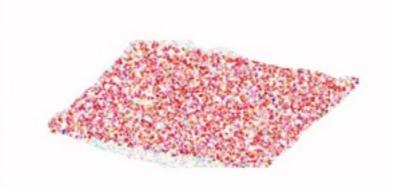
Topological Data Analytics

John Baillieul Intelligent Mechatronics Lab Boston University johnb@bu.edu

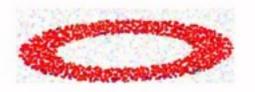
> 10-th Summer School on Geometry, Mechanics and Control June, 2016

Why do we need TDA?

Data analytics largely rely on linear methods, . . .

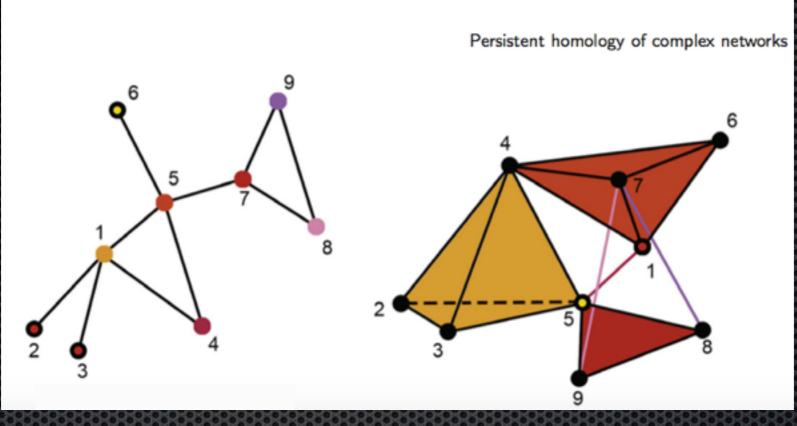


but, not all data is linear.



Inroduction to topological persistence
A topological approach to saliency
An information-theoretic approach to saliency

How can we quantify feature significance?

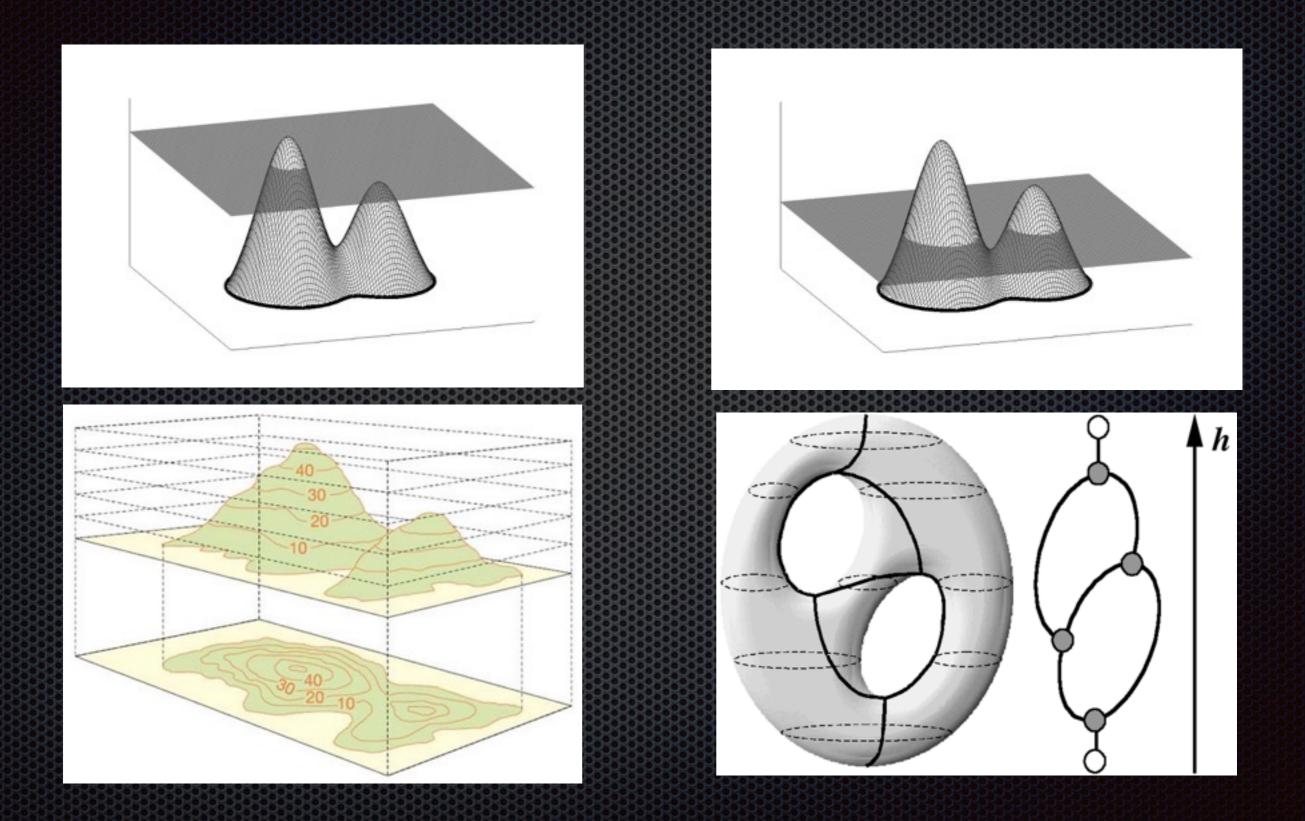


The starting point is an evolution a simplicial complex in which simplices are added in sequence:

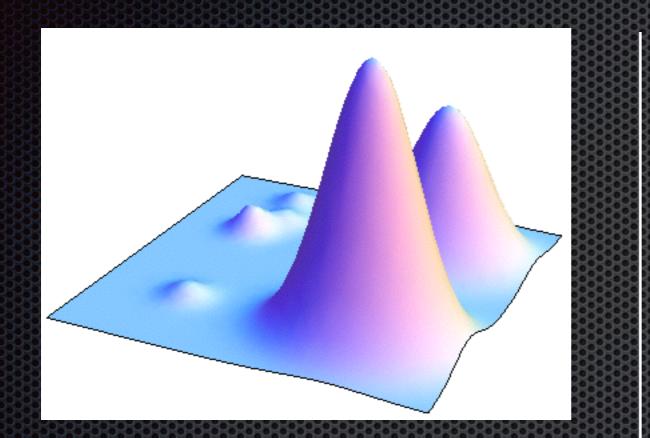
$$K_0 \subset K_1 \subset \cdots \subset K_n = K$$

This is called a *filtration*. The idea of *persistence* is to keep track of how many steps occur between the step when a topological feature appears in the filtration and the when it is annihilated. The persistence parameter take discrete values in this case.

Continuous parameterizations are also studied—e.g. *Rips-Vietoris complexes*



Continuous parameterizations are also studied - e.g. height map complexes

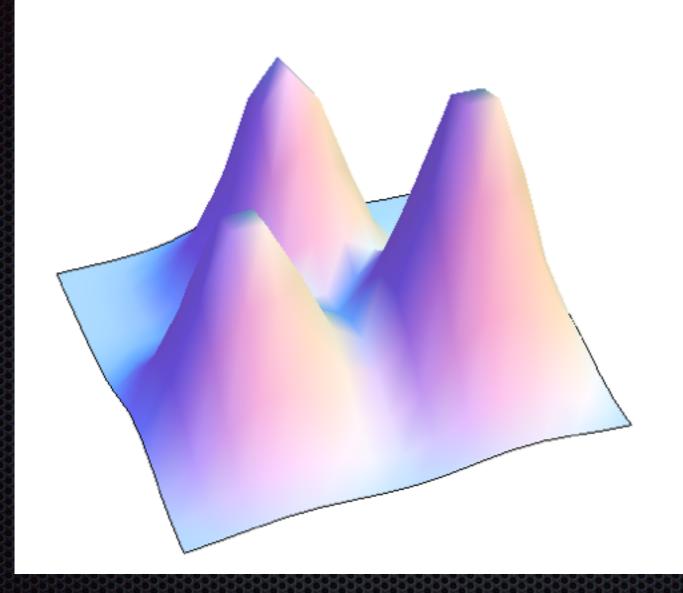


Some peaks are more significant than others.

How can we quantify feature *significance*?

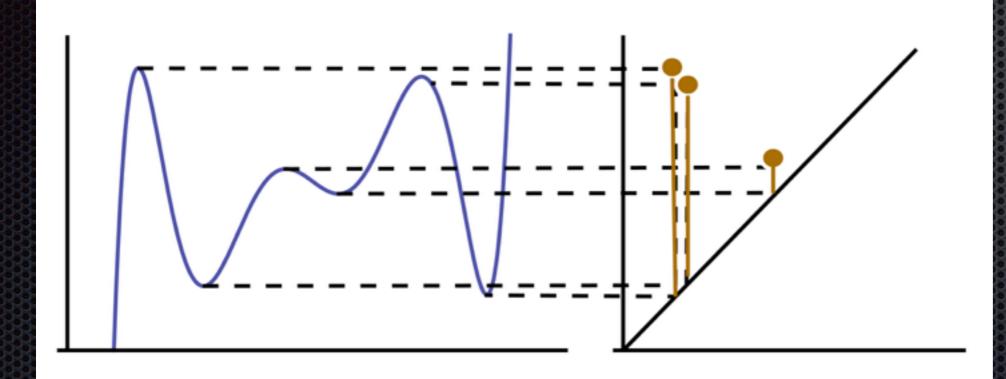
How do we respect diversity and reject noise?

Height.
 Topological persistence.
 Information utility.



