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Abstract. This set of notes was prepared for the mini-course Geometry and Dynamics of Nonholonomic Systems

given by the author at the 10th ICMAT International Summer School on Geometry, Mechanics and Control organized
by the GMC network from 20-24 June 2016 at La Cristalera, Miraflores de la Sierra, Madrid, Spain.

1. Examples

Mechanical systems with constraints on the velocities that are not derivatives of constraints in posi-
tions are termed nonholonomic. We introduce a series of examples that will be revisited throughout
the course. Note that in all of the examples the constraints are linear and homogeneous on the
velocities.

1.1. Chaplygin sleigh. Constraint:

ẏ cos θ = ẋ sin θ

Lagrangian:

L(x, y, θ, ẋ, ẏ, θ̇) =
1

2

(
(J +ma2)θ̇2 +m(ẋ2 + ẏ2) + 2maθ̇(cos θẏ − sin θẋ)

)
.

1.2. Suslov problem. Constraint 〈a,Ω〉 = 0. Ω is the angular velocity written in the body frame.

Lagrangian

L =
1

2
〈IIΩ,Ω〉

(II is the inertia tensor).
1
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1.3. Veselova problem. Constraint 〈e3, ω〉 = ω3 = 0. Here ω is the angular velocity written in the
space frame.

Lagrangian

L =
1

2
〈IIΩ,Ω〉

1.4. Chaplygin top (inhomogeneous sphere rolling on the plane). Constraint u̇ = B(ρ×Ω).

Here B is attitude matrix and ρ is the vector from O to P written in the body frame. C is
geometric center of the sphere. O is center of mass. P is contact point.

u is the position of the center of mass O expressed in space coordinates.
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Lagrangian

L =
1

2
〈IIΩ,Ω〉+

m

2
||u̇||2.

1.5. Pendulum. (Not really nonholonomic but we include it for comparison).

Constraint x2 + y2 = `2 or xẋ+ yẏ = 0.

Lagrangian

L(x, y, ẋ, ẏ) =
1

2
m(ẋ2 + ẏ2)−mgy.

2. Geometry of constraints that are linear in the velocities

The configuration space of a mechanical system is a smooth manifold Qn whose coordinates
q1, . . . , qn specify the configuration (position) of the system. The tangent bundle TQ is the space of
positions and velocities. For the examples introduced above:

(i) Chaplygin sleigh: Q = R2 × S1. It is also convenient to think of Q = SE(2) (not only a
manifold but a Lie group).

(ii) Suslov problem: Q = SO(3). This is the usual configuration space for rigid body dynamics.
(iii) Veselova problem: Q = SO(3).
(iv) Chaplygin top: Q = SO(3)× R2.
(v) Pendulum: Q = R2 (really S1 because the constraint is integrable).

2.1. Vector fields. Recall that a vector field X on Q assigns a vector X(q) ∈ TqQ to each q ∈ Q in
a smooth manner. In local coordinates

X(q) = X1(q)
∂

∂q1
+ · · ·+Xn(q)

∂

∂qn
= Xj(q)

∂

∂qj

for some smooth functions Xj : Q → R. Here { ∂
∂q1
, . . . , ∂

∂qn
} is a basis of TqQ induced by the

coordinates.

A vector field defines an autonomous ordinary differential equation on Q. In local coordinates it
is given by

q̇i = X i(q1, . . . , qn), i = 1, . . . , n.
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By the theorem of existence and uniqueness it defines a smooth flow φt : Q → Q (existing at least
for small |t|) such that c(t) = φt(q) is the unique curve that satisfies

c′(t) = X(c(t)), c(0) = q.

We call c(t) an integral curve of X. (Note (φt)
−1 = φ−t so φt is a diffeomorphism if t is small enough).

Example 2.1. Take Q = R2 × S1. We can use coordinates (θ, x, y). Let X1 = ∂
∂θ

, X2 = cos θ ∂
∂x

+

sin θ ∂
∂y

, X3 = − sin θ ∂
∂x

+ cos θ ∂
∂y

For X1 we have
φt(θ, x, y) = (θ + t, x, y).

For X2 we have
φt(θ, x, y) = (θ, x+ t cos θ, y + t sin θ).

For X3 we have
φt(θ, x, y) = (θ, x− t sin θ, y + t cos θ).

2.2. Vector fields act on functions. For f : Q→ R we define the new function X[f ] = £X(f) by
the rule

X[f ](q) =
d

dt

∣∣∣∣
t=0

f(φt(q)).

We can also write
X[f ](q) = 〈df(q), X(q)〉

or, in local coordinates,

X[f ](q) =
∂f

∂qi
(q)X i(q).

2.3. Lie bracket of vector fields. If X and Y are vector fields on Q, and φt is the flow of X, we
define the pull-back of Y by φt as the vector field on Q given by

φ∗t (Y )(q) = Tφt(q)φ−t(Y (φt(q))).

Example 2.2. Recall

X1 =
∂

∂θ
, X2 = cos θ

∂

∂x
+ sin θ

∂

∂y
.

The pull-back of X2 by the flow φt of X1 is

(φt)
∗(X2)(x, y, θ) = cos(θ + t)

∂

∂x
+ sin(θ + t)

∂

∂y
.

The Lie bracket [X, Y ] of the vector fields X, Y is the vector field defined by

[X, Y ](q) = lim
t→0

φ∗tY (q)− Y (q)

t

Example 2.3. Example: X1 = ∂
∂θ

, X2 = cos θ ∂
∂x

+ sin θ ∂
∂y

. The Lie bracket of X1 and X2 is

[X1, X2](x, y, θ) = lim
t→0

1

t

(
cos(θ + t)

∂

∂x
+ sin(θ + t)

∂

∂y
−
(

cos(θ)
∂

∂x
+ sin(θ)

∂

∂y

))
= − sin θ

∂

∂x
+ cos θ

∂

∂y
= X3.
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In practice one can rarely apply this definition since we do not have a formula for the flow of a
vector field. Brackets are efficiently computed using the following result.

Theorem. If X, Y are vector fields on Q and f : Q→ R then

[X, Y ][f ] = X[Y [f ]]− Y [X[f ]].

It follows that if

X = X i ∂

∂qi
, Y = Y i ∂

∂qi

then
[X, Y ] = DY ·X −DX · Y.

A fundamental geometric object in nonholonomic systems is a distribution.

Definition 2.4. A distribution D on Q is an assignment q 7→ Dq ⊂ TqQ, where Dq is a subspace of
TqQ, such that around every point q0 ∈ Q there is a neighbourhood U of q0 such that for all q ∈ U

Dq = span{X1(q), . . . , Xk(q)}
for smooth vector fields X1, . . . , Xk.

The dimension of Dq is called the rank of D at q ∈ Q. If the rank of the distribution is a constant
independent of q ∈ Q we call such distribution regular. Then D is a subbundle of TQ that can be
interpreted as a submanifold D ⊂ TQ.

We will consider regular distributions that are defined as the annihilator of a set of independent
one-forms.

Example 2.5. Take again Q = S1×R2 with coordinates (θ, x, y) and let D be the annihilator of the
one-form β = ẏ cos θ − ẋ sin θ. Then

D = span{X1, X2}
is a regular distribution of rank 2.

Definition 2.6 (Involutive distribution). The distribution D is called involutive if for any vector
fields X, Y such that X(q), Y (q) ∈ Dq for q ∈ U ⊂ Q open, we have

[X, Y ](q) ∈ Dq.

Definition 2.7 (Integral manifold - local theory). An integral manifold through a point q0 ∈ Q is
an immersed submanifold P of a neighbourhood q0 ∈ U ⊂ Q with the property that TqP = Dq for all
q ∈ U .

Definition 2.8 (Integrable distribution). A distribution is integrable if there exists an integral man-
ifold passing through each q ∈ Q.

It follows that if a distribution is regular and integrable, then around every point q0 ∈ Q there
exist local coordinates (q1, . . . qk, qk+1, . . . , qn) such that the sets qk+1 = ck+1, . . . , qn = cn are integral
manifolds. Using this, it is straightforward to show that an integrable distribution is necessarily
involutive. The converse implication is the content of Frobenius Theorem.

Theorem 2.9 (Frobenius 1877). If D is constant rank then D is involutive if and only if D is
integrable.
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Example 2.10. The distribution D spanned by X1 and X2 is not involutive and therefore not inte-
grable.

Example 2.11. Any rank one distribution is integrable. In particular, the distribution on R2\{(0, 0)}
defined as the null-space of

β = x dx+ y dy.

In polar coordinates (r, θ), the integral manifolds are r = a; which are circles of radius a.

The constraints on the velocities of a mechanical system are nonholonomic if they define a non-
integrable distribution on the configuration space Q. If such distribution is integrable, then the
constraints are holonomic.

3. The Lagrange-D’Alembert principle

Our approach is based on the Lagrangian formulation of mechanics (Lagrange 1788). We assume
that q = (q1, . . . , qn) are any set of coordinates on a manifold Q that specify the configuration of the
system and that the motion of the system is subjected to constraints that are linear and homogeneous
on the velocities, say

βak(q)q̇k = 0, a = 1, . . . , n− r, (3.1)

where the vectors βa(q) are linearly independent. The constraints define a regular distribution D on
Q and a constraint submanifold D ⊂ TQ.

We assume that the only forces acting on the system are conservative forces arising from a potential
energy function V = V (q) and the reaction forces. The equations of motion are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Ri, i = 1, . . . n. (3.2)

Here Ri are the components of the reaction force in this coordinate system and the Lagrangian
L = L(q, q̇) = 1

2
q̇TA(q)q̇ − V (q) where the kinetic energy matrix A(q) is symmetric and positive

definite.

