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Why do we need TDA?

Data analytics largely rely on linear methods, . . .




Talk Qutline

® [nroduction to topological persistence
¢ A topological approach to saliency
e An Information-theoretic approach to saliency



Topological Persistence

How can we quantify feature significance’?

Persistent homology of complex networks
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The starting point is an evolution a simplicial complex in which simplices
are added In seguence:

KoCK;C---CK, =K

This is called a filtration. The idea of persistence is to keep track of how
many steps occur between the step when a topological feature appears in
the filtration and the when it is annihilated. The persistence parameter take
discrete values In this case.

Continuous parameterizations are also studied—e.qg. Rips-Vietoris complexes



Topological Persistence

Continuous parameterizations are also studied—e.qg. height map complexes



Random fields as information channels -
diversity and noise
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How can we quantity
feature significance’

How do we respect
diversity and reject
Nnoise?

1. Height.
2. lopological persistence.
3. Information utility.



Random fields as information channels -
diversity and noise

As the dimension of X
increases, the topology of
the sublevel sets

Rt — f_l(—OO, t]

becomes more complex.




Random fields as information channels -

diversity and noise

How can we guantify
feature significance”?

1. Height of critical values.
2. lopological persistence.
3. Information utility.



Random fields as information channels -

diversity and noise

How can we guantify
feature significance”?

Topological persistence. Is defined in terms of the
topology of sublevel sets R; = f _1(—oo,tj.




Random fields as information channels -
diversity and noise

The persistence diagram 1Is defined in terms of a
threshold set: la = {x € | | f{X) < a}. Here we are interested
N the number of connected components of la. As a
iINncreases through a local min., a connect component of
la 1s born. When a increases through a local max., two
connected components merge, and we say that the one
that has persisted for a smaller range of a dies.




The Differential Topology of Scalar Fields
Let regular values x;
0= Dp <X < v~ € Lo = D,

bracket the m ciritical values of

f.: X —R.

Case dim X=1, persistance tracks Bo (Rx j) = rank Hy.

Case dim X>1, persistance tracks ,3p (Rw j) = rank T
i

There 1s a persistence diagram for each p. -



Morse-Smale fields as information
channels - diversity and noise

lTopological persistence
looks at the topology of
sublevel sets.




Topology of Critical Level Sets

A minimum is paired with and

destroyed by a “negative saddle”: bo




Topology of Critical Level Sets
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A minimum can also be paired
with a “mixed saddle”:




Topology of Critical Level Sets

A minimum can also be paired S
with a “mixed saddle”: By + 1




Topology of Critical Level Sets

When t* 1s a “positive saddle”,
f~1[—o0, t] topology changes:




Topology of Critical Level Sets

A positive saddle is paired with and

b1

eventually destroyed by a local max:



Topological Persistence
Filtrations via the Vietoris-Rips complex:

ROBERT GHRIST




Topological Persistence

Filtrations via the Vietoris-Rips complex and the Cech complex:

The Cech complex is the abstract simplicial complex whose k-simplices
are determined by unordered (k + 1)-tuples of points whose closed r/2-
pall neighbornoods have a point of common intersection.




Topological Persistence

Filtrations via the Vietoris-Rips complex and the Cech complex:

The Cech complex is the abstract simplicial complex whose k-simplices
are determined by unordered (k + 1)-tuples of points whose closed r/2-
pall neighlborhoods have a point of common intersection.




Topological Persistence

Filtrations via the Vietoris-Rips complex and the Cech complex:

The Cech complex is the abstract simplicial complex whose k-simplices
are determined by unordered (k + 1)-tuples of points whose closed r/2-
pall neighbornoods have a point of common intersection.




Topological Persistence

Filtrations via the Vietoris-Rips complex and the Cech complex:

The Rips complex is the abstract simplicial complex whose k-simplices
correspond to unordered (k + 1)-tuples of points which are pairwise
within distance r.




Topological Persistence
Filtrations via the Vietoris-Rips complex and the Cech complex:

ROBERT GHRIST




Topological Persistence
dgmg keeps track of Betti number 5;

as a function of the Rips/Cech parameter.

The point r is half the distance between the top two clusters, s is half the
distance between the top right and bottom cluster. There is only “death.”



Topological Persistence

dgmq keeps track of Betti number (3,
as a function of the Rips/Cech parameter.

Here there Is birth and death.



A Sidebar on Entropy

Consider the comb function:

f(z) = kx (mod 1)

In the equation Y — f(SB)

how much uncertainty do you have
about x if you know y?

Consider a uniform partition into n
subintervals of the range.

— 1([Yr—1, yx]) ([ Yk—1, yr|) 1
N : l O'-) — —
Z n 052 ( n z_: n

7=1

Corresponding entropy in the domain:
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A Sidebar on Entropy

H(f) = H(g)

J g

Entropy does not capture the intuitive notion of saliency.



