some is
procedural, “how-to” knowledge about getting from one place to another. Some
consist|[s] of topological connections between places and travel paths. And some
consist[s] of metrical layouts approximately analogous to the environment itself or to a
printed map. But it is clear that accurate metrical layout descriptions come last, if at all,
and depend on the earlier types of knowledge. Furthermore, spatial reasoning methods
vary across individuals, with developmental stage, with experience in a particular
environment, or simply with individual cognitive style.

--Benjamin Kuipers
An Intellectual History of the
Spatial Semantic Hierarchy



Functions and mappings as information
channels

Suppose X is a random variable taking on values
X1,...,Xn with probabilities p1,...pnN.

The entropy

N
H(X)=— Zpk log,, P
k=1

measures the amount of information needed to for
knowledge of X.



Functions and mappings as information
channels

A function f : X — Y is a communication
channel that provides information in the range
Y about the structure of the domain X.

The function f 1s informative about X if the mutual
information

I(X ; (X)) = H({(X))

1s large.

Theorem. H(f(X)) < H(X).



Functions and mappings as information
channels

Theorem. The function that maximizes information
preservation, H(f(X)), minimizes the conditional entropy

H(X | f(X)).

Proof. (X, f(X))=H(X)— H(X|f(X))
= H(f(X)).



Functions and mappings as information
channels - diversity and noise

% p1 < p2 < p3

Among all functions f : X —> {0,1}

0 j=1,2
o) - ) ={ 0 124

—plogy p — (1 — p) logy (1 — p)
maximizes H(f(X)).



Functions and mappings as information
channels - topological entropy

Consider the comb function:

f(z) = kx (mod 1)

In the equation 1 — f(:l?)

how much information do you have
about x if you know y?

Consider a uniform partition into n subintervals of the range. The
partition entropy Is

n
s o1 9] o (u([yk_l,yk])> y—_—
n
k=1

n




Mathematical Quantification of “Being
Interesting”

Things are interesting if they are not predictable.

A function f : X — Y maximally preserves
information if its image reflects the diversity of X.

i u(f~ u(f‘l(Vj))

J=1




The information contained in a random field

Thermal field,
concentration,
chemical plume,

magnetic fielq, . . .

2




Information Acquisition as a Search Metric

Let X C R™ be a compact, connected, simply connected domain, and let |a, b
be the image of X under f : R™ — R. Consider the partition

G=Tp < T < ~s & Win =D

The corresponding partition V, = (J;—, { cc (f~! ([zj-1,;])) } of X is called

the data-induced partition..

The data-induced partition
will be deemed to be
interesting or not according
to the metric



Information Acquisition as a Search Metric

It H,, 1 — Hi > m, continue ezxploiting.



Single peaks have limited entropy




The Complexity of Monotone Structures

J. Baillieul and D. Baronov*

}?,3 }?/4

Fig. 6 The functions A, (-) listed in Table 1 define radially symmetric functions on the unit circle
in the way described in Section 4.1. The figures are the silhouettes of the surfaces defined by these

functions fi(x,y) = hi(/x* + y*) for each function appearing in the table




The Complexity of Monotone Structures

Fig. 7 The figures display the monotonic increase in partition entropy and partitions go through
n successive refinements corresponding to the simple search chain and uniform twenty interval
partition of the range of the monotone fields associated with the functions in the table and depicted
in Fig. 6.




Optimal Random Reconnaissance

For a monotone structure, the maximum information in a
data-induced partition containing n cells is log, n.

Suitably randomized search strategies are nearly optimal in
terms of the information metric.



Non-monotone functions
have more entropy




Partition Entropy

To each partition, we associate a measure

H(a) = =) 4. cq H(Ai) logy u(A;)
called the partition entropy.