In order to obtain a closed set of equations of motion, we need to invoke a physical principle
to specify the reaction force R. This is the Lagrange-D’Alembert principle of ideal constraints. It
assumes that the reaction force R annihilates any possible displacement of the system. Namely, if q̇
satisfies (3.1) then Riq̇

i = 0. Consequently, the reaction force R performs no work during the motion.
It neither adds or takes away energy from the system.

If we define E(q, q̇) = q̇i ∂L
∂q̇i
−L then, if the constraints (3.1) are satisfied, a direct calculation that

uses Riq̇
i = 0 shows that E is constant along the motion.

3.1. Determination of the reaction force. Our approach follows [1].

Denote by β(q) the (n − r) × n matrix whose ath row has entries βai (q). Under our assumptions,
the matrix β(q) has rank n− r.

The Lagrange-D’Alembert principle implies that R must be a linear combination of the rows of
β(q). Hence R = β(q)Tλ for a vector λ ∈ Rn−k. The entries λa of λ are sometimes called multipliers
or Lagrange multipliers (even if they are not necessarily Lagrange multipliers arising from the theory
of finding extrema with constraints). We shall see that λ is a function of (q, q̇).
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Differentiating (3.1) yields
β(q)q̈ + γ(q, q̇) = 0, (3.3)

where γ(q, q̇) ∈ Rn−r has components

γa(q, q̇) =
∂βak
∂qj

q̇j q̇k.

Using that L = 1
2
q̇TA(q)q̇ − V (q) we have

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= A(q)q̈ + η(q, q̇) + V ′(q) (3.4)

where the components of the vectors η(q, q̇), V ′(q) ∈ Rn are

ηi(q, q̇) =

(
∂Aij
∂qk

(q)− 1

2

∂Ajk
∂qi

(q)

)
q̇j q̇k, V ′i (q) =

∂V

∂qi
(q).

Therefore (3.2) becomes

A(q)q̈ + η(q, q̇) + V ′(q) = β(q)Tλ

Multiplying both sides of the equation by β(q)A−1(q) and using (3.3) yields

(β(q)A−1(q)β(q)T )λ = β(q)A−1(q)η(q, q̇) + β(q)A−1(q)V ′(q)− γ(q, q̇).

The matrix β(q)A−1(q)β(q)T is invertible since β has full rank. Therefore

λ(q, q̇) = (β(q)A−1(q)β(q)T )−1(β(q)A−1(q)η(q, q̇) + β(q)A−1(q)V ′(q)− γ(q, q̇)). (3.5)

This choice of λ guarantees that the constraint functions

φa(q, q̇) = βai (q)q̇i

are first integrals of (3.2). So, if (3.1) are satisfied at time t = 0, they are satisfied at all time.

Remark 3.1. The above formula for R depends on the basis βa for the annihilator of D. A different
choice of basis, i.e. of matrix β(q), say ε(q) = ψ(q)β(q), where ψ(q) is an invertible (n− r)× (n− r)
matrix, yields a different form of the reaction force, say R̂. This choice of reaction force guarantees
that instead the constraint functions φ̃a(q, q̇) = ψba(q)β

b
i (q)q̇

i are first integrals of (3.2). However,

the zero locus of φa and φ̃a coincide, and equals D, and we have R|D = R̂|D. Stated otherwise, the
constraint force R is well-defined on the constraint space D but not on TQ. �

Remark 3.2. Note that the dependence of η and γ on q̇ is quadratic. As a consequence, the system
is reversible. If q(t) is a solution, then so is q̃(t) := q(−t) (note also that the constraints (3.1) are
satisfied by q̃(t)). This observation has implications in the dynamics and will be important in our
study of measure preservation. �

Remark 3.3. In practice one computes the value of the constraint forces in a case by case basis.
However, this general approach illustrates an important point: while the constraints are of kinemat-
ical nature, the actual value of the constraint forces enforced by the Lagrange-D’Alembert principle
involve the dynamical features of the problem, like its mass distribution and the potential. This
follows from the dependence of λ on A and V . A concrete example is a ball rolling without slipping
on the plane. As we shall see, if the ball is homogenous the constraint forces vanish. This is not the
case if the mass distribution on the ball is not homogeneous. �
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3.2. Example. The pendulum. Our approach is somewhat inefficient and non-standard but it
will illustrate details of systems with holonomic constraints further along the road.

We have Q = R2, the Lagrangian is L = m
2

(ẋ2 + ẏ2) − mgy and the constraint is x2 + y2 = `2

where ` is the length of the rod of the pendulum. To apply Lagrange-D’Alembert’s principle we
differentiate the constraint to get

xẋ+ yẏ = 0, (3.6)

that has the form of the constraint equations (3.1). The matrix β is the row vector β = (x, y) and λ
is a scalar. The equations (3.2) can be written as

m

(
ẍ
ÿ

)
=

(
0
−mg

)
+ λ

(
x
y

)
=

(
0
−mg

)
− T√

x2 + y2

(
x
y

)
(3.7)

where T = −λ
√
x2 + y2. We do not use equation (3.5) to determine λ. Instead, and just like we

did in the general case, we differentiate the constraints and then use the equations of motion to
determine T . Differentiating (3.6) yields

xẍ+ yÿ = −ẋ2 − ẏ2.

Taking the scalar product of the equation of motion with (x, y) and using the above relation gives

−m(ẋ2 + ẏ2) = −mgy − T
√
x2 + y2

so

T =
m(ẋ2 + ẏ2)−mgy√

x2 + y2
.

For this value of T , the constraint function φ(x, y, ẋ, ẏ) = xẋ + yẏ is a first integral of (3.7). Along
the zero level set of φ, f(x, y) = x2 + y2 is another first integral. We are interested in the flow of
(3.7) restricted to the set where

f(x, y) = `2, φ(x, y, ẋ, ẏ) = 0.

Along this set

T =
m(ẋ2 + ẏ2)−mgy

`
,

which is the tension on the rod of the pendulum that can be derived from a free-body diagram.

3.3. Holonomic constraints. If the distribution D is integrable then we can find local coordinates

q1, . . . qr, qr+1, . . . , qn,

such that the constraints take the form

q̇r+1 = 0, . . . , q̇n = 0.

The equations of motion are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . r,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λi, i = r + 1, . . . n,

(3.8)

where the multipliers λi guarantee that the constraints are satisfied.
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Now fix an integral manifold P by the relations qr+1 = cr+1, . . . , qn = cn and let L̃ = L|TP .
Namely,

L̃(q1, . . . , qr, q̇1, . . . , q̇r) = L(q1, . . . , qr, cr+1, . . . , cn, q̇1, . . . , q̇r, 0, . . . , 0).

For i = 1, . . . , r we have

∂L

∂q̇i

∣∣∣∣
TP

=
∂L̃

∂q̇i
,

∂L

∂qi

∣∣∣∣
TP

=
∂L̃

∂qi
,

and therefore, the first set of equations in (3.8) becomes

d

dt

(
∂L̃

∂q̇i

)
− ∂L̃

∂qi
= 0, i = 1, . . . r.

In other words, when the constraints are holonomic, the equations of motion can be obtained by
substituting them into the Lagrangian and computing the usual Euler-Lagrange equations.

Example 3.4. For the case of the pendulum, the Lagrangian L in polar coordinates

x = r sin θ, y = −r cos θ

is

L(θ, r, θ̇, ṙ) =
m

2
(ṙ2 + r2θ̇2) +mgr cos θ.

Taking P as the integral manifold r = ` leads to

L̃(θ, θ̇) =
m`2

2
θ̇2 +mg` cos θ.

The corresponding Euler-Lagrange equations are

θ̈ +
g

`
sin θ = 0.

3.4. Example 2. The Chaplygin sleigh. This time Q = S1 × R2 with coordinates (θ, x, y). The
Lagrangian is

L =
1

2

(
(J +ma2)θ̇2 +m(ẋ2 + ẏ2) + 2maθ̇(cos θẏ − sin θẋ)

)
and the constraint is

−ẋ sin θ + ẏ cos θ = 0.

The equations of motion (3.2) become

(J +ma2)θ̈ +
d

dt
(cos θẏ − sin θẋ) +maθ̇(sin θẏ + cos θẋ) = 0,

mẍ− d

dt
(maθ̇ sin θ) = −λ sin θ,

mÿ − d

dt
(maθ̇ sin θ) = λ cos θ.
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4. Rigid body dynamics

To describe the configuration of a rigid body we use two frames of reference. A body frame that
is attached to the body and rotates with it and an inertial space frame. These frames are related by
a matrix B ∈ SO(3) called the attitude matrix. We will always assume that the body frame has its
origin at the center of mass.

Take a vector whose coordinates with respect to the space frame are the entries of q ∈ R3 and
whose coordinates with respect to the body frame are the entries of Q ∈ R3. The matrix B is such
that q = BQ. For the most part, we will follow the convention of writing vectors written in the space
frame with lower case letters and vectors written in the body frame with upper case letters.

If one performs a rotation of the space frame by A ∈ SO(3), the new coordinates of our vector
become q̃ = Aq. And the relationship with Q becomes q̃ = ABQ.

On the other hand, if we perform a rotation of the body frame by A ∈ SO(3), the body coordinates
of our vector are Q̃ = AQ. The relationship with q becomes q = BA−1Q̃.

Therefore, rotations of the space axes correspond to left multiplication of the attitude matrix B
while rotations of the body axes correspond to right multiplication of the attitude matrix B. This
simple fact is essential to understand the symmetries of a system that involves rigid bodies. For
instance, the free rigid body is left invariant due to the isotropy of the ambient space.

A motion of the rigid body corresponds to a curve B(t) ∈ SO(3).