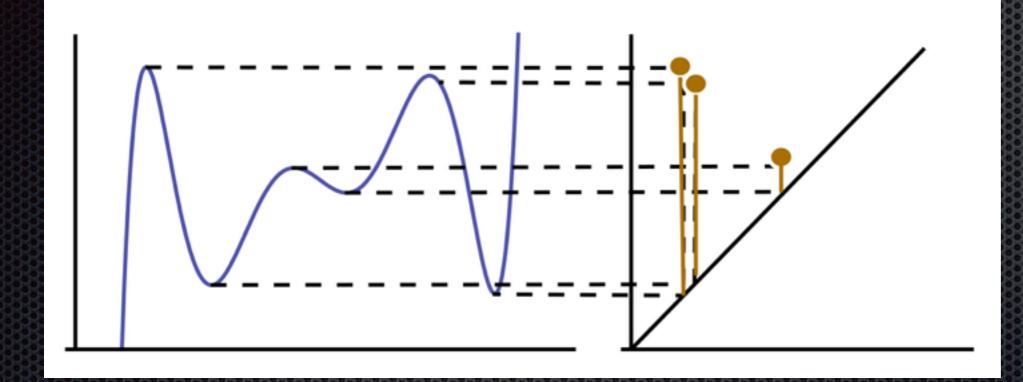
As the dimension of X increases, the topology of the sublevel sets $\mathbb{R}_t = f^{-1}(-\infty, t]$ becomes more complex.

How can we quantify feature *significance*?

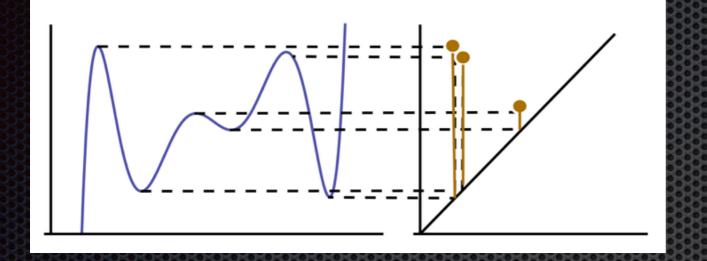


Height of critical values.
 Topological persistence.
 Information utility.

How can we quantify feature *significance*?

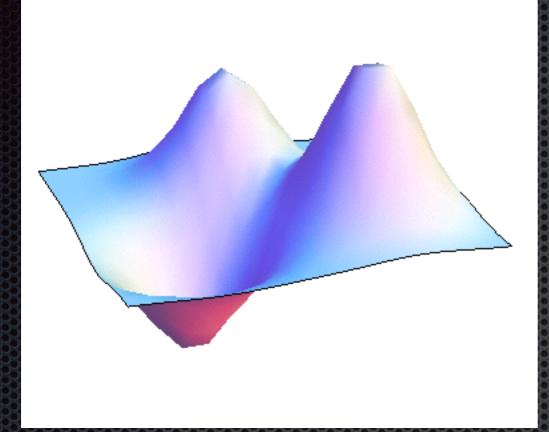


Topological persistence. is defined in terms of the topology of sublevel sets $\mathbb{R}_t = f^{-1}(-\infty, t]$.



The persistence diagram is defined in terms of a threshold set: $Ia = \{x \in I \mid f(x) \le a\}$. Here we are interested in the number of connected components of *Ia*. As a increases through a local min., a connect component of *Ia* is *born*. When a increases through a local max., two connected components merge, and we say that the one that has persisted for a smaller range of a dies.

The Differential Topology of Scalar Fields



Let regular values x_j

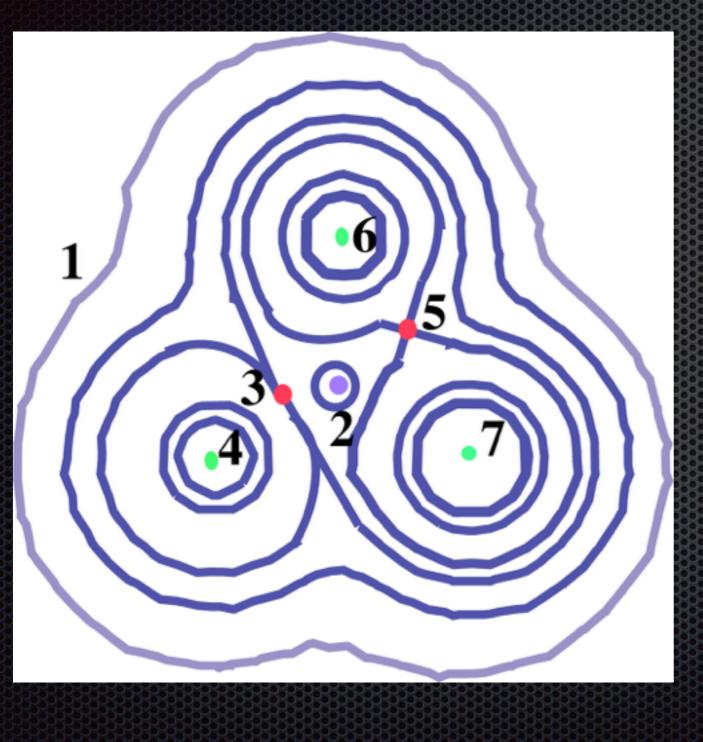
$$a = x_0 < x_1 < \dots < x_m = b.$$

bracket the *m* ciritical values of

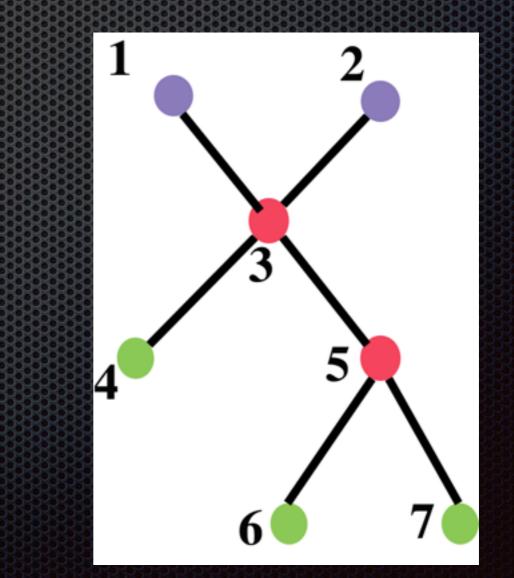
 $f: X \to \mathbb{R}.$

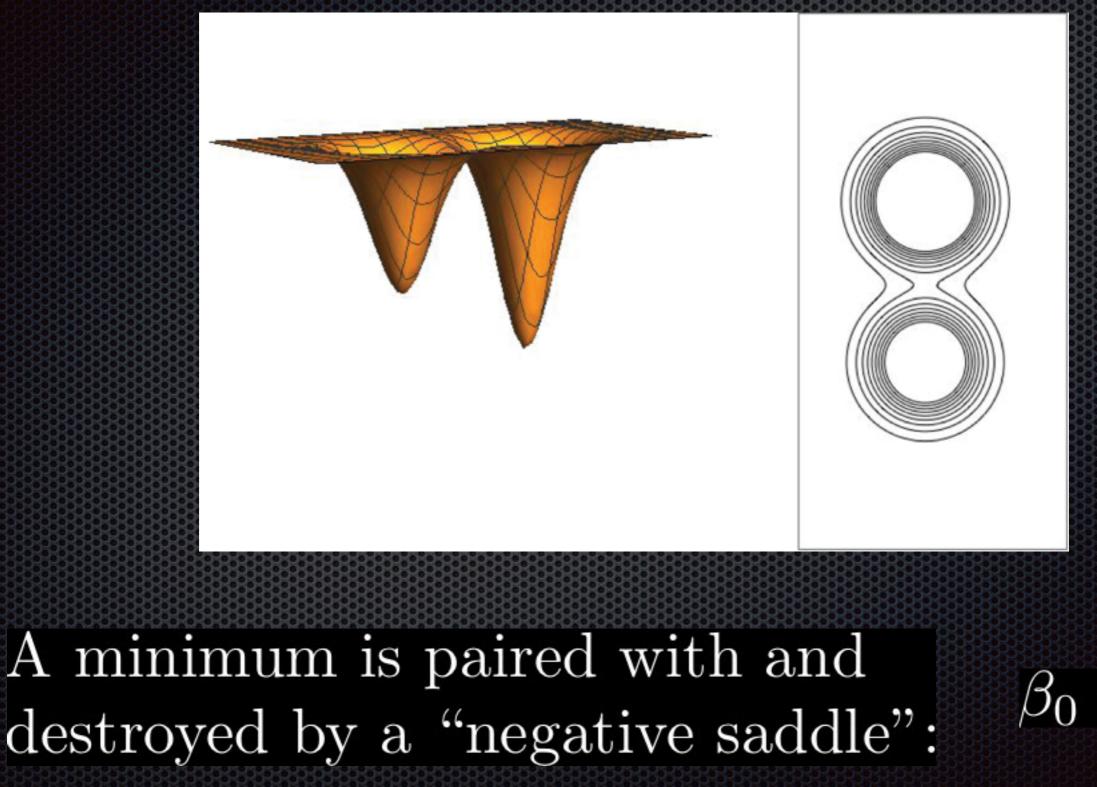
Case dim X=1, persistance tracks $\beta_0(\mathbb{R}_{x_j}) = rank \mathcal{H}_0$. Case dim X>1, persistance tracks $\beta_p(\mathbb{R}_{x_j}) = rank \mathcal{H}_p$. There is a persistence diagram for each p.