The conditional entropy of a conditioned
on 3 is

H(a|B) = > p,epm(Bj)H (a|Bj)
pn(A;NB;) p(A;NB;)

= —ZBjéﬁﬂ(Bj) ZAq;Ea w(Bj) log; w(B;)

A;NB;
= I ZBjEﬁ ZA;,EG! M(Az A BJ) 10g2 “([,L(gj)g) :




Partition Entropy

Let «, B3,y be partitions of a domain X.

() 0 < H(a|B) < H(a) with H(a|B8) =0 < [ is a refinement of .

(#2) B a refinement a = H(al|y) < H(Bly) “<”
if 5 a proper refinement provided v not a refinement 5.

(742) v a refinement of = H(al|B) > H(aly).
(v) B =X = H(a|B) = H(a).



Level crossings, excursion sets, and the
height map of random fields




Critical Level Sets Are Essential Objects
In Potential Field Reconnaissance

Index zero critical point
Index one critical point

Index two critical point




The topology-induced partition

Definition: A critical level set of f on a compact
domain is a connected component of values

§(c*) = ce(ir € X|[f(r) = c*}),

f(r*) = c*, with r* being a critical point.

Notation: The set of all eritical level sets is denoted

Cr(f,X)

Definition: The topology induced partition is the
domain partition

M(f, X) = cc(X \ Cr (f, X))



The topology-induced partition

Definition: The topology induced partition is the
domain partition

M(f, X) = cc(X \ Cr (f, X))

The function f(z,y,2) = —z% — y* + 2%(2 — 1)
has critical points (0, 0,0) and (0,0,2/3). These
determine a partition of the domain into three
dimensional cells.



The topology-induced partition

Topological motif




The information theory of scalar fields and
the topology-induced partition

The topology-induced partition of f : X — R




Motion Primitives for Reconnaissance of
Random Scalar Fields

biSO (rO ) = level set contour passing through r,

b9 rad (r 0 ) = gradient contour passing through r,

Byi = {b1,...,br} = motion program sequence

: p
sequence where b; € {b"*?, b9}

S(Bx) = {&1, ..., &} = contours corresponding to By



The data-induced partition of random
scalar fields

By = {b1,...,br} = motion program sequence

sequence where b; € {b*5°, p9"**}
S(Br) = {&1,...,& } = contours corresponding to By

The data-induced partition is a proxy tor the topology-induced
partition:

Vn = V(5(Bn))
= cc(X\S(By))



Reconnaissance of Potential Fields
Defined on 2-dimensional Domains

- Map level sets

* Map steepest ascent/descent curves



Robotic Search of an Unknown Magnetic Field




The Conditional Entropy of the TIP Given
the Data Induced Partition

HMV,) =— z w(M; N V) log; (M, ﬂ.V'fZ)

Theorem: Given the topology induced partition
M and the data induced partition V,,,

0 < HM|V,) < HM).
H(M|V,) = 0 if and only if V, is a refinement of M.



Random fields as information channels -
diversity and noise
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How can we quantity
feature significance’

How do we respect
diversity and reject
Nnoise?

1. Height.
2. lopological persistence.
3. Information utility.



Random fields as information channels -

diversity and noise

How can we guantify
feature significance”?

1. Height of critical values.
2. lopological persistence.
3. Information utility.



Random fields as information channels -
diversity and noise

As the dimension of X
increases, the topology of
the sublevel sets

Ry = f_l(—OO, t]

becomes more complex.




The Differential Topology of Scalar Fields
Let regular values x;
0= Dp <X < v~ € Lo = D,

bracket the m ciritical values of

f.: X —R.

Case dim X=1, persistance tracks o (Rw ) = rank Hy.

J

Case dim X>1, persistance tracks ,3p (Rm ) =rank g 9

J



Random fields as information channels -
diversity and noise

lTopological persistence
looks at the topology of
sublevel sets.