Consider a vector Q with constant body coordinates (e.g. a material point in the body). Its space
coordinates during the motion satisfy q(t) = B(t)Q and hence

q̇ = ḂQ = ḂB−1q = ω̂q = ω × q.
Here ω̂ is the skew-symmetric matrix (element of the Lie algebra so(3)) whose entries define the
components ω1, ω2, ω3 of the vector ω. The convention that makes the formulae work is

ḂB−1 = ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

Analogously, if q is a vector with constant space coordinates (e.g. one of the axes of the space
frame), its body coordinates throughout the motion are given by Q(t) = B(t)−1q and hence

Q̇ = −B−1ḂB−1q = −B−1ḂQ = −Ω̂Q = Q× Ω.

where Ω̂ is the skew-symmetric matrix (element of the Lie algebra so(3)) whose entries define the
components Ω1,Ω2,Ω3 of the vector Ω. The convention that makes the formulae work is

B−1Ḃ = Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 .

The entries of ω and Ω are respectively the space and body coordinates of the angular velocity
vector of the body. It is important to remember that they represent the same vector, just written
with respect to different set of axes. They satisfy ω = BΩ.

The angular momentum vector depends linearly on the angular velocity. On the body frame, such
dependence is M = IIΩ where II is the inertia tensor of the body. It is a symmetric, positive definite,
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constant (independent of B), 3 × 3 matrix. The kinetic energy of the body is the scalar product
〈M,Ω〉.

The space representation of the angular momentum is the vector m = BM . In the absence of
external forces it is constant. Therefore, from our calculation above, M satisfies

Ṁ = M × Ω.

Equivalently,

IIΩ̇ = (IIΩ)× Ω.

These are Euler’s equations for the motion of a free rigid body. They are complemented with the
reconstruction equation

Ḃ = BΩ̂.

The decoupling of the equations is a consequence of the symmetries of the problem mentioned above.
The system is left invariant because the equations do not care in which way we choose the orientation
of the space frame.

4.1. Suslov problem. Consider the motion of a rigid body with the nonholonomic constraint
〈a,Ω〉 = 0.

In the absence of constraints, the system evolves according to Euler’s equations

IIΩ̇ = (IIΩ)× Ω.

If we enforce the constraint, we should bring in a reaction force1 R

IIΩ̇ = (IIΩ)× Ω +R.

Lagrange-D’Alembert principle tells us that 〈R,Ω〉 = 0 if Ω satisfies the constraints. Therefore we
take R = λa and determine λ. Differentiate the constraint to obtain 〈a, Ω̇〉 = 0 and write

IIΩ̇ = (IIΩ)× Ω + λa. (4.1)

Taking the scalar product on both sides with II−1a and performing the algebra we get

λ = −〈(IIΩ)× Ω, II−1a〉
〈a, II−1a〉

(4.2)

This choice of λ guarantees that 〈a,Ω〉 is a first integral of (4.1). We are interested in the zero level
set.

Choose the body frame of the body such that the third axis E3 is parallel to the vector a. The
constraint becomes Ω3 = 0. The inertia tensor cannot be assumed to be diagonal. But by an
appropriate rotation about the E3 axis, we can assume that it has the form

II =

I11 0 I13

0 I22 I23

I13 I23 I33

 .

Exercise: Convince yourself of this statement.

1It would be more appropriate to speak of a constraint torque
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A direct calculation shows that substituting a = E3 and the above form of II and (4.2) into (4.1)
yields

Ω̇1 = − 1

I11

((I13Ω1 + I23Ω2)Ω2) ,

Ω̇2 =
1

I22

((I13Ω1 + I23Ω2)Ω1) ,

(4.3)

together with Ω̇3 = 0.

Note that we get a closed system on R2. If I13 and I23 do not vanish simultaneously (the vector a
is not a principal axis of inertia of the body), the phase portrait on the plane (Ω1,Ω2) looks like

1Ω

2Ω

I13Ω1+I23Ω2=0

Figure 1. Phase portrait of the system (4.3).

The trajectories are contained on the energy level surfaces. Putting Ω3 = 0 in 〈IIΩ,Ω〉 gives

E =
1

2

(
I11Ω2

1 + I22Ω2
2

)
.

The level sets are hence ellipses. On the other hand the line I13Ω1 +I23Ω2 = 0 consists of equilibrium
points.

The full dynamics of the system are complemented with the equation Ḃ = BΩ̂. In the 5 dimensional
phase space D we have families of attracting and repelling periodic orbits. This type of behavior
cannot occur in Hamiltonian systems.

4.2. Veselova problem. The constraint can be written in body coordinates as 〈Ω, γ〉 = 0 where
γ = B−1e3 is the Poisson vector. It is the expression of the 3rd axis of the body frame written in
body coordinates. It evolves according to the kinematic equation

γ̇ = γ × Ω. (4.4)

Note that ||γ||2 is a first integral of the above equation. We are interested in the level set ||γ|| = 1
and we think of γ ∈ S2.

In the absence of constraints, the system evolves according to Euler’s equations

IIΩ̇ = (IIΩ)× Ω.
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If we enforce the constraint, we should bring in a reaction force2 R

IIΩ̇ = (IIΩ)× Ω +R.

Lagrange-D’Alembert principle tells us that 〈R,Ω〉 = 0 if Ω satisfies the constraints. Therefore we
take R = λγ and determine λ. Differentiate the constraint to obtain 〈γ, Ω̇〉 = 0 and write

IIΩ̇ = (IIΩ)× Ω + λγ. (4.5)

Taking the scalar product on both sides with II−1γ and performing the algebra we get

λ = −〈(IIΩ)× Ω, II−1γ〉
〈γ, II−1γ〉

(4.6)

This choice of λ guarantees that 〈γ,Ω〉 is a first integral of the system (4.5), (4.4). We are interested
in the level set where

||γ|| = 1, 〈Ω, γ〉 = 0.

Such space is isomorphic to the tangent bundle of the sphere TS2.

4.3. Chaplygin top. We denote by

• C the geometric center of the sphere.
• O the center of mass.
• P the contact point.
• u = (x, y, z) the space coordinates of the point O. The space frame has the third vector e3

perpendicular to the rolling plane and pointing upwards (against gravity).

The origin of the body axis is the center of mass O.

In the absence of constraints the equations of motion are

mü = −mge3, IIΩ̇ = (IIΩ)× Ω,

where II is the inertia tensor, m is the mass of the sphere, g is the gravitational constant.

Now add the rolling without slipping reaction forces:

mü = −mge3 +R1, IIΩ̇ = (IIΩ)× Ω +R2. (4.7)

We now find the expression for the rolling constraint. A material point on the sphere with constant
body coordinates Q has space coordinates

q(t) = u(t) +B(t)Q,

2It would be more appropriate to speak of a constraint torque
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so

q̇ = u̇+ ḂQ.

To obtain the rolling constraint we put Q = ρ (the vector ~OP written in body coordinates) and
enforce q̇ = 0 (the velocity of the contact point is zero). We get

u̇ = −Ḃρ = −BB−1Ḃρ = −B(Ω̂ρ) = B(ρ× Ω).

So the nonholonomic constraint is

u̇ = B(ρ× Ω). (4.8)

This constraint has one holonomic component: the ball cannot leave the table! Introduce the Poisson
vector γ = B−1e3 and assume that the body frame {E1, E2, E3} is selected in such way that the
geometric center of the sphere has body coordinates −`E3. We can then write

ρ = −Rγ − `E3 (4.9)

where R is the radius of the sphere.

The z coordinate of u satisfies

z = −〈ρ, γ〉 = R + `γ3.

This is a holonomic constraint. No velocities are involved. Only a relationship between the coordinate
z of u and one entries of B (actually, just the (3, 3)-entry). Differentiating the above equation we get

ż = `γ̇3.

Exercise. Show that this equation is equivalent with the third component of (4.8).

Now we use the Lagrange-D’Alembert principle to obtain expressions for R1, R2 in (4.7). The
principle implies that if (u̇,Ω) satisfy (4.8), then 〈R1, u̇〉+ 〈R2,Ω〉 = 0. For such (u̇,Ω) we have

0 = 〈R1, B(ρ× Ω)〉+ 〈R2,Ω〉
= 〈(B−1R1)× ρ+R2,Ω〉.

Since Ω can be taken arbitrary we conclude that

R2 = ρ× (B−1R1).

Physically: R2 is the moment of the force R1 about the contact point.

Differentiating the constraints we find that

R1 = mü+mge3 = m
(
Ḃ(ρ× Ω) +B(ρ̇× Ω) +B(ρ× Ω̇) + ge3

)
.

Therefore,

IIΩ̇ = (IIΩ)× Ω +R2 = (IIΩ)× Ω + ρ× (B−1R1)

= (IIΩ)× Ω +mρ× (Ω× (ρ× Ω)) +mρ× (ρ̇× Ω) +mρ× (ρ× Ω̇) +mgρ× γ.
Complementing this equation with the kinematical condition

γ̇ = γ × Ω

and the relation (4.9), yields a closed system of equations for the evolution of γ,Ω. As with the
Veselova system, the system possesses the geometric integral ||γ|| = 1. We interpret γ ∈ S2 so we
obtain a system of equations on S2 × R3.



GEOMETRY AND DYNAMICS OF NONHOLONOMIC SYSTEMS 15

Introducing the angular momentum about the contact point

K = IIΩ +mρ× (Ω× ρ),

the equations become

K̇ = K × Ω +mρ̇× (Ω× ρ) +mgρ× γ, γ̇ = γ × Ω,

and the energy (along D) may be written as

E =
1

2
〈K,Ω〉+mg`γ3.

Exercise Use the vector identity

a× (b× c) = 〈a, c〉b− 〈a, b〉c
to verify this statement.

5. Quasi-velocities

It is not clear how the equations of motion for the Suslov problem, the Veselov problem and the
Chaplygin top, derived in section 4 relate to the general form of the equations of motion derived in
section 3. In order to explain this relationship we introduce the concept of quasi-velocities.

