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o | ecture 1: Video Data and the Inverse Perception
Problem in Animal Flight Behaviors

o | ecture 2: Bio-Inspired Flight Control — What we learn
from birds and bats

o | ecture 3: Topological Data Analytics

e | ecture 4: Topological Aspects of Optimal Information
Acquisition



e Feld studies of bats — what we did; why we did It

e Navigation laws used by flying animals
e Perception

¢ [opological Data Analytics

® (Geometric and topological aspects of optimal
iInformation acquisition




Percepltion IS SPecIeS SpPecHiic

Cassidy — what is she thinking?
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Perception IS SPECIES SPECHIC

Nicolaus [roje’s home page:

http://www.biomotionlab.ca/niko.php



http://www.biomotionlab.ca/Demos/BMLgender.html

The Inverse Perception Problem in Animal
Flight Behaviors

Talk Qutline
1. What Is perception-enabled control and why is it
different’?
2. Control In the natural world is perception enabled -
how perceptions differ from one species to the next.
3. How animals react to optically sensed features.
4. Introduction to tau and looming.
5. Tau as a control signal.
6. Some biologically plausible control laws.
/. Profound open challenges.
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The great challenge of the “inverse
perception problem’

There Is an important contrast: "uphill analysis and
downhill invention.” It is easy to invent machines to
DOSSESS certain behavioral characteristics. It Is quite easy
to observe the full repertoire of behavior of these
machines - even it it goes beyond what we had originally
planned, as it often does. But it Is much more difficult to

start from the outside and to try to guess internal structure
just from the observation of behavior."

---Valentino Braitenberg, Vehicles, 1984



The perceptual basis of motion control

Working
model of the
envirionment

Perceptual
update

Action/
=5 Updated R
usion Perception equnse
selection

Operating
environment




Perception-guided flight control - A two
pronged attack

Jnderstand how sensorimotor
'esponse changes with
relative availability of visual
iInformation.

FIt various pbiologically
plausible motion control laws
to a large sample of actual
animal flight data




Perception-guided flight control - Animals of
IfEIES)

lagarida brasiliensis




Controlled motions through obstacle fields

3at motions are:
® (G0al oriented (outer loop strategies)
® —|Igh|y reactive (inner loop strategies)
® Based on perceptions of the
environment:

Obstacles
Other creatures
Wind dynamics

51g question: Can trajectories reconstructed from
fleld data lbe recreated using laboratory flight vehicles
and Sensors?




Studying bat flight behaviors in the field



Perception-guided flight control - Animals of
INnterest

Manduca sexta

» Crepuscular flier
» Mass 2-3g
» Wingspan 10cm

photo: Armin Hinterwirth

Thanks to the Tom Daniels Lab, U. \Washington



Virtual Reality Arena
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Studying insect flight behaviors in the lab

Tom Daniels Lab, U. Washington



Studying insect flight behaviors in the lab

Tom Daniels Lab, U. Washington



Studying insect flight behaviors in the lab

Tom Daniels Lab, U. Washington



Controlled motion through a simulated
obstacle field

S [ 'he obstacle widths
follow and exponential

distribution, as do the
inter-obstacle spaces.

With the obstacle

field as realized above,

the probabilities of col-
lision-free transit are\
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Animal-inspired perception-based motion
contro

® Perception-enabled

motor control across KINecty == Lidar
behavior regimes in higher B Y ,ﬂ,ﬁ —
animals requires perception T T

fusion:;

® Understanding how
specific perceptual cues
enable specific tlight
behaviors seems attainable
- “the devil Is In the detalls”.

1Kg \ Netbook

Digital camera
(non-compressive)




Motion control based on optical flow sensing




Motion control based on optical flow sensing

Key assumption:

, constant closing velocity

z(t) = g — vt
impact occurs at t = 7

g.f. g = =0
(9,

by similar triangles

T = dz/dz



Motion control based on optical flow sensing

D.N. Lee and P.E.
Reddish, 1981.
"Plummeting gannets: a
paradigm of ecological
optics,” Nature,
293:293-294.

What if acceleration
1S constant?