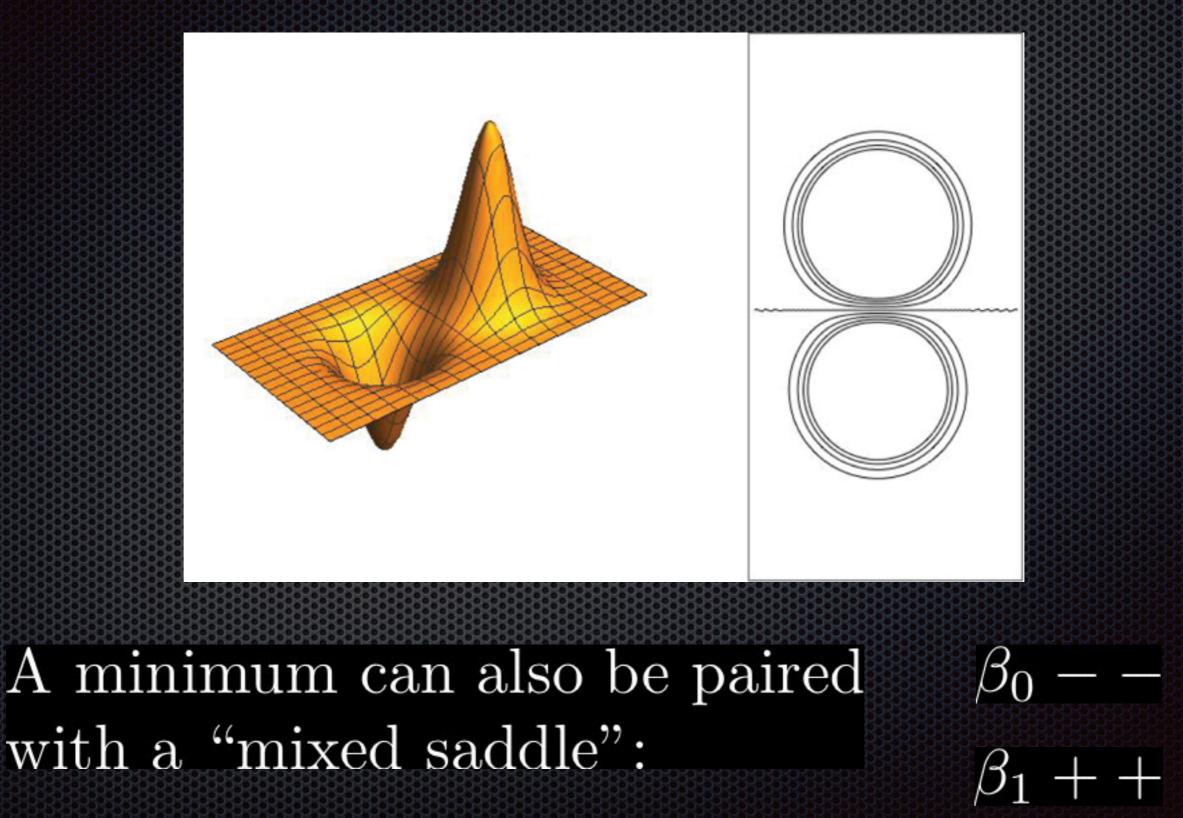
Morse-Smale fields as information channels - diversity and noise

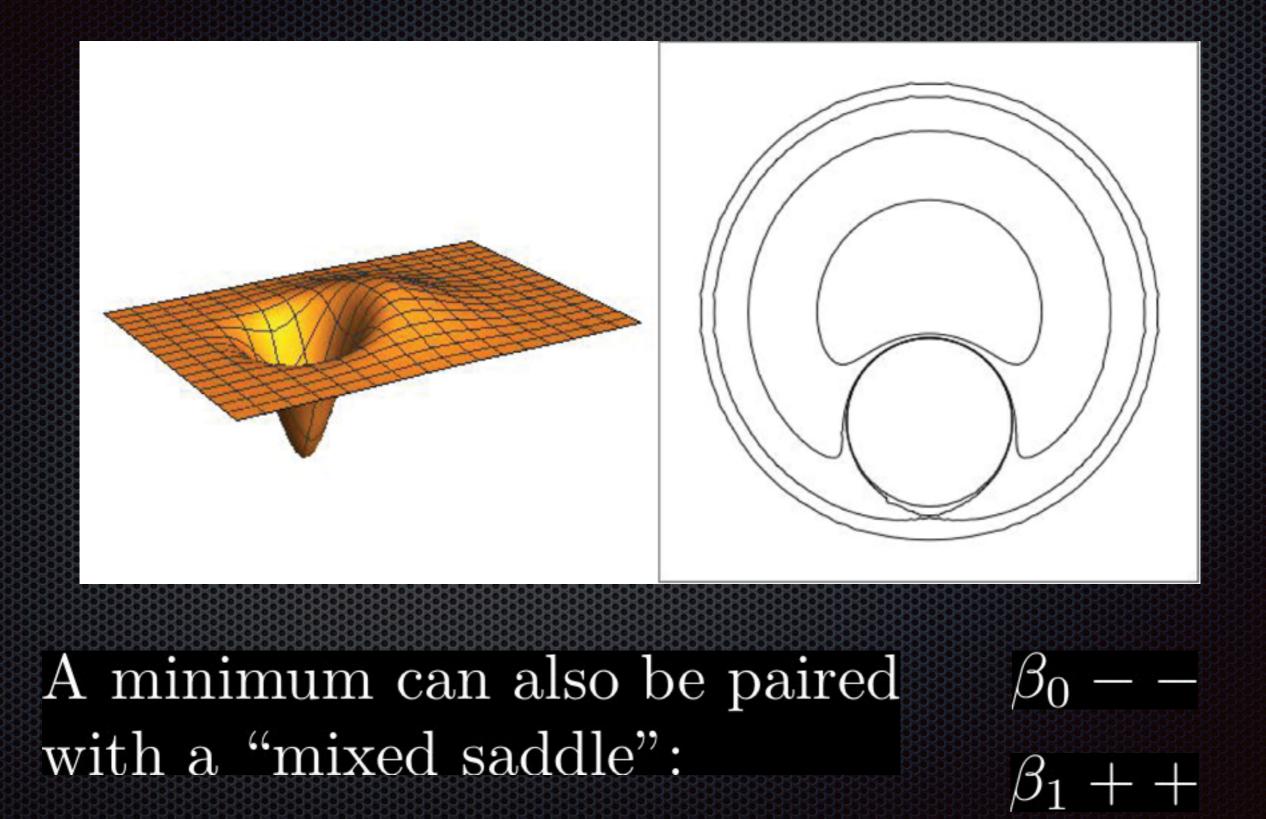


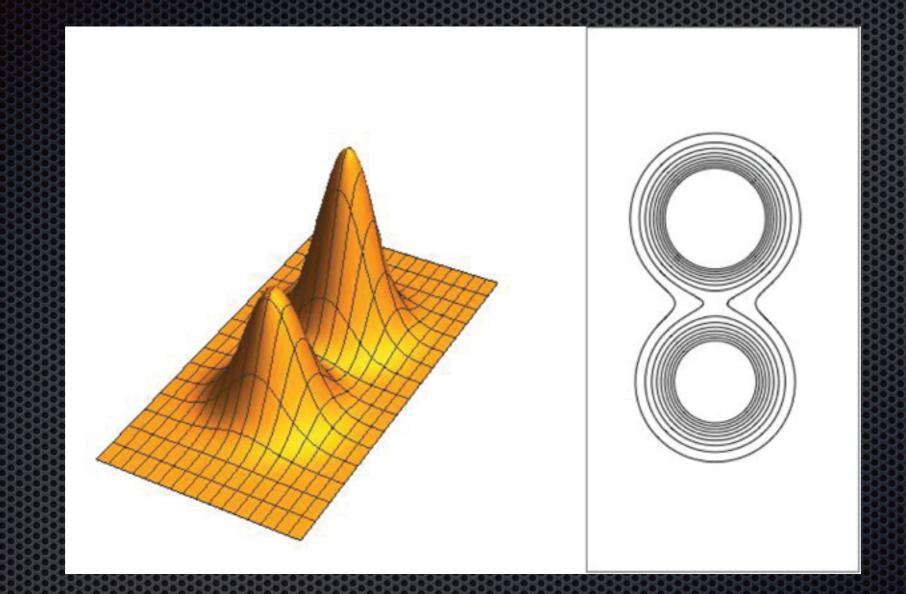
Topological persistence looks at the topology of sublevel sets.