The most common way to represent a velocity vector V ∈ TqQ is to write

V = (q̇1, . . . , q̇n)

where (q1, . . . , qn) are local coordinates on the configuration manifold Q. What we are really thinking
is that

V = q̇i
∂

∂qi

where { ∂
∂qi
} is the basis of TqQ induced by the coordinates (q1, . . . , qn). This gives a way to construct

coordinates (q1, . . . qn, q̇1, . . . , q̇n) for the tangent bundle TQ. This choice of coordinates is used in
Lagrange’s equations and leads to the canonical coordinates (q1, . . . qn, p1, . . . , pn) where pi = ∂L

∂q̇i
that

appear in the Hamiltonian formulation.

This is not the only way to construct coordinates for TQ and other choices are often more con-
venient. The geometric idea of quasi-velocities is to (locally) consider n linearly independent vector
fields X1, . . . Xn and use {Xk(q)} as a basis for the tangent space TqQ. We can then write any
velocity vector V ∈ TqQ as a linear combination

V = vkXk(q).

We can then use (q1, . . . qn, v1, . . . , vn) as coordinates for the tangent bundle TQ. The collection of
vector fields {Xk(q)} are said to form a moving frame. In practice they are chosen in accordance
with the symmetries or other important characteristics of the problem at hand.

Of course that velocities are a particular case of quasi-velocities when the moving frame is { ∂
∂qk
}.

However, the converse statement is not true. Given a moving frame {Xk(q)} there need not exist
coordinates (q̃1, . . . q̃n) such that Xk = ∂

∂q̃k
for all k. This is easily seen since the vector fields Xk

may not commute! This is crucial for the sequel so we introduce the (local) functions Ck
ij : Q → R

by the relations
[Xi, Xj] = Ck

ijXk.
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We shall refer to them as the structure coefficients associated to the frame {Xk(q)}.
Our first task is to rewrite the Euler-Lagrange equations (3.2) in quasi-velocities. The resulting

equations receive the name of Hamel’s equations.

Before we compute Hamel’s equations note that the moving frame {Xk(q)} induces a moving
co-frame {µk(q)} of T ∗Q. It is just the dual basis. Namely,

〈µi(q), Xj(q)〉 = δij,

for all q ∈ Q where the frames are defined. If the frame is the standard { ∂
∂qk
} then the corresponding

co-frame is {dqk} that we are used to. In order to obtain Hamel’s equations we need to relate
both the moving frame and the moving co-frame to the standard frames through appropriate linear
combinations. Suppose that we have

Xj = ρkj
∂

∂qk
, µi = σik dq

k (5.1)

for locally defined functions ρij, σ
j
i : Q → R. For consistency we need ρkjσ

i
k = δij. Namely, the n× n

matrices ρij and σji are inverses. So we also have

∂

∂qk
= σikXi, dqk = ρkjµ

j. (5.2)

In terms of the induced coordinates for the tangent spaces we have

q̇j = ρjkv
k, (5.3)

or in matrix notation, q̇ = ρv where the matrix ρ is n× n and has entries ρjk (in the kth row and jth

column).

5.1. Hamel’s equations. Now, to derive Hamel’s equations, we write the Lagrangian L : TQ→ R
in terms of the quasi-velocities. In order to apply the chain rule carefully we denote

L̃(q, v) = L(q, q̇),

where we have abbreviated v = (v1, . . . vn) for the quasi-velocities. Note that

L̃(q, v) =
1

2
vTρ(q)TA(q)ρ(q)v − U(q).

Using the chain rule we find

∂L̃

∂vi
=
∂L

∂q̇k
ρki ,

∂L̃

∂qk
=
∂L

∂qk
+
∂L

∂q̇j
∂ρjl
∂qk

vl, (5.4)

where we have used (5.3). Using the first of these expressions, the Euler-Lagrange equations (3.2),
and (5.3), we find

d

dt

(
∂L̃

∂vi

)
=

d

dt

(
∂L

∂q̇k

)
ρki +

∂L

∂q̇k
∂ρki
∂qj

q̇j

= ρki
∂L

∂qk
+
∂L

∂q̇j
∂ρji
∂qk

ρkl v
l.
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where the indices of summation j and k have been swapped in the second identity. Using now the
second relation in (5.4) the above equation becomes

d

dt

(
∂L̃

∂vi

)
= ρki

∂L̃

∂qk
+
∂L

∂q̇j

(
∂ρji
∂qk

ρkl −
∂ρjl
∂qk

ρki

)
vl. (5.5)

On the other hand notice that

[Xi, Xl] = −

(
∂ρji
∂qk

ρkl −
∂ρjl
∂qk

ρki

)
∂

∂qj
= −σmj

(
∂ρji
∂qk

ρkl −
∂ρjl
∂qk

ρki

)
Xm.

Therefore,

Cm
il = −σmj

(
∂ρji
∂qk

ρkl −
∂ρjl
∂qk

ρki

)
,

or equivalently (
∂ρji
∂qk

ρkl −
∂ρjl
∂qk

ρki

)
= −ρjmCm

il . (5.6)

Substituting this expression into (5.7) and using the second expression in (5.4) we finally get

d

dt

(
∂L̃

∂vi

)
= ρki

∂L̃

∂qk
− Cm

il v
l ∂L̃

∂vm
. (5.7)

These are Hamel’s equations that clearly hold for i = 1, . . . , n. When complemented with (5.3) they
give a full system for the determination of the motion of the mechanical system.

Example. Euler top. The definition of the angular velocity in body coordinates implies

Ḃ = BΩ̂.

Therefore, the time derivatives of any set of coordinates on SO(3) are linear combinations of the
entries of Ω with configuration dependent coefficients. In other words, the entries of Ω are quasi-
velocities. We have

L̃(B,Ω) =
1

2
〈IIΩ,Ω〉.

The corresponding moving frame are the left invariant vector fields on SO(3) that are obtained by
left translation of the canonical basis of the Lie algebra so(3). The structure coefficients Ck

ij are
constant and equal to the structure constants of the Lie algebra so(3). Hamel’s equations are Euler’s
equations

IIΩ̇ = (IIΩ)× Ω.

5.2. The equations of motion for a nonholnomic system in quasi-velocities. The Hamel
formalism will allow us to write the restriction of the Lagrange-D’Alembert equations (3.2) to the
constraint subbundle D ⊂ TQ defined by the constraint distribution D. Moreover, the resulting
equations will not involve multipliers.

We select the moving frame in such a way that the first r vector fields X1, . . . , Xr form a (local)
basis of the constraint distribution D and the remaining Y1, . . . , Yn−r span a complement of Dq at
each point in Q. We denote our moving co-frame by {Xα, Ya} where the index α runs from 1 to r
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and the latin index a runs from 1 to n − r. The corresponding quasi-velocities are denoted vα, ua

and the dual basis is {µα, νa}.
Before writing the Lagrange-D’Alembert equations in quasi-velocities we write

Xα = ρkα
∂

∂qk
, µα = σαk dq

k,

Ya = ρka
∂

∂qk
νa = σak dq

k,

(5.8)

that are analogous to (5.1). And imply

q̇k = ρkαv
α + ρkau

a.

Similar to (5.2) we have

∂

∂qk
= σαkXα + σakYa.

Since Xα is tangent to the constraints we have

βakρ
k
α = 0.

The nonholonomic constraints can be written as ua = 0 a = 1, . . . , n− r. Note that (qi, vα) serve as
coordinates for the constraint subbundle D ⊂ TQ (as a manifold, D has dimension n+ r).

Proceeding as in the previous section we denote L̃(qi, vα, ua) = L(qi, q̇i). Using the chain rule, we
find, in analogy with (5.4)

∂L̃

∂vα
=
∂L

∂q̇k
ρkα,

∂L̃

∂ua
=
∂L

∂q̇k
ρka,

∂L̃

∂qk
=
∂L

∂qk
+
∂L

∂q̇j

(
∂ρjβ
∂qk

vβ +
∂ρja
∂qk

ua

)
. (5.9)

Using the Lagrange-D’Alembert equations (3.2) and the fact that Riρ
i
α = 0, similar to (5.10) we

obtain, for α = 1, . . . , r,

d

dt

(
∂L̃

∂vα

)
= ρkα

∂L̃

∂qk
+
∂L

∂q̇j

(
∂ρjα
∂qk

ρkβ −
∂ρjβ
∂qk

ρkα

)
vβ +

∂L

∂q̇j

(
∂ρjα
∂qk

ρka −
∂ρja
∂qk

ρkα

)
ua. (5.10)

Now, similar to (5.6) we have(
∂ρjα
∂qk

ρkβ −
∂ρjβ
∂qk

ρkα

)
= −ρjγC

γ
αβ − ρ

j
aC

a
αβ.

where

[Xα, Xβ] = Cγ
αβXγ + Ca

αβYa.

