
EXERCISES FOR THE MINI–COURSE

INTEGRABILITY AND NONHOLONOMIC SYSTEMS WITH SYMMETRY

SANSONETTO NICOLA

1. Part 1

Exercise 1. • Consider the autonomous ordinary differential equation on R>
+ ż = z2. Write the conju-

gate system by the diffeomorphism C ∈ Diff(R+) defined by C(z) = z3.

• Consider the vector field X = (z1, z2) on the real plane. Write the conjugated vector field X̃ by the
diffeomorphism C ∈ Diff(U) defined by C(z1, z2) = (2z1, z1z2), with U = {(z1, z2) ∈ R2| z1 6= 0}.

Exercise 2. Consider the vector field on R3

X = yz
∂

∂x
+ xz

∂

∂y
− xy ∂

∂z
.

(1) Prove that the functions

f1(x, y, z) =
1

4
(x− y)(x+ y), and f2(x, y, z) =

1

2
(x2 + y2) + z2

are first integrals of X.
(2) Expect for the compactness and connectedness of the level sets of the first integrals, is X B–integrable?

Exercise 3. Consider the 5–dimensional real Maxwell–Bloch system on R51

X = y1
∂

∂x1
+ x1z

∂

∂y1
+ y2

∂

∂x2
+ x2z

∂

∂y2
− (x1y1 + x2y2)

∂

∂z
.

(1) Prove that the functions

h(x1, y1, x2, y2, z) =
1

2
(y21 + y22 + z2)

f(x1, y1, x2, y2, z) =
1

2
(x21 + x22) + z

j(x1, y1, x2, y2, z) = x2y1 − x1y2
are independent first integrals of X.

(2) Is the vector field

Y = x2
∂

∂x1
+ y2

∂

∂y1
− x1

∂

∂x2
− y1

∂

∂y2
a dynamical symmetry of X?

(3) Is the system B–integrable?

2. Part 2

Exercise 4. Consider the nonholonomic particle: Q = R3 3 q = (x, y, z), Lagrangian

L(q, q̇) =
1

2
|q̇|2

and nonholonomic constraint
ż − yẋ = 0 .

• Compute the constraint distribution D;
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• compute the reaction force R(q, q̇);
• compute the equations of motions;
• compute the reaction annihilator distribution R◦.

Exercise 5. Consider now the nonholonomic particle with potential V = V (x2+z2), and the same constraint as
in Exercise 4. Compare the constraint distributions D, the reaction forces R(q, q̇) and the reaction–annihilator
distributions R◦ of the two systems, what do you observe? What do you observe if the constraint change:
ż + xẏ − yẋ = 0?

Exercise 6. Consider a nonholonomic particle in Q = R3 subject to the potential energy V (q) = z, with ∈ R
and to a constraint affine in the velocities

ż + xẏ − yẋ− κ = 0 ,

with κ ∈ R \ {0}. Prove that the energy (or Jacobi integral) is not conserved along the flow of the dynamics.

Exercise 7. Consider a vertical disk of mass m that rolls without sliding on a plane and assume if is under
the effect of a positional force. The configuration space is Q ∼= R2 × S1 × S1 with coordinates q = (x, y, ϕ, θ),
where (x, y) are the coordinates of the center of mass of the disk, ϕ is the angle between the x–axis and the
projection of the disk on the plane, θ is the angle between a fixed radius of the disk and the vertical. The
Lagrangian of the system is

L(q, q̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
Jϕ̇2 +

1

2
Iθ̇2 − x sinϕ− y cosϕ

where I and J are the pertinent moments of inertia and V (q) = x sinϕ− y cosϕ is the potential acting on the
system. The rolling without slipping nonholonomic constraint is2

ẋ = θ̇ cosϕ and ẏ = θ̇ sinϕ .

(1) Write the fibers of the constraint distribution D;
(2) Compute the reaction force R(q, ·q);
(3) write the Lagrangian of the system;
(4) Determine the reaction annihilator distribution R◦;
(5) the system is invariant with respect to the action of the group G = S1×S1 of translations of the angles.

Prove that TOG ∩ D = ∅;
(6) Prove that TOG ∩R◦ 6= ∅;
(7) Does the system admit a R◦–momentum? If so write its expression.

Exercise 8. Consider a free unit mass particle on the plane. Assuming that the symmetry group is just the
group of translations on the plane, prove that the angular momentum along the vertical is a gauge momentum
with respect to the group of translations on the plane.

Exercise 9. (‘5–dimensional particle’) Consider a free particle on R5 3 q = (q1, . . . , q5) subject to the linear
nonholonomic constraint given by the non–integrable rank–two distribution with fibers

Dq = spanR{∂q1 , q1∂q2 + q3∂q3 + q3∂q4 + ∂q5} .
The matrix S(q) such that Dq = kerS(q) is the 3× 5 matrix with block structure

S(q) =
(
03 I3 −q̂

)
,

where 03 ∈ R3 is the zero vector, I3 is the (3)× (3) identity matrix, and q̂ ∈ R3 is the vector whose components
are the first 3 coordinates of q. The Lagrangian and the constraint are invariant with respect to the action of
G = R3 of translations along q2, q4, q5.

• Prove that D ∩ TOG = ∅.
• Write the reaction force R(q, q̇). (Hint. Note that the kinetic energy has the identity and there is no
potential energy).

• Write the equations of motions.
• Compute the reaction annihilator distribution R◦ and prove that R◦ ∩ TOG 6= ∅.

2The system is analogous to the classical vertical disk with the addiction of an active force of potential energy V = x sinϕ −
y cosϕ.
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• Prove that the function JD = q̇5
√

1 + q21 + q22 + q23 is a first integral of the system. Prove that JD is
an R◦–gauge momentum.

Exercise 10. Does the Chaplygin sleigh admit any D–gauge momenta?

3. Part 3

Exercise 11. Consider a nonholonomic particle in Q = R × S1 × R 3 q = (x, y, z) under the effect of a
positional force of potential energy V (q) = 1

2 (x2 + z2) and subjected to the linear constraint z− yẋ = 0. Is the
system B–integrable?

Exercise 12. Consider a nonholonomic particle in Q = R × S1 × R 3 q = (x, y, z) under the effect of a
positional force of potential energy V (q) = 1

2 (x2 + z2) and subjected to the linear constraint z− yẋ = 0. Is the
system B–integrable?

Exercise 13. Consider an heavy ball that rolls without sliding inside a vertical cylinder under the action of
gravity. Recall that one can reduce in stages the system with respect to SO(3) and then to the S1 action ending

up with a 4–dimensional reduced space M ∼= R × R × R × R, parametrized with coordinates (z, ż, θ̇, ~n · ω),

where (z, θ) are cylindrical coordinates on R × S1, (ż, θ̇) ∈ R × R their velocities and ~n · ω is the normal
component to the cylinder of the angular velocities of the sphere written in the space frame. Moreover, recall
that the (full) system admits three SO3(×)S1–invariant, independent first integrals: J1,D = − r

a (ma2 + IC),

J2,D = r ~n · ω − r
a z θ̇ and the energy (on D), that go down to M.

Consider the dynamical system defined by the reduced system.

(1) Write the energy EL,D of the full system, and then restrict it to M.

(2) Prove that z oscillates harmonically, provided θ̇ 6= 0.3

(3) Prove that the three first integrals are independent in an open and dense subset M̄ of M.
(4) What do you need to guarantee that the motions on M̄ are periodic?
(5) Prove that the motion on M̄ are periodic.

3If you need some help you can have a look to L.M. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation
laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295–308.
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