Random fields as information channels -
diversity and noise
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Distinguishing Noise from Features
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Bottleneck distance between persistence diagrams:

Weol(X,Y) = inf max{ ||z — ()| }
n:X—Y

The inf Is over all bijections between persistence diagrams.



Distinguishing Noise from Features
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Theorem Woo(X ¢, Y,) < ||f — 9| 0o-



Distinguishing Noise from Features
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Theorem Woo(X ¢, Y,) < ||f — 9| 0o-



Topological Entropy

R. L. Adler, A. G. Konheim and M. H. McAndrew, “Topological entropy,” Trans.
Amer. Math. Soc. 114 (1965), 309-319. MR 30 #5291.

Let X be a compact topological space,
and let &/ be an open cover.

The entropy h(f,U) of a mapping f : X — X with respect to a cover
U is defined as lim,,_,oc HU U f~1UU---U f~7TUY) /n, where H is
the partition entropy defined as H(A) = log N(A) for aany partition A.

The entropy of f, h(f) is the supremum over all covers U of X.



Topological Entropy of Piecewise
Monotonic Interval Maps

The vertical axis parameter i1s Wy, and the horizontal axis
parameter is s.

How much information does w,. convey regarding s



Topological Entropy of Piecewise
Monotonic Interval Maps

We assume that w, takes values in a bounded
range: Wmin < Wy < Wmax



Topological Entropy of Piecewise
Monotonic Interval Maps

Partition the range into uniform subintervals.

(w'm,a,:z: — wfm/é'n,)/ n . Wypin =Wy < Wy < < Wy = Whnaz

his induces a partition in the domain.

n

V'n.. — U C.T(_f{w,,..—l([wk—'l:wk]) — {V].? et VN}

k=1



Topological Entropy of Piecewise
Monotonic Interval Maps




Topological Entropy — How do we
distinquish sianificant features from noise?

T, '
7 = cos 0r(s) = COS¢1+w}(q)p
(Z]b — qin 97(9) (A) [) — — sin (/) (B)

b= —w(t) — COSQSH_LU(?))IO.



Topological Entropy — How do we
distinquish sianificant features from noise?

A partition that is (possibly much) coarser than the range
partition is the critical point partition. Enumerate critical

values: Vr(w,) ={wj] <+ < wy}

n terms of the partition V., = U cc{w ' (Ar)} (which is
just the segments on which w,- In monotone), we have

another partition entropy: , _ _ Z 1 V) oo, HV)
0g; 7

Vev,,



Topological Entropy — How do we
distinquish sianificant features from noise?

Theorem : lim {H(V,) —log,n} < H., + Z
n—r0a Wmazx —

Ve Vc N

’ G =
“CYman

The ¢ 1. S are the differences between successive critical
values.



Topological Entropy — How do we
distinquish significant features from noise?

In the case of dimensions 2 and higher, similar
guantities are defined:

+Z u(X) g2

This may be taken as a proxy fort salient information.



1. Reconnaissance of time-varying fields
2. Concepts of sensor fusion

Given multiple sensor fields fi,...,fN ona
common domain X, partition X into sub-
domains Y7, ..., Y such that on each sub-

domain Y; the j- th sensor field f; is maximally
informative.

Sensor-fusion: Form composite

f(z) = fi(z) fzeY,



Entroov conditioned on a set
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M; = M(f;,Y) = cc(Y\Cr(f;,Y))



Concepts in sensor fusion

® Given a sensor field f; and any subset
compute

u(M; NY) u(M; NY)
u(f,Y) = — Z logs
men, HY) u(Y)
p(M;NY)
= logs 0 ;
MieZMj u(y) o2t
® Let Yy — arg max u(f]) Y)

YCX
® (Get a set of possibly overlapping subdomains

{Yi,...,Yn}



Information utility in sensor-based imaging

® Goal: Reconcile/merge field data from different
sensors on nonempty overlaps y; N---NY;, #0

® Find partitions Y = {Y1,...,Yn} that maximize
the information utility

i A
1(Y5) .
U SR ’y — U ] Y .
where (M Ye,) (M;NYe,)
s pM;NYe,) p(MpN0Ye
lnkiaas M}'EZMI u(Ye;) e m¥er)
p(MjNYe,)
> u(Ye;) e



Information based segmentation using
topological motifs

Entropy windowing

Maximum diversity decomposition
X17X27° i » 7Xk
|k




ENnhanced perception from
Sensor fusion

Visual spectrum Infrared spectrum



Enhanced perception from
Sensor fusion




Conclusion

® [opological methods examine data relationships that
may be missed by PCA and other essentially linear
approaches to analytics.

= Such methods appear to be useful In data
compression of multiband images.

® [hese methods also provide a baseline for studying
human performance in directing reconnaissance (See
tomorrow’s talk.) and in studying visual cognitive styles.

x Current research Is aimed at understanding how to
extend this circle of ideas to time-varying fields and
how to extend information theory to point cloud data
Sefts.