How the Topology Induced Partition is
Related to lopological Entropy

Theorem: (Baronov, 2010) Let Vy be the domain
partition of f : X — [0, 1] corresponding a uniform par-
tition of the range into subintervals of length 1/N. Let
M be the topology induced partition of the same func-

tion. Define:

supren, f(R) — infren; f(R)
supgpex f(R) — infrex f(R)

5 =

Then

/.L



Information and the topology of unknown
fields

® One interpretation of Baronov’s theorem is that the
critical sets of an unknown field encode the essential
iInformation that can be obtained through exploration and

mapping.

® [his raises the guestion, will humans engaged in
reconnaissance focus on discovering these topological
characteristics?

® Another question is whether it Is possible to design
reconnaissance strategies aimed at discovering the
topological characteristic of an unknown field.



Goal: Design algorithms for sequentially
refining the topology induced partions in
order to climb and information gradient

aimed at learning the topology induced
partition.

1. Initialize Vo = X (hence H(M|Vy) = H(M)),

2. Refine V}. at the k-th step such that as
k — o0, H(M|Vk) — 0.



Baronov’s second theorem and search heuristics

Theorem: (Baronov, 2010) Suppose that
Cre""(f, X) C S(B,),
and define the set
V, ={Vi€Va:x(Vy) < -1}.
Then H(M|V,) = H(M|V,).

= Initiate motion programs
b**° in regions with vy < 0.



A Proxy for topological entropy conditioned on
data:

1%
o H(Vk) = ZVkEVk Z(()?)) logy | — 2x(Vk) + 1,

o H(M|V) < HW),

e Mapping subdivides V' € V_; with
x(V)<0= H(Vx) < HVk_1),

= Initiate motion programs
b**° in regions with vy < 0.



Implications of Baronov's second theorem
Map isolines only In
cells that have Euler
characteristic < -1.

The result: 1he conditional entropy Is strictly
decreasing: H (M|V,,) — 0




Reconnaissance tools

Map gradient lines starting
from existing isolines.

£
=
N

Nodes = critical

O O
Map isolines starting from / b
sens: . . Edges = areas
existing gradient lines. O bounded by
Reeb graph o cobordant

level sets



The ro

reconr

e of topology In human
alssance decisions

Sets with
Euler char.

less than O

J
Mapped isolines Black regions have
—uler char. <-1
/ Hypothesis Implications ML estimator \
.;'."f — ] -random 8 = arg nax P(r1: 80,00 T

A\ B

5 B3 S /'l(- L’n } | ,
P7(r;) = (/l(‘\' ‘.}> ‘,3 < ] - topology based
R T8 feedback Prry,--- 1

e

o l—[ Piy;) ifr, €V
o 1 — PAir,) else

/
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Humans want to discover
topoloaical characteristics

® Mean beta for human
players: 0.32

® 95% confidence 0.26-0.38

® Human beta Is normally
distributed with p=0.90
(Kolmogorov-Smirnov test)

® [he human players and the
random robotic players are
statistically distinguished
with p=0.00 (Kolmogorov-
Smirnov test)

Histogram of the beta characteristics for
WO groups:

® Human players, and

® Robotic players that randomly map the
same number of isolines in the same
potential fields



What have we learned from the games -
and the theories developed behind them?

* When people play with awareness of others playing
simultaneously, competitiveness emerges.

* Knowledge of others’ reward affects play style more than
knowledge of others’ play strategies.

* "People do not learn play strategy eftectively in competitive

Sl

‘uations.”

People seek to discover topological characteristics when

acquiring spatial information.

e SOMe subjects’ play styles tend toward exploitation while
others tend toward exploration.



The interplay between topology, geometry
and information theory redux

 Biological motion control is guided by perception — not mere
reaction to features

e Features registered on the visual cortex are ephemeral (No
asymptotic stability!)

e [here are simple geometric relationships between an animal’s
motion through the environment and the neurological replication of
that motion on the visual cortex

 [opological persistence is useful in identitying significant features in
data sets.

* A similarly useful notion of information saliency also identifies
significant features
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