Substitution into (5.10) yields

d

dt

(
∂L̃

∂vα

)
= ρkα

∂L̃

∂qk
− Cγ

αβv
β ∂L̃

∂vγ
− Ca

αβv
β ∂L̃

∂ua
+
∂L

∂q̇j

(
∂ρjα
∂qk

ρka −
∂ρja
∂qk

ρkα

)
ua. (5.11)
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Now we restrict these equations to D. This means substituting ua = 0 (and hence u̇a = 0
everywhere). This gives

d

dt

(
∂L̃

∂vα

∣∣∣∣∣
ua=0

)
= ρkα

∂L̃

∂qk

∣∣∣∣∣
ua=0

− Cγ
αβv

β ∂L̃

∂vγ

∣∣∣∣∣
ua=0

− Ca
αβv

β ∂L̃

∂ua

∣∣∣∣∣
ua=0

. (5.12)

If we introduce the constrained Lagrangian Lc as the restriction of L to D, i.e. Lc = L|D, then we
can write Lc(q

i, vα) = L̃(qi, vα, 0) and we have the identities

∂L̃

∂vα

∣∣∣∣∣
ua=0

=
∂Lc
∂vα

,
∂L̃

∂qk

∣∣∣∣∣
ua=0

=
∂Lc
∂qk

,

and (5.12) becomes

d

dt

(
∂Lc
∂vα

)
= ρkα

∂Lc
∂qk
− Cγ

αβv
β ∂Lc
∂vγ
− Ca

αβv
β ∂L̃

∂ua

∣∣∣∣∣
ua=0

. (5.13)

A final simplification is possible if we choose the vector fields Ya in such a way that they span D⊥,
which denotes the orthogonal complement of D with respect to the kinetic energy metric. In this
case the kinetic energy matrix block diagonalizes

ρ(q)TA(q)ρ(q) =

(
AD(q) 0

0 AD⊥(q)

)
.

Then, ∂L̃
∂ua

(qi, vα, 0) = 0 and equations (5.13) simplify to

d

dt

(
∂Lc
∂vα

)
= ρkα

∂Lc
∂qk
− Cγ

αβv
β ∂Lc
∂vγ

, (5.14)

and the functions Cγ
αβ that appear in the equations can be characterised by the relation

P([Xα, Xβ]) = Cγ
αβXγ

where P : TQ → D is the bundle projector corresponding to the orthogonal decomposition TQ =
D ⊕D⊥.

Equations (5.14) are complemented by

q̇k = ρkαv
α, (5.15)

and define a system of first order differential equations for the variables (qi, vα). To see this note
that

Lc(q
i, vα) =

1

2
vTAD(q)v − U(q).

Here AD(q) is an r × r positive definite matrix that defines a fibered metric on D. It is given by

AD(q) = ρD(q)TA(q)ρD(q)

where ρD(q) is the n× r matrix with entries ρkα (in the kth row and αth column). So ∂Lc
∂vα

is linear in

vβ.

Equations (5.14) and (5.15) define a vector field Xnh on D that describes the motion of the system
for arbitrary admissible initial conditions. The vector field Xnh is not just an arbitrary vector field
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on D. It has the additional structure of being second order with respect to the bundle structure of
D. Namely, if τ : D → Q is the projection, then

Tτ ◦Xnh = idD.

Another way to say this is that if c(t) is an integral curve of Xnh then Tτ(ċ(t)) ∈ Dτ(c(t)). Alterna-
tively, there is a rank r distribution E on D

E(q, v) = span

{
Xα(q) + 0 · ∂

∂vα
,
∂

∂vα

}
with the property that Xnh(q, v) ∈ E(q,v) for all (q, v) ∈ D. Note that E has rank 2r and can be
defined as the annihilator of the basic one-forms τ ∗βa on D. Also note that E is integrable if and
only if D is integrable, i.e. if and only if the constraints are holonomic.

The conservation of energy can now be made transparent. Let Ec = E|D. Then

Ec(q, v) = vα
∂Lc
∂vα

(q, v)− Lc(q, v).

A direct calculation that uses the skew-symmetry of Cγ
αβ with respect to its lower indices shows that

Ec is a first integral of Xnh.

A more thorough discussion of the geometric aspects of this approach can be found in e.g. [12].

5.3. Example: Chaplygin sleigh. We take

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ

as the generators of D. The corresponding quasi-velocities u, ω satisfy

ẋ = u cos θ, ẏ = u sin θ, θ̇ = ω. (5.16)

Physically, u is the velocity of the body in the direction of the blade and ω is the angular velocity.

Recall that the Lagrangian is

L(x, y, θ, ẋ, ẏ, θ̇) =
1

2

(
(J +ma2)θ̇2 +m(ẋ2 + ẏ2) + 2maθ̇(cos θẏ − sin θẋ)

)
.

A straightforward calculation shows that D⊥ = span{Y } where

Y =
ma

J +ma2

∂

∂θ
+ sin θ

∂

∂x
− cos θ

∂

∂y
.

We have

[X1, X2] = sin θ
∂

∂x
− cos θ

∂

∂y

= Y − ma

J +ma2
X2.

It follows that

P([X1, X2]) = − ma

J +ma2
X2,

and hence

C1
12 = 0, C2

12 = − ma

J +ma2
.
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The constrained Lagrangian is

Lc =
1

2

(
(J +ma2)ω2 +mu2

)
.

The equations of motion are

mu̇ = maω2

(J +ma2)ω̇ = −mauω,

and (5.16). Note that the above equations define a decoupled closed system on R2. The rank 4
distribution E is given by

E(x,y,θ,u,ω) = span

{
cos θ

∂

∂x
+ sin θ

∂

∂y
,
∂

∂θ
,
∂

∂u
,
∂

∂ω

}
6. Almost Hamiltonian Formulation

Introduce the (quasi)-momenta

pα =
∂Lc
∂vα

(q, v), α = 1, . . . , k.

This is a q-dependent invertible linear change of variables between v and p. In matrix form, p =
AD(q)v, v = AD(q)−1p.

We can give a geometric interpretation of pα analogous to the usual Hamiltonian formulation of
mechanics. The mapping

(q, v)
ψ−→ (q, p) = (q, AD(q)v)

is a bundle isomorphism between D and D∗ defined by the bundle metric on D. p = (p1, . . . , pr) are
linear coordinates on the fibres of D∗. If we denote (q, v) and (q, p) respectively by vq and pq, and
pq = ψ(vq), then we have

pq(·) = 〈〈vq, ·〉〉q,
where 〈〈·, ·〉〉 denotes the kinetic energy metric. In particular, if we recall that v = (v1, . . . , vr) are
coordinates with respect to the basis {X1, . . . , Xr}, we can interpret the coordinate pα as the linear
function on the fibres of D given by

(pα)q = 〈〈Xα(q), ·〉〉q.

The energy function written in terms of (q, p) is the (constrained) Hamiltonian. It is given by

Hc(q, p) = pαv
α − Lc =

1

2
pT (AD(q))−1p+ U(q),

and satisfies
∂Hc

∂qi
= −∂Lc

∂qi
∂Hc

∂pα
= vα,

where it is understood that one should substitute v = AD(q)−1p on the right hand side of the above
equations.

The equations of motion can be written as the following first order system in D∗:

q̇k = ρkα
∂Hc

∂pα
, ṗα = −ρkα

∂Hc

∂qk
− Cγ

αβpγ
∂H

∂pβ
.
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They define a vector field on D∗ which is the push-forward of Xnh by ψ that we continue to denote by
Xnh. Note that if c(t) is a trajectory of the vector field Xnh and τ : D∗ → Q is the bundle projection,
then

τ(c(t)) ∈ Dτ(c(t)).

Another way to say the same thing is that Xnh is tangent to the distribution F = ψ∗(E) defined as
the annihilator of τ ∗βa.

The equations of motion can be written in vector form as(
q̇
ṗ

)
=

(
0 ρD(q)

−ρTD(q) C(q, p)

)(∂Hc
∂q
∂Hc
∂p

)
.

The size of the matrices above are

0 is n× n, ρD(q) is n× r,
−ρD(q)T is r × n, C(q, p) is r × r.

The matrix C(q, p) has components

C(q, p)αβ = −Cγ
αβ(q)pγ.

The matrix

πnh(q, p) =

(
0 ρD(q)

−ρTD(q) C(q, p)

)
is (n+r)×(n+r) and skew-symmetric. Its kernel is spanned by the vectors (βa, 0) with a = 1, . . . n−r.

One can now define a bracket of functions on D∗ by

{f, g}nh(q, p) =

(
∂f

∂q
,
∂f

∂p

)
πnh(q, p)

(
∂g
∂q
∂g
∂p

)
.

Equivalently, the bracket can be defined in terms of the coordinate functions qi, pα as

{qi, qk}nh = 0, {qi, pα}nh = ρiα = Xα[qi], {pα, pβ}nh = −Cγ
αβpγ.

The above definition implies

{f, gh}nh = h{f, g}nh + g{f, h}nh. (6.1)

Moreover, using the skew-symmetry of πnh(q, p) we have

{f, g}nh = −{g, f}nh. (6.2)

And that

Xnh[f ] = {f,Hc}nh
for any f ∈ C∞(D∗). The last equation is reminiscent of the Poisson formulation of Hamiltonian
systems. In fact, the identities (6.1) and (6.2) two of the properties that a Poisson bracket must
satisfy. We shall see that the third property, the so-called Jacobi identity, only holds if the constraints
are holonomic.
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6.1. Intrinsic description of the nonholonomic bracket and its relation with Dirac Brack-
ets. So far, we have thought of D∗ as an abstract space. We can interpret it as a subbundle of T ∗Q
in the following way. We have the usual isomorphism (Legendre transformation)

Ψ : TQ→ T ∗Q, Ψ(q, q̇) = (q, A(q)q̇)

as usual: Ψ(vq)(·) = 〈〈vq, ·〉〉. If we denote M = Ψ(D) ⊂ T ∗Q then

D
Ψ //

ψ
��

M

D∗
P∗

77

From now on, we think of D∗ as a subbundle of T ∗Q.

Recall that D∗ is equipped with a rank 2r-distribution F, and that Xnh is tangent to F. The
distribution F has the following properties:

(i) F is integrable if and only if the constraints are holonomic.
(ii) F is symplectic. We now explain what this means.

