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Overview of Four Lectures 

• Lecture 1: Video Data and the Inverse Perception 
Problem in Animal Flight Behaviors 

• Lecture 2: Bio-Inspired Flight Control — What we learn 
from birds and bats 

• Lecture 3: Topological Data Analytics 

• Lecture 4: Topological Aspects of Optimal Information 
Acquisition



Theme of the Four Lectures 

• Field studies of bats — what we did; why we did it 

• Navigation laws used by flying animals 

• Perception 

• Topological Data Analytics 

• Geometric and topological aspects of optimal 
information acquisition



Perception is species specific

 Cassidy — what is she thinking?



Perception is species specific — 
Nicolaus Troje



Perception is species specific

Nicolaus Troje’s home page:

http://www.biomotionlab.ca/niko.php

http://www.biomotionlab.ca/Demos/BMLgender.html


The Inverse Perception Problem in Animal 
Flight Behaviors

Talk Outline
1. What is perception-enabled control and why is it 
different? 
2. Control in the natural world is perception enabled - 
how perceptions differ from one species to the next. 
3. How animals react to optically sensed features. 
4. Introduction to tau and looming.
5. Tau as a control signal. 
6. Some biologically plausible control laws. 
7. Profound open challenges.



Motion control based on perception

How do they do it?



The great challenge of the “inverse 
perception problem”

There is an important contrast: "uphill analysis and 
downhill invention."  It is easy to invent machines to 
possess certain behavioral characteristics.  It is quite easy 
to observe the full repertoire of behavior of these 
machines - even if it goes beyond what we had originally 
planned, as it often does.  But it is much more difficult to 
start from the outside and to try to guess internal structure 
just from the observation of behavior." 

---Valentino Braitenberg, Vehicles, 1984



The perceptual basis of motion control



Perception-guided flight control - A two 
pronged attack

Understand how sensorimotor 
response changes with 
relative availability of visual 
information.

Fit various biologically 
plausible motion control laws 
to a large sample of actual 
animal flight data



Perception-guided flight control - Animals of 
interest

Myotis velifer

Tadarida brasiliensis

Columba livia



Controlled motions through obstacle fields
Bat motions are: 
• Goal oriented (outer loop strategies) 

• Highly reactive (inner loop strategies) 
• Based on perceptions of the 
environment: 

 Obstacles 
 Other creatures 
 Wind dynamics

Big question: Can trajectories reconstructed from 
field data be recreated using laboratory flight vehicles 
and sensors?



Studying bat flight behaviors in the field



Perception-guided flight control - Animals of 
interest

Thanks to the Tom Daniels Lab, U. Washington



Studying insect flight behaviors in the lab

Thanks to the Tom Daniels Lab, U. Washington
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Tom Daniels Lab, U. Washington
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Studying insect flight behaviors in the lab

Tom Daniels Lab, U. Washington



Controlled motion through a simulated 
obstacle field



Animal-inspired perception-based motion 
control

Kinect Lidar

Netbook1Kg

• Perception-enabled 
motor control across 
behavior regimes in higher 
animals requires perception 
fusion; 
• Understanding how 
specific perceptual cues 
enable specific flight 
behaviors seems attainable 
- “the devil is in the details”.

Digital camera 
(non-compressive)



Motion control based on optical flow sensing



Motion control based on optical flow sensing



Motion control based on optical flow sensing

D.N. Lee and P.E. 
Reddish, 1981. 
“Plummeting gannets: a 
paradigm of ecological 
optics,” Nature, 
293:293-294.



Motion control based on optical flow sensing
Heuristic: 
Transit the open 
space in a direction 
perpendicular to 
obstacle row.

\tau is a proxy for distance.



Motion control based on optical flow sensing



Motion control based on optical flow sensing

Interpretation: Fictive trajectory



Motion control based on optical flow 
sensing



τ for idealized eye geometries

= time-to-transit



Sensory information

•  Echolocation 

•  Binocular vision 

•  Optical flow 

•  Dead reckoning (spatial memory) 

•  Response to ambient airflow



τ	
  	
  for	
  “all”	
  eye	
  geometries



Motion control based on optical flow sensing



Distance cues in optical flow



A tau-based control library



Optical flow based steering protocol

• Align with AB; 

• Circle B until 
aligned with BC; 

• Fly parallel to BC.



Animal-inspired perception-based motion 
control

Toward understanding how specific cues enable specific flight 
behaviors
Bio-inspired vision-based perception: 

• Sparse optical flow
suitable for real-time flight through 
sufficiently textures rich visual 
settings

primarily off-line video processing

 Time-to-contact  
algorithms needed for dynamically 
rich settings 

• Dense optical flow



The setting for our study of bat flight 
trajectories:

405 Mytois velifer bats emerging from a cave in the 
Bamberger ranch preserve in Johnson City, Texas.
• High-resolution thermal video 
recordings were mined to 
reconstruct three-dimensional 
flight paths of 405 different 
trajectories. 
• Spline smoothing to correct 
for errors. 
• Trajectories projected to 2-D. 
• Reparameterization by arc 
length.
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254 M. velifer trajectories averaged 
according to avoidance strategies



254 M. velifer trajectories statistics of the 
main subgroups



254 M. velifer trajectories statistics of the 
main subgroups



Synthesizing typical bat trajectories



Comparing motion strategies
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• solid lines–mean bat trajectories; 
• curves with circles–synthesized trajectories based on forest cue strategy; 
• curves with squares–synthesized trajectories based on integrated strategy.



Learning from the motions of others:



Open questions (2012):
• Are the bats relying solely on optical flow? 

• Why do some bats prefer the shorter route? 

• Are shorter paths the result of learning and spatial 
memory? 

• Are shorter paths the result of leader-follower kinematics? 

• Can we disentangle the bats’ use of echolocation and 
vision? 

• How do these results change when the feedback models 
utilize higher multiplicities of features?



The rest may need to be rearranged.



Learning from the motions of others:

Collective behavior in sparse swarms



Laboratory experiments with optical flow 
sensing

More info: http://arxiv.org/abs/1203.2816

http://arxiv.org/abs/1203.2816


Features, textures, and noise - is there an 
entropy sweet spot?

There are entropy 
gradients in every 
environment.

How can we quantify 
feature significance?

Too much detail       
sensory overload.



What remains to be done:
• Introduce environmental features that the bats will need to 
react to; understand the role of learning and spatial memory; 
• Bring acoustic sensors to the field to make synchronized 
recordings of echolocation; 
• Understand optical flow feedback using feature networks.  
(Put SURF, BRISK, FREAK, etc. into feedback loops.)



Thoughts on feature saliency

• Optical flow algorithms depend 
key point associations between 
video frames. 

• Key point associations between 
frames becomes difficult if the key 
point image moves a large 
amount between frames. 

• Key point images associated to 
nearby environmental features 
have high retinal velocity.



Thoughts on feature saliency



Navigating through feature networks:



Control over feature-actuator networks with channel 
intermittency:



Networked control with channel intermittency:

Contributions to this problem:
Zhang & Hristu, Automatica, 2006,  Yu and Andersson, 
CDC , 2013, JB and Kong, CDC (?), 2014 & arXiv.org

http://arXiv.org


Animal-inspired autonomous 
flight in the news



Summary — and what’s next

• Observed flight behaviors may be reactions to visual cues. 

• Animals have affinity for information-rich flight arenas. 
• How are sensory inputs blended with spatial memories?