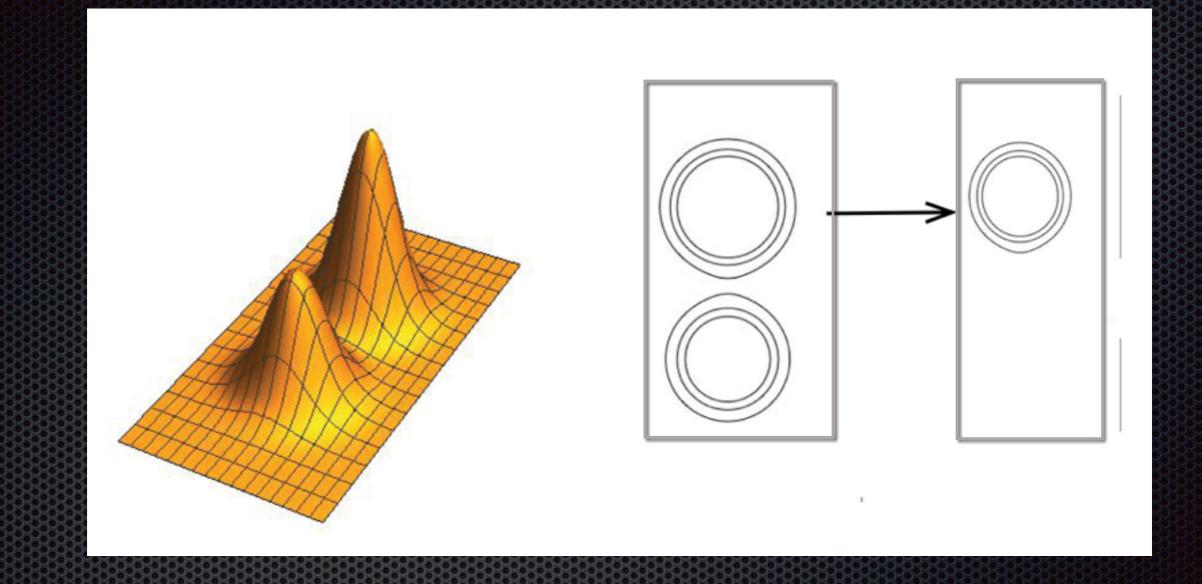






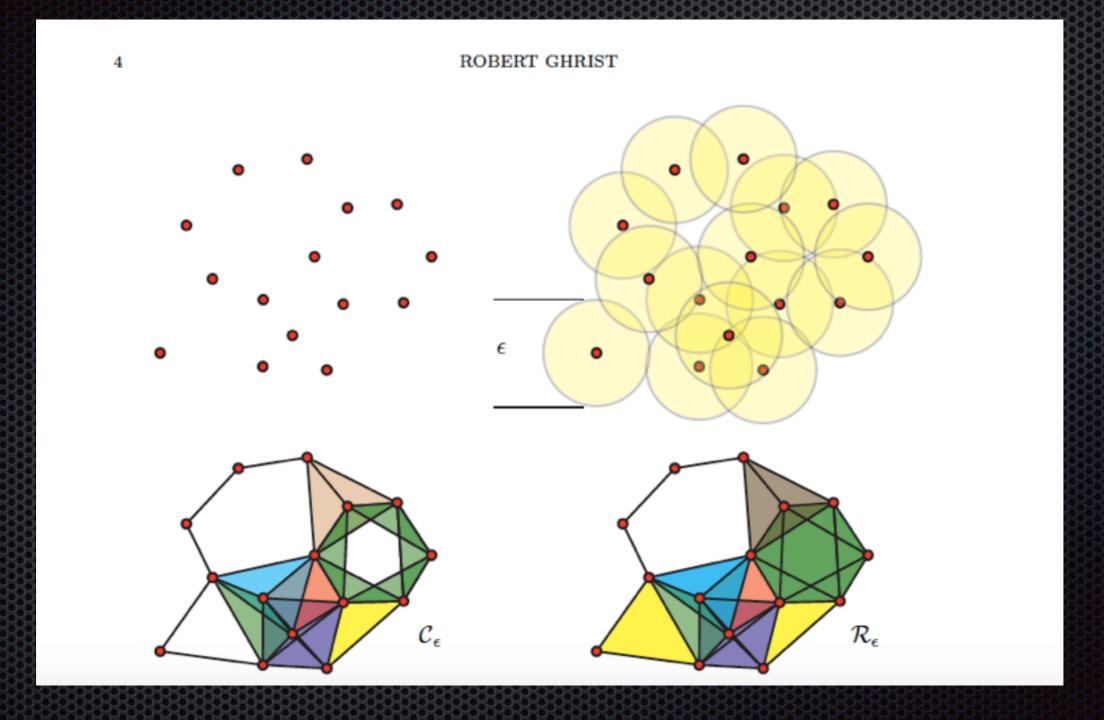


When t^* is a "positive saddle", $f^{-1}[-\infty, t]$ topology changes:



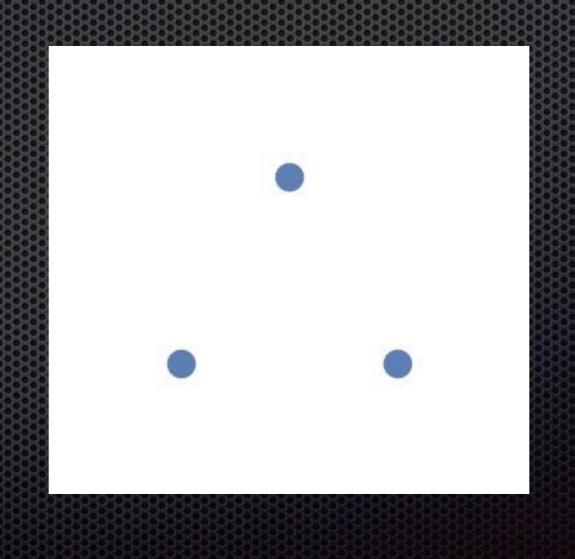
A positive saddle is paired with and eventually destroyed by a local max:

Topological Persistence Filtrations via the *Vietoris-Rips complex*:



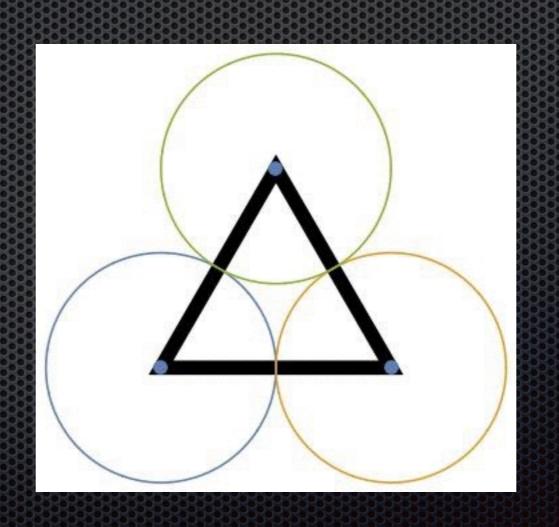
Filtrations via the Vietoris-Rips complex and the Cech complex:

The Cech complex is the abstract simplicial complex whose k-simplices are determined by unordered (k + 1)-tuples of points whose closed r/2-ball neighborhoods have a point of common intersection.



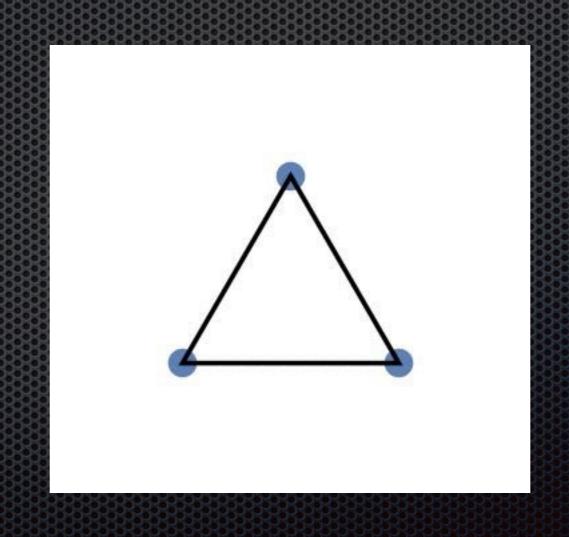
Filtrations via the Vietoris-Rips complex and the Cech complex:

The Cech complex is the abstract simplicial complex whose k-simplices are determined by unordered (k + 1)-tuples of points whose closed r/2-ball neighborhoods have a point of common intersection.



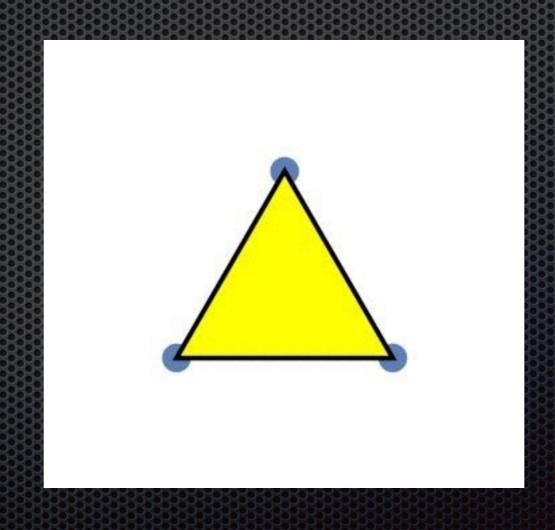
Filtrations via the Vietoris-Rips complex and the Cech complex:

The Cech complex is the abstract simplicial complex whose k-simplices are determined by unordered (k + 1)-tuples of points whose closed r/2-ball neighborhoods have a point of common intersection.