Let (q, p) = m ∈ D∗ ⊂ T ∗Q, and denote by Ω the canonical symplectic structure on T ∗Q.
Then Ωm is a skew-symmetric non-degenerate bilinear form on Tm(T ∗Q). The distribution F

defines a 2r-dimensional subspace Fm ⊂ Tm(T ∗Q). The condition that F is symplectic means
that the the restriction of Ωm to Fm, denoted Ω|Fm is non-degenerate for all m ∈ D∗.

Apparently, this property was first noticed by Weber [16].
(iii) The vector field Xnh can be characterized by the following relation holding at all points

m ∈ D∗:
iXnh(m)

(
Ωm|Fm

)
= dHc(m)|Fm .

The validity of this characterization relies on the symplectic property of F and is reminiscent of
the symplectic formulation of Hamiltonian mechanics. However, it is important to remember
that Ω|Fm is not a two-form on D∗. This approach to the formulation of the equations of
motion is sometimes called distributional Hamiltonian (see [6] and references therein).

(iv) Since F is symplectic, then at each m ∈ D∗ there is a decomposition

Tm(T ∗Q) = Fm ⊕ FΩ
m

where FΩ
m denotes the symplectic orthogonal of Fm. Let Qm : Tm(T ∗Q)→ Fm be the projector

associated with this decomposition.
It is shown in [14] that the bracket {·, ·}nh admits the following intrinsic definition

{f, g}nh(m) = Ωm(QmXf̃ (m),QmXg̃(m)).

Here f, g ∈ C∞(D∗). f̃ , g̃ ∈ C∞(T ∗Q) are arbitrary smooth extensions of f, g, and Xf̃ , Xg̃

are the Hamiltonian vector fields of f̃ , g̃. (iXf̃Ω = df̃ and similarly for Xg̃).

Exercise Show that if f ∈ C∞(D∗), the almost Hamiltonian vector field Xnh
f on D∗ defined by

Xnh
f [g] = {f, g}nh

for all g ∈ C∞(D∗) satisfies Xnh
f = QXf̃ where Xf̃ is the Hamiltonian vector field associated to f̃

with respect to the symplectic structure Ω on T ∗Q where f̃ is an arbitrary smooth extension of f to
T ∗Q.
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From the above exercise we draw the conclusion that the almost Hamiltonian vector fields Xnh
f

with f ∈ C∞(D∗) are tangent to F. In fact one can show that the span of all such vector fields is
precisely F.

For a Poisson bracket the distribution spanned by the Hamiltonian vector fields is integrable and
defines a symplectic foliation. If the constraints are nonholonomic, then F is non-integrable, and the
bracket {·, ·}nh cannot satisfy the Jacobi identity.

If the constraints are holonomic, then {·, ·}nh coincides with Dirac’s construction of Poisson brack-
ets for systems with constraints (see [14]).

In conclusion, {·, ·}nh satisfies the Jacobi identity if and only if the constraints are holonomic.

6.2. Example. Recall that for the Chaplygin sleigh we found the following equations of motion

mu̇ = maω2

(J +ma2)ω̇ = −mauω,
ẋ = u cos θ,

ẏ = u sin θ,

θ̇ = ω.

The constrained Lagrangian

Lc =
1

2

(
(J +ma2)ω2 +mu2

)
.

and
C1

12 = 0, C2
12 = − ma

J +ma2
.

We have

pu =
∂Lc
∂u

= mu, pω =
∂Lc
∂ω

= (J +ma2)ω.

The Hamiltonian is

H =
1

2

(
p2
ω

J +ma2
+
p2
u

m

)
.

The equations of motion can be rewritten as

ẋ =
pu
m

cos θ, ẏ =
pu
m

sin θ, θ̇ =
pω

J +ma2

ṗu =
map2

ω

(J +ma2)2
, ṗω = − apupω

J +ma2
,

or, equivalently,

d

dt


x
y
θ
pu
pθ

 =


0 0 0 cos θ 0
0 0 0 sin θ 0
0 0 0 0 1

− cos θ − sin θ 0 0 ma
J+ma2

pω
0 0 −1 − ma

J+ma2
pω 0




∂Hc
∂x
∂Hc
∂y
∂Hc
∂θ
∂Hc
∂pu
∂Hc
∂pω

 .

The above 5 × 5 matrix defines the almost Poisson bracket {·, ·}nh. It has rank 4 and its null
space is spanned by the vector (− sin θ, cos θ, 0, 0, 0) that should be interpreted as the one-form
sin θ dx+ cos θ dy.
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On the other hand, the vectors

cos θ
∂

∂x
+ sin θ

∂

∂y
,

∂

∂θ
,

∂

∂pu
,

∂

∂pω
,

span the range of the matrix that should be interpreted as the distribution F.

7. Invariant measures

Recall that the generic solutions of the Suslov problem asymptotically approach periodic orbits as
t → ±∞. This behavior cannot occur in Hamiltonian mechanical systems. An obstruction for this
is the existence of the invariant Liouville measure.

An invariant measure is a very important property for a dynamical system. We will investigate
the existence of such an invariant for nonholonomic systems with symmetry. It will turn out that
only exceptional systems possessing many symmetries have an invariant measure.

7.1. Invariant measures for ODE’s. To fix ideas consider a vector field f defined on Rn and
consider the autonomous system of differential equations

ẋ = f(x). (7.1)

The flow φt of this equation satisfies

dφt(x)

dt
= f(φt(x)), φ0(x) = x.

A smooth volume form on Rn is an expression like µ(x) dx where µ is a smooth real valued function
on Rn such that µ(x) > 0 for all x ∈ Rn and dx is the euclidean volume form dx = dx1 ∧ · · · ∧ dxn
where (x1, . . . , xn) are linear coordinates on Rn. The function µ is called the density of the measure
with respect to dx.

The measure µ(x) dx is invariant under the flow φt of (7.1) if∫
A

µ(x) dx =

∫
φt(A)

µ(x) dx

for any region A ⊂ Rn.

Figure 2. If µ(x) dx is an invariant measure then the volume of A with respect to µ(x) dx coincides
with the volume of φt(A) with respect to µ(x) dx for all t and any A ⊂ Rn.

Exercise Show that
d

dt

∣∣∣∣
t=0

∫
φt(A)

µ(x) dx =

∫
A

div(µ(x)f(x)) dx.
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The condition for the existence of an invariant measure becomes the following linear PDE for µ

div(µ(x)f(x)) = 0.

The existence of a global solution to this equation is equivalent to the existence of an invariant
measure. We stress that one needs a global solution. Locally, away from equilibrium points, the flow
can be linearized and an invariant measure exists.

Asymptotic equilibria and asymptotic periodic orbits are obstructions to the existence of an in-
variant measure.

Symplectic Hamiltonian systems always preserve the Liouville measure. A direct calculation using
the equality of mixed partials shows that the divergence of

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

equals zero (an intrinsic proof is also not hard to give using that the Hamiltonian flow preserves the
symplectic form).

Our main tool to study the preservation of volumes for nonholonomic systems with symmetries is
the following.

Proposition 7.1 (Kozlov [15]). If the vector field f is homogeneous of degree 2, namely, if

f(λx) = λ2f(x)

for any λ ∈ R and x ∈ Rn; then f preserves the measure µ(x) dx if and only if it preserves the
measure dx and µ is a first integral.

Proof. Suppose that div(µf) = 0. We shall prove that div(f) = 0 and 〈∇µ, f〉 = 0. Since µ > 0 we
can put µ = eσ for a smooth function σ on Rn. We have

0 = div(µf) = div(eσf) = eσ(〈∇σ, f〉+ div(f)).

It follows that
div(f) = −〈∇σ, f〉.

Since f is homogeneous of degree 2, the left member in the last equation is homogeneous of degree
1. On the other hand, given that σ is smooth, the right hand side cannot be homogeneous of degree
1. Therefore, the above equation can only hold if both sides of the equality vanish.

The other implication is trivial. �

Example For the Suslov problem we found the set of decoupled equations on R2:

Ω̇1 = − 1

I11

((I13Ω1 + I23Ω2)Ω2) ,

Ω̇2 =
1

I22

((I13Ω1 + I23Ω2)Ω1) .

The right hand side of these equations defines a homogeneous vector field of degree 2 on R2. By the
proposition, our candidate for invariant measure is dΩ1 ∧ dΩ2. Taking divergence with respect to
this measure we get:

div( ) = −I13Ω2

I11

+
I23Ω1

I22

.

This quantity vanishes for arbitrary (Ω1,Ω2) if and only if I13 = I23 = 0.



GEOMETRY AND DYNAMICS OF NONHOLONOMIC SYSTEMS 27

Physically, the condition for measure preservation is that the axis of forbidden rotations is an
eigenvector of the inertia tensor II. In other words, the axis of forbidden rotations is a principal axis
of inertia of the body.

For a general system, the equations of motion on the Hamiltonian side are given by

q̇i = ρiα
∂H

∂pα
,

ṗα = −ρiα
∂H

∂qi
− Cγ

αβpγ
∂H

∂pγ

where we have written Hc = H to simplify notation.

In the absence of a potential, the Hamiltonian is H = 1
2
pTAD(q)−1p. Notice that under this

condition the equations of motion for pα are homogeneous quadratic. In this case, Proposition 7.1
can be generalized [10] to show that the only candidates for an invariant measure are basic measures
µ(q) dq ∧ dp (the density does not depend on p).

8. Nonholonomic systems with symmetry

Consider, as before, a nonholonomic system with Lagrangian L : TQ→ R, L(q, q̇) = 1
2
q̇TA(q)q̇ −

U(q) and constraints β(q)q̇ = 0 that define a nonintegrable distribution D of rank r and a subbundle
D ⊂ TQ.

Let G be a Lie group and suppose that it acts freely and properly on Q,

Ψ : G×Q→ Q.

Ψg is a diffeomorphism on Q for every g ∈ G and Ψh ◦Ψg = Ψhg for all g, h ∈ G.