7(t) = (t3 — t%)/2t

Fig. 2 Wing positions of diving gannet, Sula bassana (length
~ 0.9 m, wingspan 1.7 m). Illustration by John Busby. (Reprinted
from ref. 7, courtesy of the author and publishers.)

T(tq — €) = €+ o(e)




Motion control based on optical flow sensing

Heuristic:

............... Transit the open
space in a direction

perpendicular to

obstacle row.

mobile "7
optical -
sensor -

., w>< >
*s (!1‘. :

\tau is a proxy for distance.



Motion control based on optical flow sensing

> v(t) cos
v(t)sin @

mobile
optical

world coordinates

< s

“d, dp-
The values z, and z, are not directly known.
Can we use 7y and 7,- as proxies?

Sensor 3




Motion control based on optical flow sensing
How we compute and think about 7.(%)

In terms of the mobile camera trajectory

(z(t),y(t), 0(1)),
7r(t) = (cos[0(t)](zr — 2(t)) + sin[6(t)](yr — y(t)) — 1) /v

Interpretation: Fictive trajectory

( Z(s) ) B ( z(t) + vs cos O(t)

y(s) )\ y(t)+ vssinf(t)

transits line A when s = 7,.(¢).



Motion control based on optical flow
sensing
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world coordinates

Theorem: Consider the camera motion kinematics as above. Let ¢ > 0 be a
small positive constant. The image-referenced configuration set

dy < —eand d, > ¢ (1)

1s invariant under the feedback control law

v(t) = min(l,7 + 7)
{ 0 if dTZEOI‘dg:—E

w(t) = —T¢ 1f d, > € and dy < —e.



T for Idealized eye geometries




Sensory iInformation

Echolocation
Binocaiars vision

Optical flow

Dead reckoning (spatial memory)

Response to ambient airflow




III

t for “all” eye geometries

X v cos 6 dz
32 vsinf | BT — —
v U dz

7 18 a purely configuration-
dependent quantity

cosf (xy —x) +sinf (yy, — y)
v 1

¥




Motion control based on optical flow sensing

Theorem

Let 7i(t) be the time-to-transit
associated with feature O; for j =1, 2.
Suppose the initial orientation, 0y, of
the vehicle is such that ™ > 11. Further
assume that the vehicle travels at
constant speed v = 1. Then for any

k > 0, the steering control

u=u(t) = k[r'(6(t)) — 2"(6(t))],

where Tj(@) = %TOL will asymptotically

align the vehicle with the semi-infinite
line directed from O to O».




Distance cues in optical flow

small 7, large visual
d| = danger!! feature

p—

vehicle 1 vehicle 2

T 1s the same, but the feature image
lies on a different part of the retina.



A tau-based control library

Time-to- Transit vision-based steering controls
uc|O] single-feature control keeps T constant
—feature circling follows circular arc at
constant radius from
feature O.
uq[O1, O3] | paired-feature control aligns with the line
—distance maintenance segment from O to Oy;
see [heorem above.
up[O1,O7] | paired feature control control law from [CDC
— steers between features | 12, Sebesta and Baillieull
to steer vehicle on path
between 01, 0.




Optical flow based steering protocol

e Align with AB;

e Circle B until
aligned with BC;

e [y parallel to BC.




Animal-inspired perception-based motion

contro
Toward understanding how specific cues enable specific flight
behaviors

Sl0-INsSpired vision-based perception:

suitable for real-time flight through

e Sparse optical flow |sufficiently textures rich visual
settings

» Dense optical flow |primarily off-line video processing

algorithms needed for dynamically
Time-to-contact rich settings




The setting for our study of bat flight
frajectories:

,,,,,

® High-resolution thermal V|deo B
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Ihe setting for our study of bat tlight

trajectories:

405 Mytois velifer bats eme

ging from a cave In the

SBamberger ranch preserve

® High-resolution thermal video
recordings were mined to
reconstruct three-dimensional
flight paths of 405 different
trajectories.

® Spline smoothing to correct
for errors.

® [rajectories projected to 2-D.

in Johnson City, Texas.