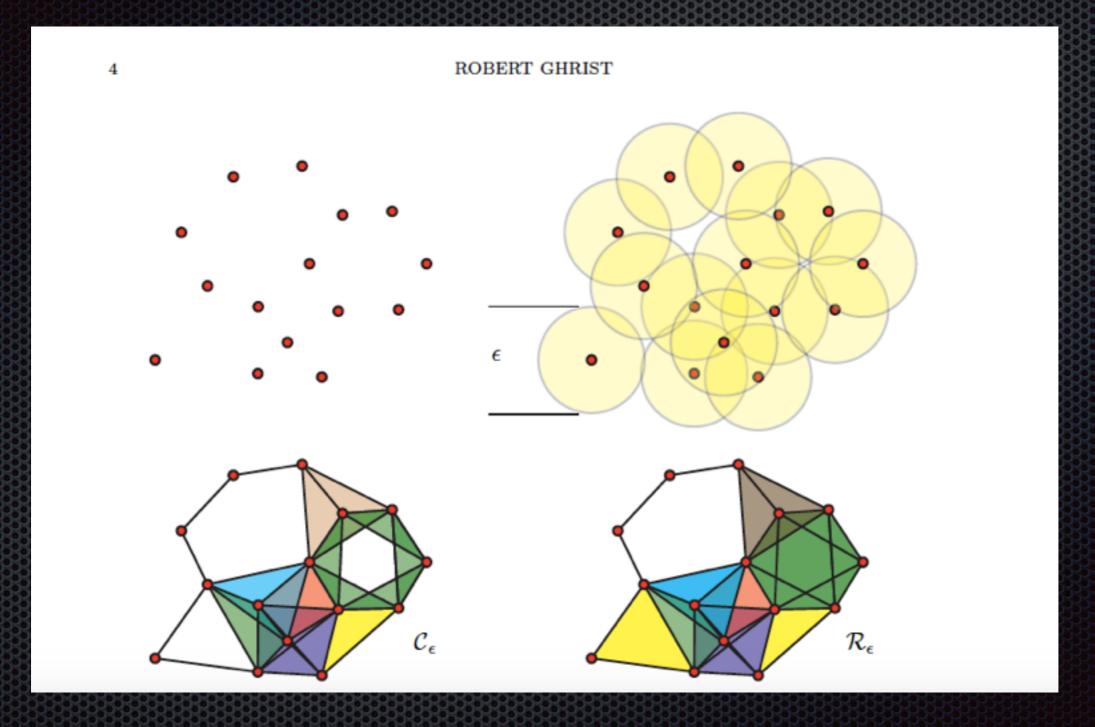


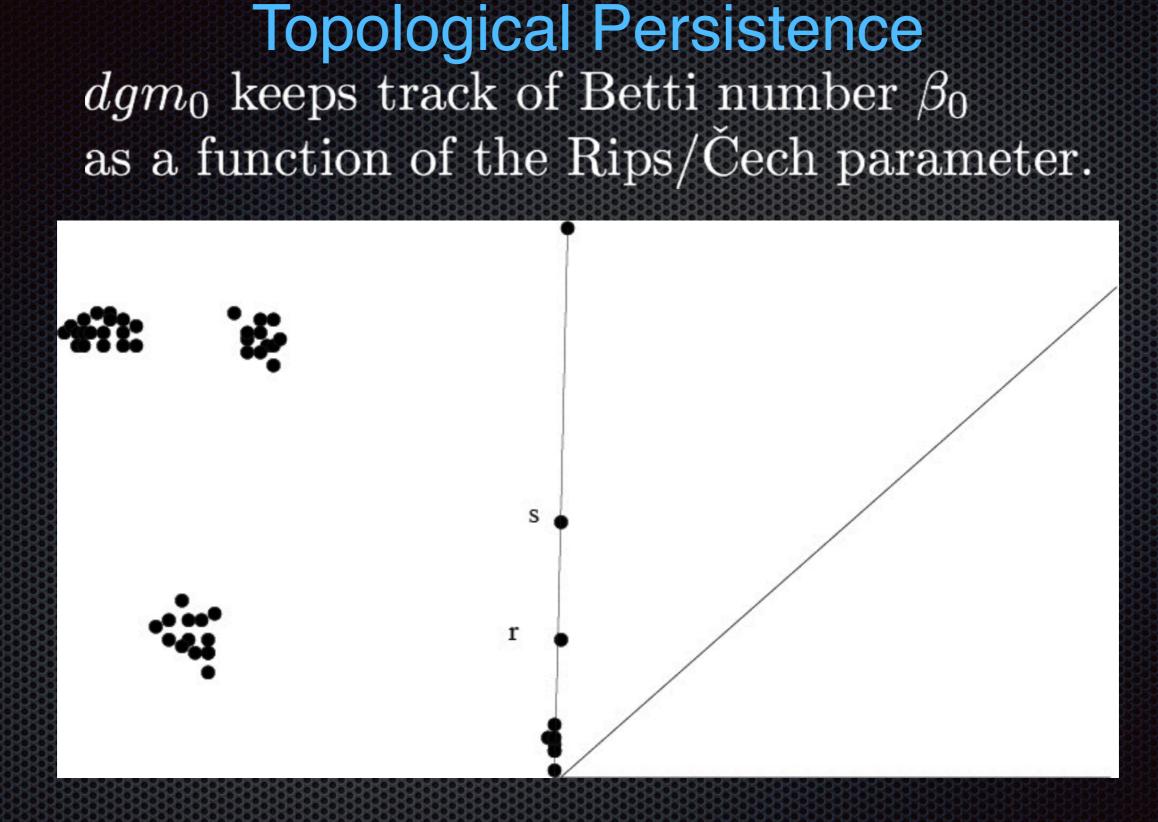
Filtrations via the Vietoris-Rips complex and the Cech complex:

The Rips complex is the abstract simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of points which are pairwise within distance r.



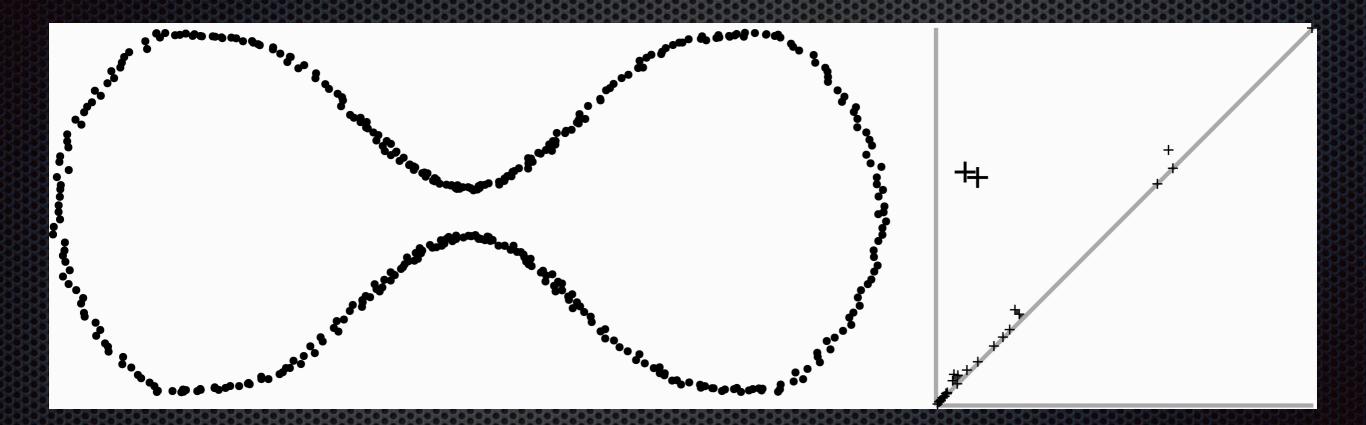
Filtrations via the Vietoris-Rips complex and the Cech complex:





The point *r* is half the distance between the top two clusters, *s* is half the distance between the top right and bottom cluster. There is only "death."

dgm_1 keeps track of Betti number β_1 as a function of the Rips/Čech parameter.



Here there is birth and death.

A Sidebar on Entropy

 $\frac{1}{n}\log_2\frac{1}{n} =$

 $\log_2 n$

Consider the comb function:

 $f(x) = kx \pmod{1}$

In the equation y = f(x)

how much uncertainty do you have about *x* if you know *y*?

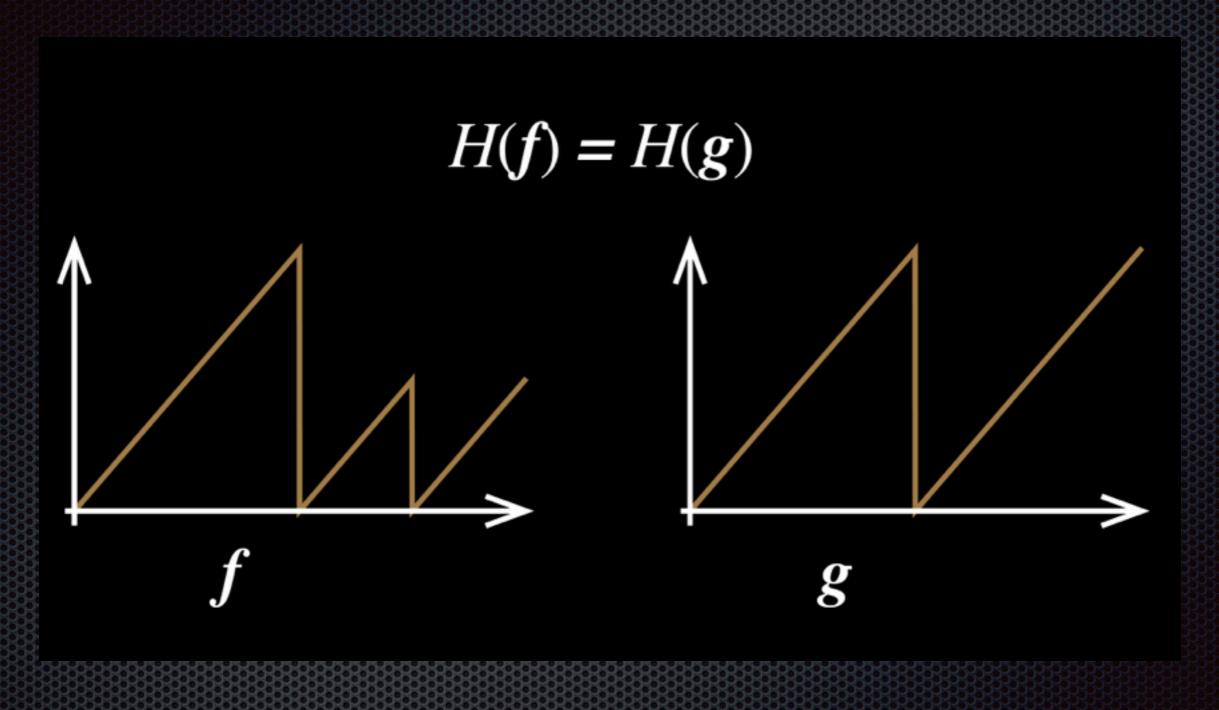
Consider a uniform partition into n subintervals of the range.

$$\sum_{j=1}^{n} \frac{\mu([y_{k-1}, y_k])}{n} \log_2\left(\frac{\mu([y_{k-1}, y_k])}{n}\right) =$$

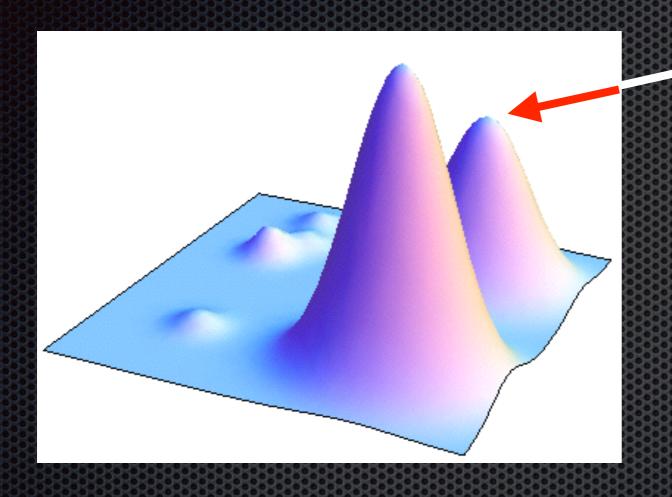
Corresponding entropy in the domain:

$$-\sum_{i=1}^{k}\sum_{j=1}^{n}\frac{1}{kn}\log_2\frac{1}{kn} = \log_2 k + \log_2 n$$

A Sidebar on Entropy



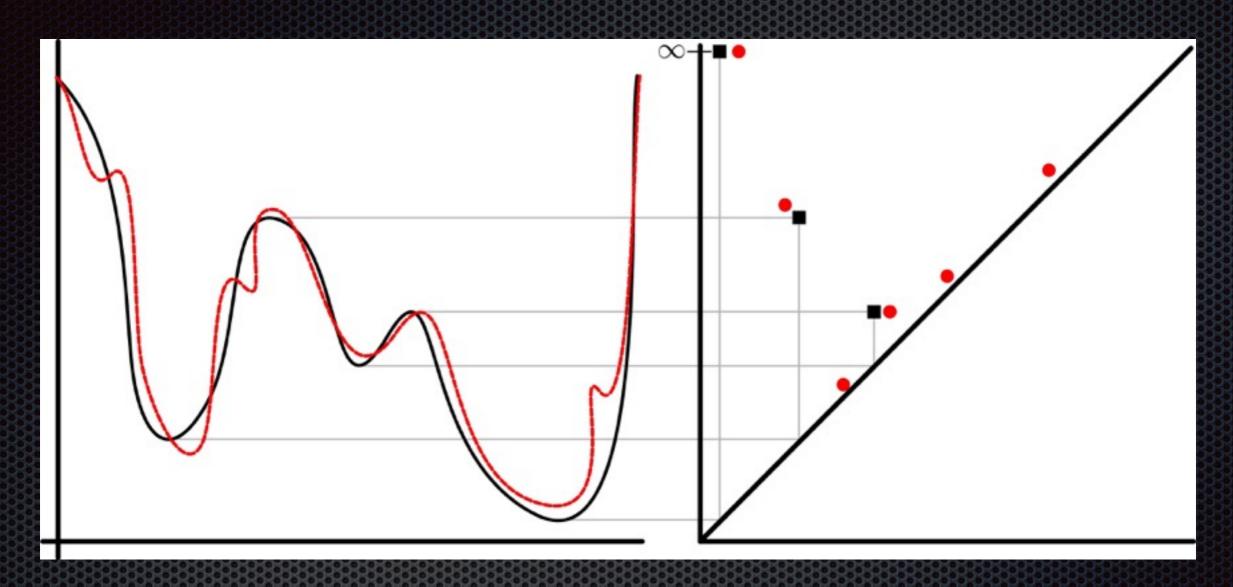
Entropy does not capture the intuitive notion of saliency.