The tangent lift of Ψ is the action

Ψ̂ : G× TQ→ TQ

defined by Ψ̂g(vq) = TqΨg(vq) for vq ∈ TqQ.

We are interested in actions that preserve the Lagrangian:

L ◦ Ψ̂g = Ψ̂g for all g ∈ G,
and also preserve the constraints:

Ψ̂(Dq) = DΨg(q) for all g ∈ G, q ∈ Q.

In this case, Ψ̂ can be restricted to define an action on D

Φ : G×D → D, Φg = Ψ̂g

∣∣∣
D

for all g ∈ G.

With the above hypothesis, the vector field Xnh is equivariant, namely,

Xnh(Φg(q, v)) = T(q,v)Φg(Xnh(q, v)),

for all g ∈ G, (q, v) ∈ D, and the dynamics drop to the quotient space D/G that is rank r vector
bundle over Q/G.

Example. Chaplygin sleigh. The configuration space Q = R2 × S1 has coordinates q =
(x, y, θ).
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The system is invariant under the action of the group SE(2) of euclidean motions on the plane.
An element of such space can be represented as g = (Rϕ, (A,B)) where

Rϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, (A,B) ∈ R2.

The action Ψ is defined by

Ψg(x, y, θ) =

(
Rϕ

(
x
y

)
+

(
A
B

)
, θ + ϕ

)
.

It corresponds to our freedom to select the origin and orientation of the space frame without altering
the dynamical equations. In fact, any problem of a body rolling on a homogenous plane will possess
the same symmetry.

In this case Q/G is one point since the action is transitive, and D/G is isomorphic to a two
dimensional vector space. The reduced equations of motion are

mu̇ = maω2

(J +ma2)ω̇ = −mauω,

that we had found before.

We note that Dq ⊂ TqOrbG(q) = TqQ. In fact, we can take Q = G. With this interpretation of
the configuration space, we have that it is a Lie group and both the constraints and the Lagrangian
are invariant under left multiplication. This approach makes the Chaplygin sleigh an example of an
LL system.

It is important to understand the geometric that allowed us to decouple the equations of motion
and obtain the reduced system. The key is that the vector fields X1 = cos θ ∂

∂x
+ sin θ ∂

∂y
and X2 = ∂

∂θ

that define the moving frame for the quasi-velocities u, ω are equivariant with respect to the SE(2)
action on Q.

Example. Suslov Problem. The configuration space is Q = SO(3). Both the constraint and
the Lagrangian are written in terms of the angular velocity written in the body frame Ω without
involving the attitude matrix B.

The symmetry group is G = SO(3) acting by left multiplication Ψg(B) = gB. The Suslov problem
is also an LL system. Once again the reduced system is isomorphic to R2 and the reduced equations
are

Ω̇1 = − 1

I11

((I13Ω1 + I23Ω2)Ω2) ,

Ω̇2 =
1

I22

((I13Ω1 + I23Ω2)Ω1) .

The moving frame for Ω1 Ω2 is equivariant with respect to left multiplication on SO(3).

Note that once again we have Dq ⊂ TqOrbG(q) = TqQ.

Example. Veselova problem. The configuration space is Q = SO(3), the Lagrangian is
L = 1

2
〈IIΩ,Ω〉. The constraint is ω3 = 〈γ,Ω〉 = 0 where γ = B−1e3.

The constraint involves the entries of B so we do not have an LL system.
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The system has a G = SO(2) symmetry. Denote elements in G by

g = R̂ϕ =

(
Rϕ 0
0 1

)
where Rϕ is the 2× 2 rotation matrix defined above. For such g the action is

Ψg(B) = gB.

Note that the Poisson vector γ is invariant under the action of SO(2):

γ 7→ (gB)−1e3 = B−1g−1e3 = B−1e3 = γ.

This is a mathematical verification of a simple fact. The action rotates the space axis about the
third axis e3. Hence e3 and its avatar γ in the body frame remain invariant.

The existence of this symmetry is clear from the physical realization of the Veselova problem:

The evolution of the system does not care about the orientation that we choose for the e1, e2 space
axes.

In this case we have Q/G = SO(3)/SO(2) = S2. In fact γ can be used as a coordinate on S2.

Also TQ = Dq⊕TqOrbG(q) for all q ∈ Q. Systems with this property are called Chaplygin systems.
For this family of systems the reduced space D/G is isomorphic to T (Q/G) (see e.g. [13]).

Hence, the reduced phase space for the Veselova system is TS2. The reduced equations were given
in section 4.2.

Example. Chaplygin top. Since the rolling takes place on a homogeneous plane, the system
possesses an SE(2) symmetry.

The configuration space is Q = SO(3) × R2 with coordinates q = (B, (x, y)). The action of
g = (Rϕ, (A,B)) ∈ SE(2) on Q is given by

Ψg(q) =

(
R̂ϕB,Rϕ

(
x
y

)
+

(
A
B

))
.

We have Q/SE(2) = S2. Once again, the Poisson vector γ ∈ S2 can be used as a coordinate on
the orbit space. The reduced space is D/SE(2) is a rank 3 vector bundle over S2. The entries of Ω
can be interpreted as linear coordinates on the fibers. The reduced equations of motion were given
in section 4.3.

For this system we have TqQ = Dq + TqOrbG(q) with

dim(Dq ∩ TqOrbG(q)) = 1
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for all q ∈ Q. The intersection is spanned by the action of the subgroup of SE(2) that corresponds
to rotations about the contact point.

8.1. Reduced equations of motion. Assume that the system has a symmetry group G. The
action Φ on D can be transferred to D∗. We continue to use the symbol Φ for this new action. The
bracket {·, ·}nh is invariant. Namely,

{f ◦ Φg, g ◦ Φg}nh = {f, g}nh ◦ Φg.

If π : D∗ → D∗/G is the orbit projection then we can define a bracket on D∗/G by the rule

{F,G}D∗/G = {F ◦ π,G ◦ π}nh
for functions F,G ∈ C∞(D∗/G). The Hamiltonian function is invariant under the action and there-
fore there exists a function h : D∗/G → R with the property that h ◦ Φg = H. (h is the reduced
Hamiltonian). The reduced dynamics are described by the vector field X on D∗/G determined by
the rule

X[F ] = {F, h}D∗/G
for all F ∈ C∞(D∗/G).

We now proceed to write the equations of motion in local coordinates for D∗/G.

If the vector fields Xα that define the quasi-velocities vα are G-equivariant, the corresponding
momenta pα are invariant functions on D∗ and pass to the quotient D∗/G. We shall make this
assumption from now on.

Denote by sj some local coordinates on Q/G. Then we can take (s, p) as coordinates for D∗/G.
The reduced bracket is defined in this coordinates by the relations

{pα, pβ}D∗/G = −Cγ
αβ(s)pγ, {si, sj}D∗/G = 0, {si, pα} = (π∗Xα)[si].

Recall that the structure functions Cγ
αβ(s) were defined by the relations

P[Xα, Xβ] = Cγ
αβXγ,

where P : TQ → D is the kinetic energy-orthogonal projection. These functions are G-invariant
since the vector fields Xα are G-equivariant and by invariance of the kinetic energy. It follows that
they can be expressed in terms of the reduced coordinates si.

Further simplifications can be made if the G-equivariant vector fields Xα are chosen as {Xα} =
{Za, YA} such that

span{Za(q)} = Dq ∩ TqOrbG(q), for all q ∈ Q
then π∗(Za) = 0.

Suppose that π∗(YA) = ρiA(s) ∂
∂si

. Then

{qi, pa}D∗/G = 0, {qi, pA}D∗/G = ρiA(s).

Moreover, if the YA(q) are chosen to be orthogonal (with respect to the kinetic energy metric) to
span{Za(q)}. the kinetic energy matrix block diagonalizes. In particular

h(s, pa, pA) =
1

2
Kab(s)papb +

1

2
TAB(s)pApB

for certain symmetric positive definite matrices K(s) and T (s).
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With this choice of moving frame, the reduced equations take the form:

ṡi = ρiA(s)
∂h

∂pA
,

ṗA = −ρiA(s)
∂h

∂qi
− Cβ

Aα(s)pβ
∂h

∂pα
,

ṗa = −Cγ
aβ(s)pγ

∂h

∂pβ
.

This is the convenient form of the equations to investigate the existence of a smooth invariant
measure. Multiplying the above vector field with µ = eσ(s) and taking divergence with respect to
ds ∧ dpA ∧ dpa and setting the result equal to zero yields the following PDE for σ:

∂

∂si

(
eσρiA(s)

∂h

∂pA

)
+ eσ

∂

∂pA

(
−ρiA(s)

∂h

∂qi
− Cβ

Aα(s)pβ
∂h

∂pα

)
+ eσ

∂

∂pa

(
−Cγ

aβ(s)pγ
∂h

∂pβ

)
= 0.

After some cancellations and rearrangement of terms we get(
ρiA
∂σ

∂si
+
∂ρiA
∂si

+ Cα
Aα

)
∂h

∂pA
+ (Cα

aα(s))
∂h

∂pa
= 0. (8.1)

Using that
∂h

∂pA
= TAB(s)pB,

∂h

∂pα
= Kab(s)pb

and that the matrices T and K are non-degenerate, it follows that (8.1) can only hold if

ρiA
∂σ

∂si
+
∂ρiA
∂si

+ Cα
Aα(s) = 0, for all A,

and Cα
aα(s) = 0 for all a.

(8.2)

While the first set of the above conditions involve the unknown function σ, the second set does not.
This can be very valuable to prove that there is no smooth invariant measure. If for some value of
the coordinates s, we have Cα

aα(s) 6= 0, then there cannot exist a smooth invariant measure.