Ihe setting for our study of bat tlight

trajectories:

405 Mytois velifer bats eme
SBamberger ranch preserve

® High-resolution thermal video
recordings were mined to
reconstruct three-dimensional
flight paths of 405 different
trajectories.

® Spline smoothing to correct
for errors.

® Fight speeds do not vary
much.

ging from a cave In the

in Johnson City, Texas.




Ihe setting for our study of bat tlight

trajectories:

405 Mytois velifer bats eme
SBamberger ranch preserve

® High-resolution thermal video
recordings were mined to
reconstruct three-dimensional
flight paths of 405 different
trajectories.

® Spline smoothing to correct
for errors.

® [rajectories projected to 2-D.
® Reparameterization by arc
length.

ging from a cave In the

in Johnson City, Texas.




Ihe setting for our study of bat tlight

trajectories:

405 Mytois velifer bats eme
SBamberger ranch preserve

® High-resolution thermal video
recordings were mined to
reconstruct three-dimensional
flight paths of 405 different
trajectories.

® Spline smoothing to correct
for errors.

® [rajectories projected to 2-D.
® Reparameterization by arc
length.

ging from a cave In the

in Johnson City, Texas.




254 M. velifer trajectories averaged
according to avoldance strategies

Number for Each Group
Group | Number | Percentage
LU | 39 15.35

RRU | 14 5.51
W 27 10.63
> 73 28.74

Trajectories are parameterized by 98 38.58
arc-length.

—T

N RU |3 1.18
- Vine B
N




254 M. velifer trajectories statistics ot the
main subgroups




254 M. velifer trajectories statistics ot the
main subgroups




Synthesizing typical bat trajectories




Comparing motion strategies

® solid lines—mean bat trajectories;
® curves with circles—synthesized trajectories based on forest cue strategy;
® curves with squares—synthesized trajectories based on integrated strategy.



Learning from the motions of others:




Open questions (2012):
® Are the bats relying solely on optical flow??

® \\Vhy do some bats prefer the shorter route?

® Are shorter paths the result of learning and spatial
memory’?

® Are shorter paths the result of leader-follower kinematics?

® Can we disentangle the bats’ use of echolocation and
vision’?

® How do these results change when the feedback models
utilize higher multiplicities of features”
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Lalboratory experiments with optical tflow
sensing
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More info: http://a



http://arxiv.org/abs/1203.2816

Features, textures, and noise - iIs there an
entropy sweet spot?

There are entropy
gradients in every
environment.

HOW can we quantity

feature significance??

1oo much detall =
sensory overload.




What remains to be done:

® |ntroduce environmental features that the bats will need to
react to; understand the role of learning and spatial memory:;
® Bring acoustic sensors to the field to make synchronized
recordings of echolocation;

® Understand optical flow feedback using feature networks.
(Put SURF, BRISK, FREAK, €tc. into feedback loops.)

L

¢, )




Thoughts on teature saliency

e Optical flow algorithms depend
Key point associations between
video frames.

e Key point associations between
frames becomes difficult if the key
point Image moves a large
amount between frames.

e Key point Images associated 1o
nearby environmental features
have high retinal velocity.




Thoughts on teature saliency

The velocity of image points d; on the retin:
s inversely proportional to how close a straight
line trajectory will pass the feature.

dlmple geometry

v =10m/s, f = 11 mm
in appropriate scale), anc
ve assume d = 35mm/s.

Retina
35mm




Navigating through feature networks:

Feature corridor

O O

O O




trol over feature-actuator networks with channel

mittency:

Channels are available intermittently.

This is kept track of by an m X m
diagonal matrix M (¢) and a ¢ X g
diagonal matrix K (¢) with 1’s and 0’s
on the diagonal.



Networked control with channel intermittency:

Contributions to this problem:
Zhang & Hristu, Automatica, 2006, Yu and Andersson,
CDC , 2013, JB and Kong, CDC (), 2014 & arXiv.org



http://arXiv.org
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Summary — and what's next

e Observed flight behaviors may be reactions to visual cues.
e Animals have affinity for information-rich flight arenas.

e How are sensory Inputs blended with spatial memories?
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