There is clearly some important diversity.

But it is not captured completely by entropy.

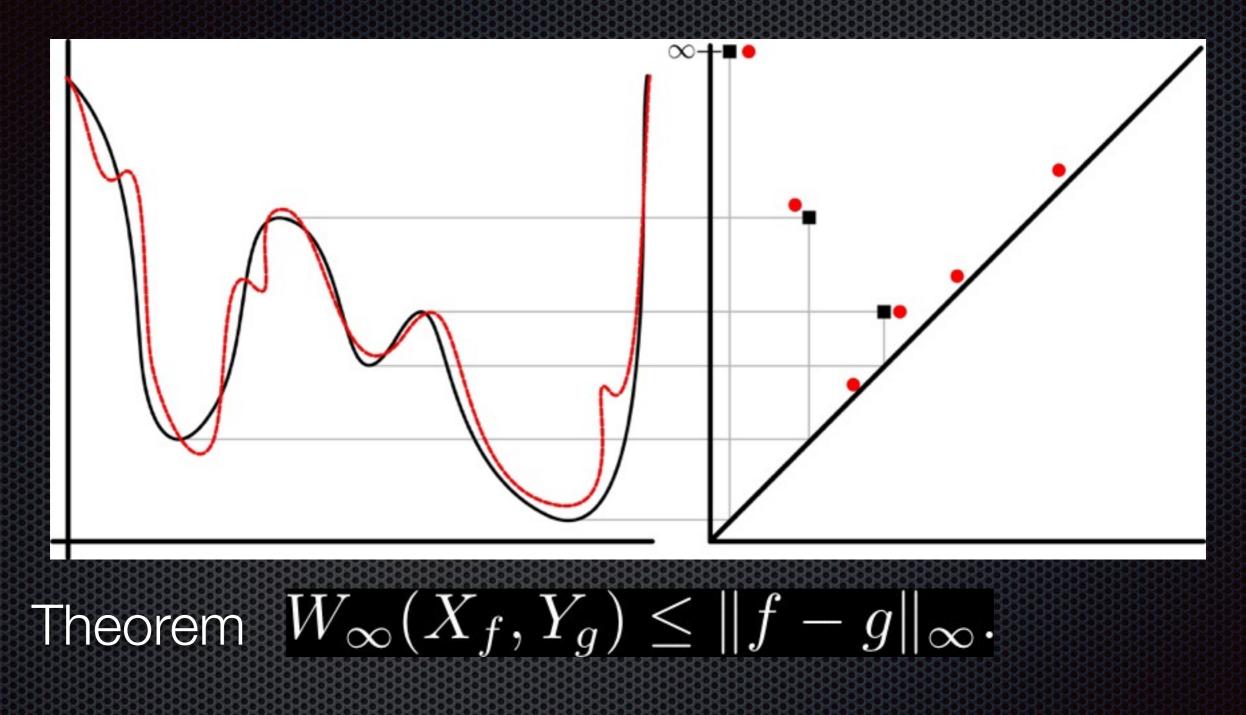
Distinguishing Noise from Features



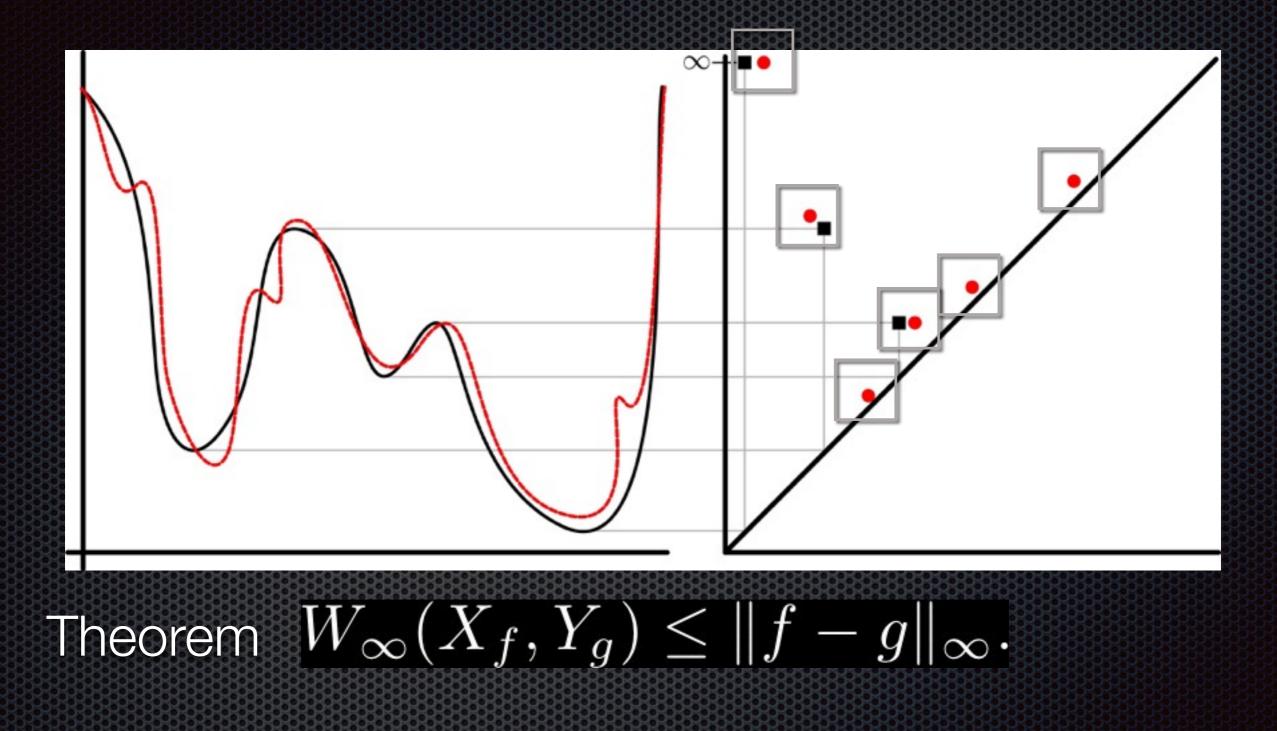
Bottleneck distance between persistence diagrams: $W_{\infty}(X,Y) = \inf_{\eta:X \to Y} \max\{\|x - \eta(x)\|_{\infty}\}$

The inf is over all bijections between persistence diagrams.

Distinguishing Noise from Features



Distinguishing Noise from Features



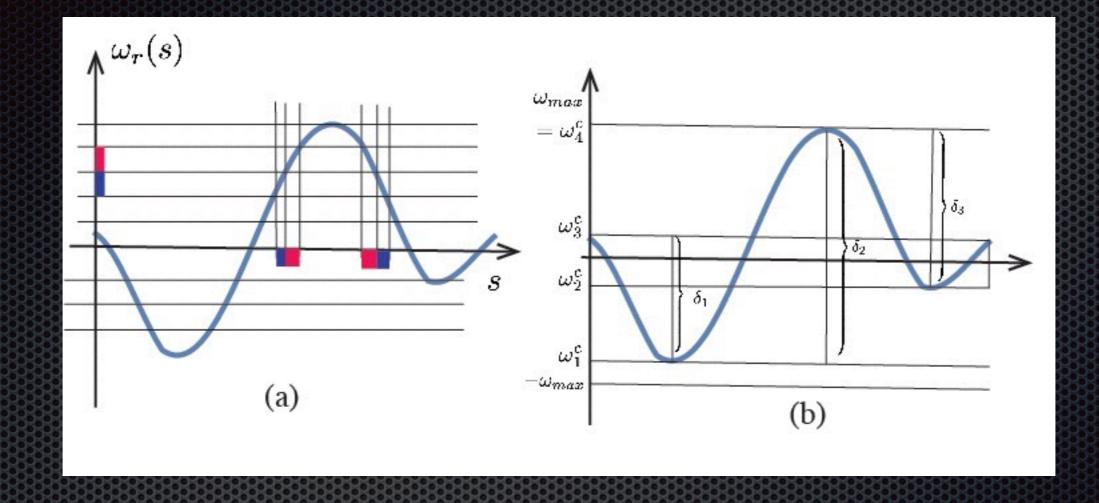
Topological Entropy

R. L. Adler, A. G. Konheim and M. H. McAndrew, "Topological entropy," *Trans. Amer. Math. Soc.* 114 (1965), 309-319. MR 30 #5291.

Let X be a compact topological space, and let \mathcal{U} be an open cover.