Example. Chaplygin sleigh. We have Dq ⊂ TqOrbG(q) and

Z1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, Z2 =

∂

∂θ
.

The set of vector fields {YA} is empty. We have computed

C1
12 = 0, C2

12 = − ma

J +ma2
.

A necessary condition for the existence of an invariant measure is that

C2
12 = 0,

that can only happen if a = 0. Namely, if the contact point of the sleigh coincides with the center of
mass.

Example. Chaplygin top. As we mentioned above, for this system the intersection Dq ∩
TqOrbG(q) has dimension 1 for all q ∈ Q. Associated to it there is a necessary condition for the
existence of a smooth invariant measure Cα

1α(s1, s2) = 0 where (s1, s2) are coordinates for the 2-
sphere S2.
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As it is shown in [10] the condition is satisfied if the following conditions on the parameters are
satisfied

(i) ` = 0. In this case the center of mass coincides with the geometric center. This system is
called the Chaplygin sphere (it is a special case of the Chaplygin top). An invariant measure
in this case was discovered by Chaplygin 1903.

(ii) I11 = I22 and I13 = I23 = 0. The mass distribution on the sphere is axially symmetric. This
system is called the Routh sphere. An invariant measure in this case was discovered by Routh
1884.

This analysis shows that, in the absence of gravity, there can only exist a smooth invariant measure
in these two situations.

A similar approach can be applied to the rolling of a homogeneous ellipsoid on the plane [11]. The
conclusion in this case is that there is an invariant measure if and only if two of the semi-axis of the
ellipsoid are equal and it is a body of revolution.

This analysis suggests that invariant measures are rare in nonholonomic mechanics and leads to the
following question: should one expect to find attractors (and hence, by reversibility of the dynamics,
repellers) for generic nonholonomic systems? What happens to systems whose parameters are close
to those for which the system has an invariant measure (for instance take `/R << 1 in the Chaplygin
top)? At present time there is no satisfactory answer to these questions.

We mention that reversal (rattle-back like) phenomena have been shown to exist for the Chaplygin
top [3].

Another system where the reversal phenomena (asymptotic motion approaching periodic orbits)
can be explicitly seen is the hydrodynamic Chaplygin sleigh [8].

When circulation is added to the system, one observes two different behavior regimes. For small
energies the motion is driven by the fluid’s circulation and the trajectories are generically quasi-
periodic on two-tori. On the other hand, once a threshold value of the energy is attained, the system
exhibits reversal phenomena [9]. This energy dependent behavior is also observed in the motion of
articulated vehicles (e.g. the case n = 2, a = 0 treated in [4]).
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8.2. Invariant measures for Chaplygin systems. Suppose that we have a G-Chaplygin system.
Namely, the action of the Lie group G satisfies

TqQ = Dq ⊕ TqOrbG(q)

for all q ∈ Q.

In this case the set of vector fields {Za} is empty and only the first of the conditions (8.2) should
be analysed. Moreover, for Chaplygin systems the indices A,B,C and i, j, k run over the same range
and the matrix ρjA is invertible. The condition for σ becomes

∂σ

∂si
= gi(s)

where the functions

gi(s) = −ρBi (s)
∂ρjB
∂sj

(s)− ρBi (s)Cα
Bα(s).

The existence of a function σ satisfying the above conditions is equivalent to the closeness of the
one-form

gi(s) ds
i.

This condition was derived in intrinsic terms in [5] (see also [17]).

An inhomogenous ball rolling without slipping on a cylinder is an example of a Chaplygin system.
The system only possesses an invariant measure if the ball is homogeneous [10].

9. Nonholonomic Noether’s Theorem

We recall the classical Noether Theorem for a Lagrangian holonomic system.

Let Ψ : G × Q → Q be an action such that the lifted action Ψ̂ : G × TQ → TQ preserves the
Lagrangian function L : TQ→ R, namely, L ◦ Ψ̂g = L for all g ∈ G.

Let ξ ∈ g, the Lie algebra of G, and denote by ξQ the infinitesimal generator of Ψ. Then ξQ is a
vector field on Q defined by

ξQ(q) =
d

dt

∣∣∣∣
t=0

Ψexp(tξ)(q).

Let ξQ be given in local coordinates by

ξQ(q) = ξi(q)
∂

∂qi
.

The tangent lift of ξQ is the vector field ξ̂Q on TQ given in bundle coordinates by

ξ̂Q(q, q̇) = ξi(q)
∂

∂qi
+ q̇j

∂ξi

∂qj
(q)

∂

∂q̇i
.

This vector field coincides with the infinitesimal generator ξTQ of Ψ̂. Invariance of the Lagrangian
implies

ξ̂Q[L] = ξTQ[L] = 0.
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Now define the momentum pξ associated to the vector field ξQ. pξ : TQ→ R is the linear function
on the fibers of TQ (on the velocities) given by

pξ = 〈〈ξQ, ·〉〉Q = ξi(q)
∂L

∂q̇i
.

A direct calculation, that uses the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n, (9.1)

gives

ṗξ =
∂ξi

∂qj
q̇j
∂L

∂q̇i
+ ξi

d

dt

(
∂L

∂q̇i

)
=
∂ξi

∂qj
q̇j
∂L

∂q̇i
+ ξi

∂L

∂qi

= ξ̂Q[L] = 0,

which shows that pξ is a first integral.

In the nonholonomic setting, the Euler-Lagrange equations (9.1) get replaced by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Ri, i = 1, . . . , n, (9.2)

where the reaction forces Ri obey the Lagrange-D’Alembert principle. In this case we get

ṗξ = ξ̂Q[L] + 〈R, ξQ〉.

This straightforward calculation immediately leads to

Theorem 9.1. If the action leaves L invariant and suppose that for a fixed Lie algebra element ξ ∈ g
we have ξQ(q) ∈ Dq for all q ∈ Q. Then pξ is a first integral of (9.2).

Proof. By the Lagrange-D’Alembert principle 〈R, ξQ〉 = 0 since ξQ(q) ∈ Dq. �

The above result is sometimes referred to as Nonholonomic Noether’s Theorem. The symmetry
generated by the Lie algebra element ξ is called a horizontal symmetry.

Note that the theorem does not require D to be invariant under the action! In fact, in many cases
this will not be the case.

Example. Chaplygin sleigh Consider SO(2)-action

ϕ · (θ, x, y).

The infinitesimal generator is ξQ = ∂
∂θ

. Its tangent lift is ξ̂Q = ∂
∂θ

. Recall that

L(x, y, θ, ẋ, ẏ, θ̇) =
1

2

(
(J +ma2)θ̇2 +m(ẋ2 + ẏ2) + 2maθ̇(cos θẏ − sin θẋ)

)
.

Then
ξ̂Q[L] = −maθ̇(cos θẋ+ sin θẏ) = −mauω.

The above vanishes for any value of u, ω only if a = 0. Conclusion pξ = (J + ma2)θ̇ is constant if
a = 0.
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Example. Chaplygin sphere.

Take G = SO(2). The action on Q = SO(3)× R2 is

ϕ · (B, (x, y)) =
(
R̂ϕB, (x, y)

)
.

The lift of this action certainly preserves the Lagrangian. On the other hand, if the center of
mass coincides with the geometric center then the infinitesimal generator ξQ(q) ∈ Dq. This can be
understood as follows. The action is a rotation of the ball about the vertical axis passing through the
center of mass. This does not violate the constraint as long as the axis passes through the contact
point. But this situation only occurs if the center of mass coincides with the geometric center.

The corresponding first integral for the Chaplygin sphere is the vertical component of angular
momentum 〈IIΩ, γ〉 = 〈K, γ〉.

9.1. Gauge momenta. There are a great number of examples of nonholonomic systems that possess
first integrals linear in the velocities that do not correspond to horizontal symmetries.

To explain how they arise, note that in the presence of the kinetic energy metric, a linear function
pξ on TQ is associated to a vector field ξ on Q.

pξ = 〈〈ξ(q), ·〉〉q = ξ(q)TA(q)q̇ = ξj(q)
∂L

∂q̇j
(q, q̇).

The vector field ξ is called the generator of pξ. We are interested in the restriction pξ|D. It is not
difficult to see that a linear function on D has a unique generator that is a section of D. Assume
that ξ(q) ∈ Dq for all q ∈ Q. Proceeding as before we find

ṗξ = ξ̂[L] + 〈R, ξ〉.

Now restrict to D and use the fact that ξ takes values on D to conclude that 〈R, ξ〉 = 0|D. Hence
we can write

d

dt

(
pξ|D

)
= ξ̂(L)

∣∣∣
D
.

Therefore, pξ|D is a first integral of (9.2) if and only if its unique generator ξ (taking values on

D) satisfies ξ̂(L)
∣∣∣
D

= 0.

The above result is elementary and does not assume the existence of symmetries. However, in a
series of examples possessing linear first integrals, there is a Lie group G acting on the configuration
space Q and whose tangent lift preserves both L and D. Moreover, the generator ξ of the first
integral satisfies

ξ(q) ∈ Dq ∩ TqOrbG(q)

for all q ∈ Q. First integrals whose generator satisfies this property are termed gauge momenta
[2]. In order to determine these integrals for a given system, one finds a basis of sections {Za} of
D ∩ TOrbG and makes the following ansatz for the generator ξ:

ξ(q) =
∑
a

fa(q)Za(q).

One then attempts to solve the equation ξ̂(L)
∣∣∣
D

= 0 for the functions fa. At present, it is not clear

what are the conditions that allow existence of solutions to these equations.
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A very important property of gauge momenta is that they remain first integrals if a G-invariant
potential is added to the system. The converse implication of this statement is also true [7].

Nonholonomic systems possessing gauge momenta include bodies of revolution rolling without
slipping on the plane and the rolling of a homogeneous sphere on a surface of revolution.
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