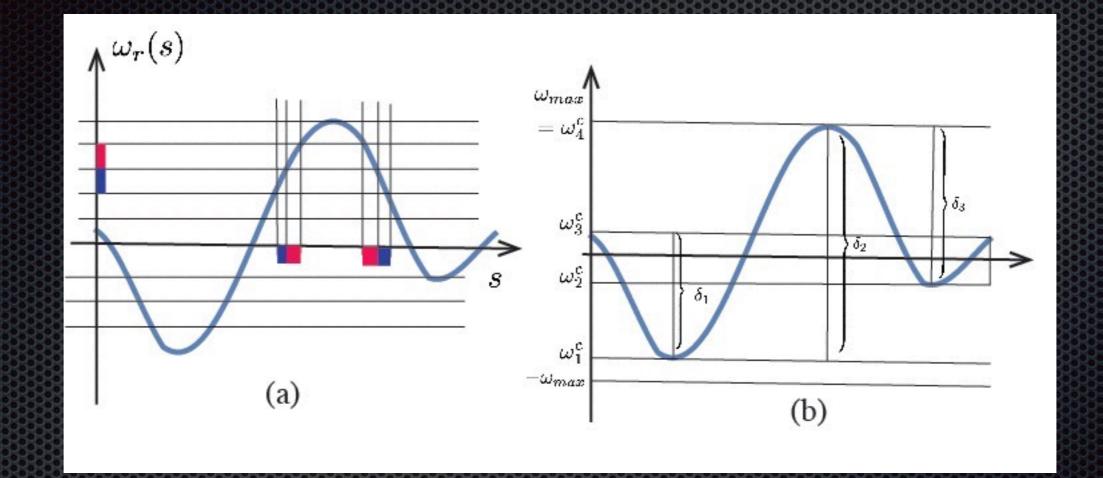
The entropy $h(f, \mathcal{U})$ of a mapping $f: X \to X$ with respect to a cover \mathcal{U} is defined as $\lim_{n\to\infty} H(\mathcal{U} \cup f^{-1}\mathcal{U} \cup \cdots \cup f^{-n+1}\mathcal{U})/n$, where H is the partition entropy defined as $H(\mathcal{A}) = \log N(\mathcal{A})$ for any partition \mathcal{A} .

The *entropy* of f, h(f) is the supremum over all covers \mathcal{U} of X.

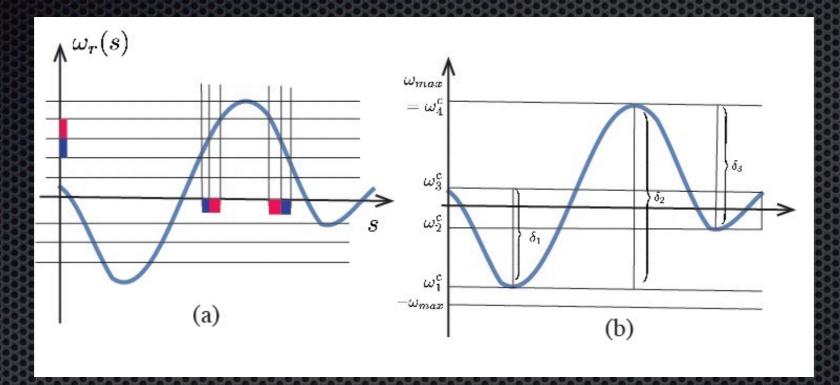


The vertical axis parameter is ω_r , and the horizontal axis parameter is s.

How much information does ω_r convey regarding s?



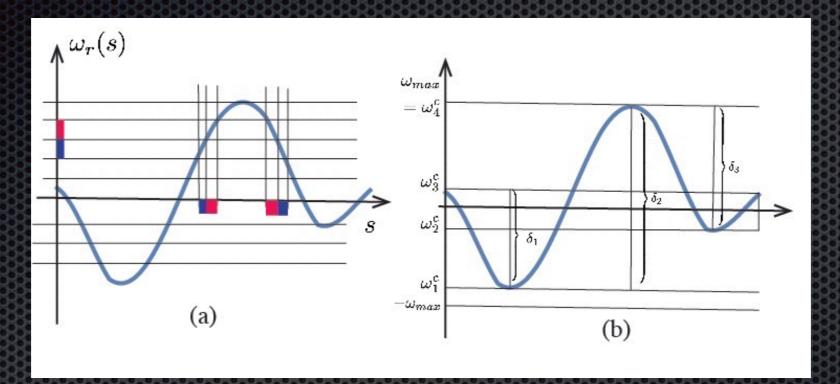
We assume that ω_r takes values in a bounded range: $\omega_{\min} \leq \omega_r \leq \omega_{\max}$



Partition the range into uniform subintervals.

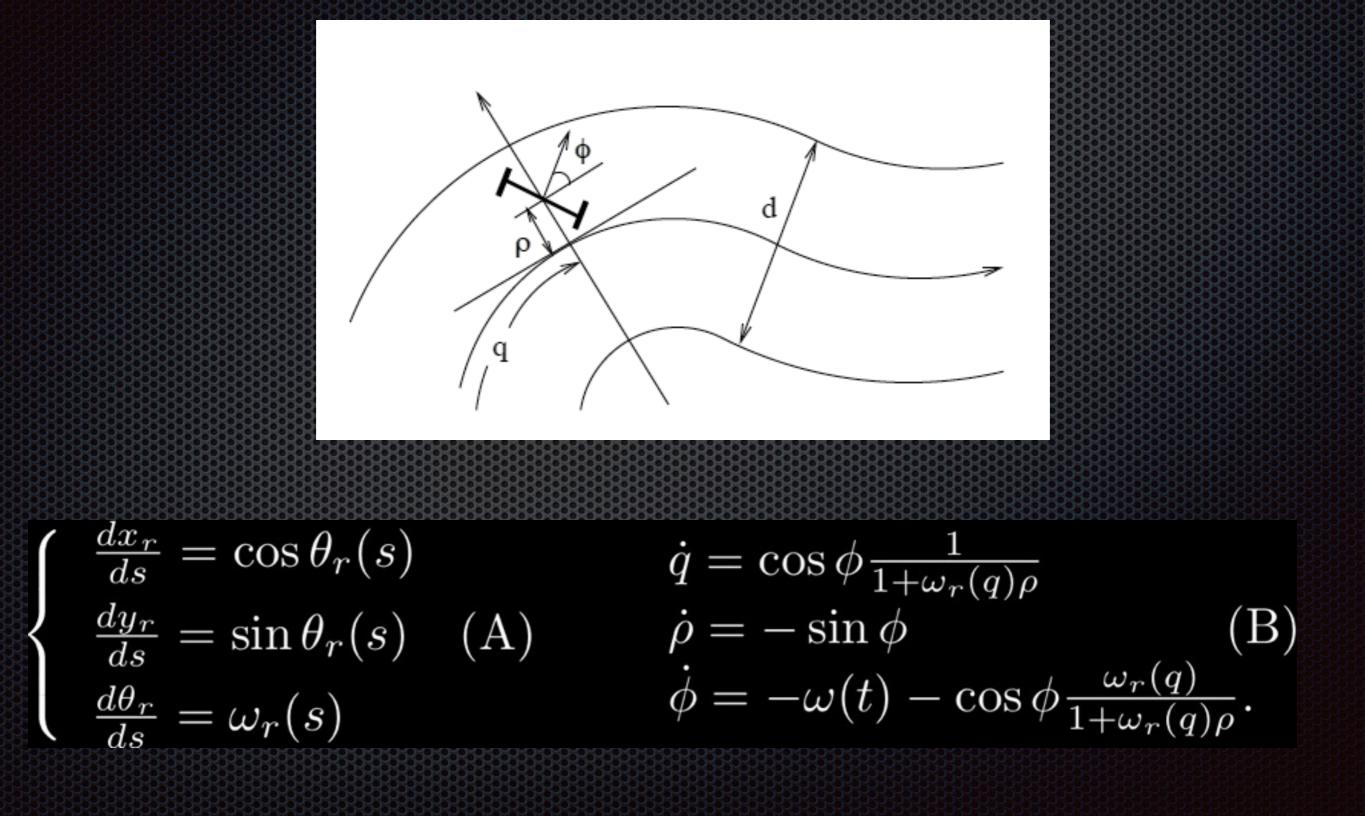
 $(\omega_{max} - \omega_{min})/n : \omega_{min} = \omega_0 < \omega_1 < \cdots < \omega_n = \omega_{max}$ This induces a partition in the domain.

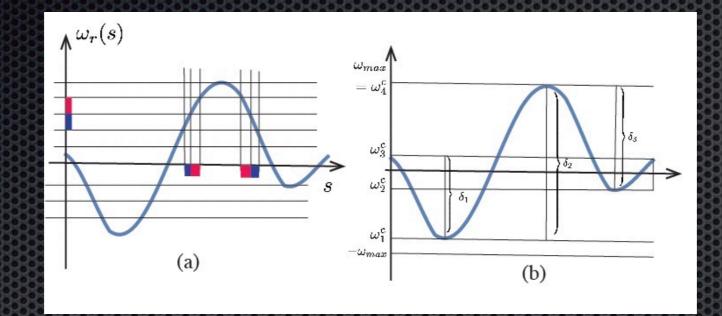
$$\mathcal{V}_{n} = \bigcup_{k=1}^{n} cc\{\omega_{r}^{-1}([\omega_{k-1}, \omega_{k}])\} = \{V_{1}, \dots, V_{N}\}$$



The range partition entropy induced by the mapping is:

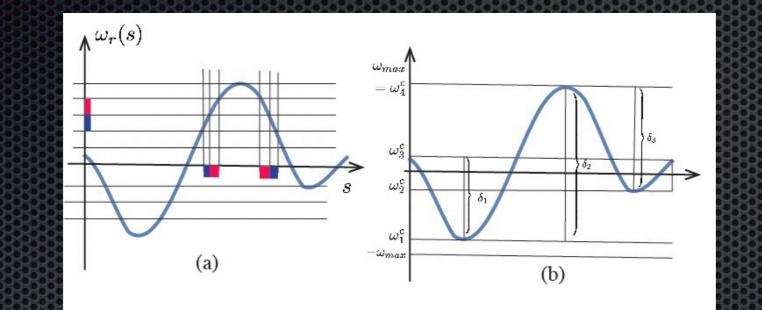
$$H(\mathcal{V}_n) = -\sum_{V_k \in \mathcal{V}_n} \frac{\mu(V_k)}{L} \log_2 \frac{\mu(V_k)}{L}$$
, where $L = \sum_{V_k \in \mathcal{V}_n} \mu(V_k)$.





A partition that is (possibly much) coarser than the range partition is the *critical point partition*. Enumerate critical values: $Vr(\omega_r) = \{\omega_1^c < \cdots < \omega_\ell^c\}$

In terms of the partition $\mathcal{V}_{cr} = \bigcup_{r} cc\{\omega_r^{-1}(\Delta_k)\}$ (which is just the segments on which ω_r in monotone), we have another partition entropy: $H_{cr} = -\sum_{V \in \mathcal{V}} \frac{\mu(V)}{L} \log_2 \frac{\mu(V)}{L}$



 $\mathbf{Theorem}: \quad \lim_{n \to \infty} \{H(\mathcal{V}_n) - \log_2 n\} \le H_{cr} + \sum_{V \in \mathcal{V}_{cr}} \frac{\mu(V)}{L} \log_2 \frac{\delta_k}{\omega_{max} - \omega_{min}}$

The $\delta_k \ s$ are the differences between successive critical values.

In the case of dimensions 2 and higher, similar quantities are defined:

$$H(\mathcal{M}) + \sum_{i=1}^n rac{\mu(M_i)}{\mu(X)} \log_2 \delta_i$$

This may be taken as a proxy fort salient information.

Information Based Image Segmentation

Reconnaissance of time-varying fields
 Concepts of sensor fusion

Given multiple sensor fields f_1, \ldots, f_N on a common domain X, partition X into subdomains Y_1, \ldots, Y_N such that on each subdomain Y_j the *j*-th sensor field f_j is maximally informative.

Sensor-fusion: Form composite

$$f(x) = f_j(x)$$
 if $x \in Y_j$

Entropy conditioned on a set

$H(\alpha|Y) > H(\alpha)$

For each sensor f_j and each subdomain Y, define associated critical set partition

 $\mathcal{M}_j = \mathcal{M}(f_j, Y) = cc(Y \setminus Cr(f_j, Y))$

Concepts in sensor fusion Given a sensor field f_i and any subset compute $u(f_j, Y) = -\sum_{M_i \in \mathcal{M}_j} \frac{\mu(M_i \cap Y)}{\mu(Y)} \log_2 \frac{\mu(M_i \cap Y)}{\mu(Y)}$ $+\sum_{M_i\in\mathcal{M}_j}\frac{\mu(M_i\cap Y)}{\mu(Y)}\log_2\delta_{ij}$ • Let $Y_j = \underset{X \subset X}{\operatorname{arg max}} u(f_j, Y)$ Get a set of possibly overlapping subdomains $\{Y_1,\ldots,Y_N\}$

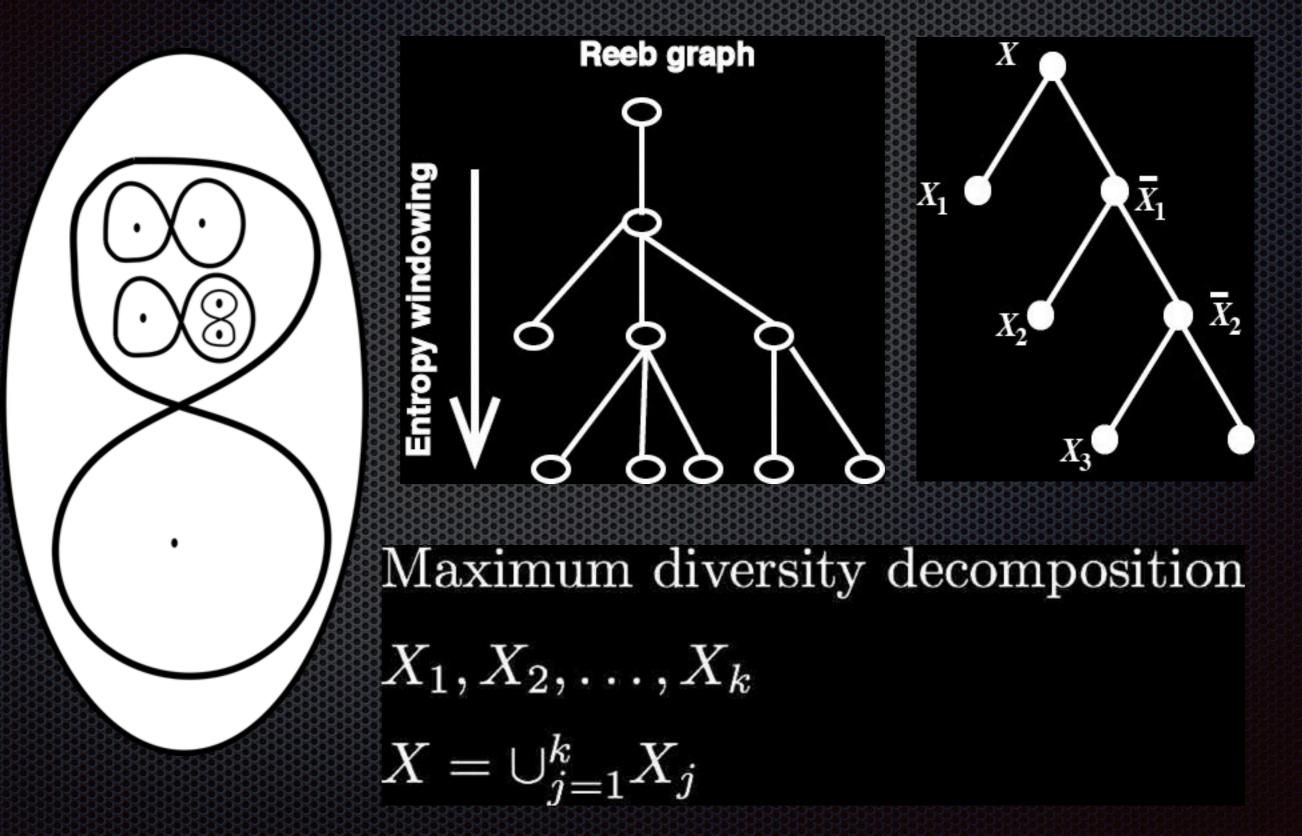
Information utility in sensor-based imaging

• Goal: Reconcile/merge field data from different sensors on nonempty overlaps $Y_{i_1} \cap \cdots \cap Y_{i_k} \neq \emptyset$

• Find partitions $\mathcal{Y} = \{\hat{Y}_1, \dots, \hat{Y}_N\}$ that maximize the *information utility*

$$U(f_1, \cdots, f_N, \mathcal{Y}) = \sum_{j=1}^N \frac{\mu(\hat{Y}_j)}{\mu(X)} u(f_j | \hat{Y}_j).$$
where
$$u(f | Y_{\mathcal{C}_I}) = -\sum_{M_I^i \in \mathcal{M}_I} \frac{\mu(M_I^i \cap Y_{\mathcal{C}_I})}{\mu(Y_{\mathcal{C}_I})} \log_2 \frac{\mu(M_I^i \cap Y_{\mathcal{C}_I})}{\mu(Y_{\mathcal{C}_I})} + \sum_{M_I^i \in \mathcal{M}_I} \frac{\mu(M_I^i \cap Y_{\mathcal{C}_I})}{\mu(Y_{\mathcal{C}_I})} \log_2 \delta_{iI}$$

Information based segmentation using topological motifs

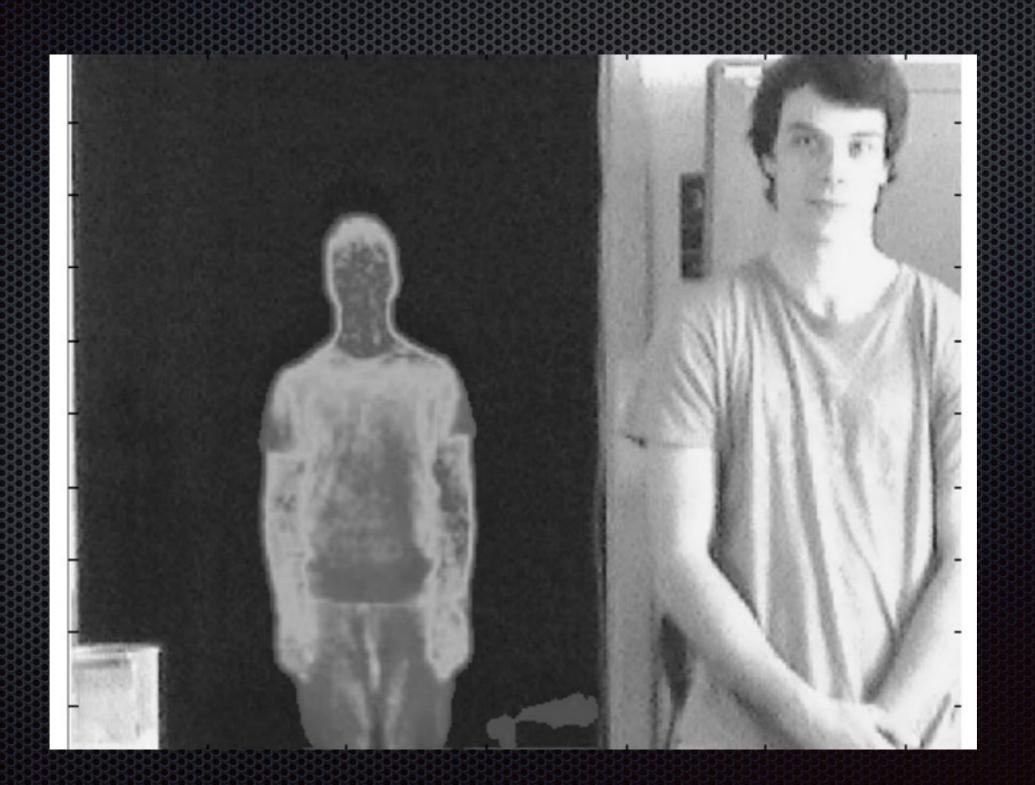


Enhanced perception from sensor fusion

Visual spectrum

Infrared spectrum

Enhanced perception from sensor fusion



Conclusion

- Topological methods examine data relationships that may be missed by PCA and other essentially linear approaches to analytics.
- Such methods appear to be useful in data compression of multiband images.
- These methods also provide a baseline for studying human performance in directing reconnaissance (See tomorrow's talk.) and in studying visual cognitive styles.
- Current research is aimed at understanding how to extend this circle of ideas to time-varying fields and how to extend information theory to point cloud data sets.