EXERCISES FOR THE MINI-COURSE INTEGRABILITY AND NONHOLONOMIC SYSTEMS WITH SYMMETRY

SANSONETTO NICOLA

1. Part 1

- **Exercise 1.** Consider the autonomous ordinary differential equation on $\mathbb{R}^{>}_{+} \dot{z} = z^{2}$. Write the conjugate system by the diffeomorphism $\mathcal{C} \in \text{Diff}(\mathbb{R}_{+})$ defined by $\mathcal{C}(z) = z^{3}$.
 - Consider the vector field $X = (z_1, z_2)$ on the real plane. Write the conjugated vector field \tilde{X} by the diffeomorphism $\mathcal{C} \in \text{Diff}(U)$ defined by $\mathcal{C}(z_1, z_2) = (2z_1, z_1 z_2)$, with $U = \{(z_1, z_2) \in \mathbb{R}^2 | z_1 \neq 0\}$.

Exercise 2. Consider the vector field on \mathbb{R}^3

$$X = yz\frac{\partial}{\partial x} + xz\frac{\partial}{\partial y} - xy\frac{\partial}{\partial z}.$$

(1) Prove that the functions

$$f_1(x, y, z) = \frac{1}{4}(x - y)(x + y),$$
 and $f_2(x, y, z) = \frac{1}{2}(x^2 + y^2) + z^2$

are first integrals of X.

(2) Expect for the compactness and connectedness of the level sets of the first integrals, is X B-integrable? Exercise 3. Consider the 5-dimensional real Maxwell-Bloch system on \mathbb{R}^{51}

$$X = y_1 \frac{\partial}{\partial x_1} + x_1 z \frac{\partial}{\partial y_1} + y_2 \frac{\partial}{\partial x_2} + x_2 z \frac{\partial}{\partial y_2} - (x_1 y_1 + x_2 y_2) \frac{\partial}{\partial z}.$$

(1) Prove that the functions

$$h(x_1, y_1, x_2, y_2, z) = \frac{1}{2}(y_1^2 + y_2^2 + z^2)$$

$$f(x_1, y_1, x_2, y_2, z) = \frac{1}{2}(x_1^2 + x_2^2) + z$$

$$j(x_1, y_1, x_2, y_2, z) = x_2y_1 - x_1y_2$$

are independent first integrals of X.

(2) Is the vector field

$$Y = x_2 \frac{\partial}{\partial x_1} + y_2 \frac{\partial}{\partial y_1} - x_1 \frac{\partial}{\partial x_2} - y_1 \frac{\partial}{\partial y_2}$$

a dynamical symmetry of X?

(3) Is the system B–integrable?

2. Part 2

Exercise 4. Consider the nonholonomic particle: $Q = \mathbb{R}^3 \ni q = (x, y, z)$, Lagrangian

$$L(q,\dot{q}) = \frac{1}{2}|\dot{q}|^2$$

and nonholonomic constraint

$$\dot{z} - y\dot{x} = 0.$$

• Compute the constraint distribution \mathcal{D} ;

Date: 11th Young Research Workshop on Geometry Mechanics and Control - University of La Laguna, January 12–14, 2017. e-mail: nicola.sansonetto@gmail.com.

¹It is well known that this system admits a bi–Hamiltonian structure or a Lagrangian and symplectic realization on \mathbb{R}^6 , but we with to use it here as an exercise for B–integrability.

- compute the reaction force $R(q, \dot{q})$;
- compute the equations of motions;
- compute the reaction annihilator distribution \mathcal{R}° .

Exercise 5. Consider now the nonholonomic particle with potential $V = V(x^2+z^2)$, and the same constraint as in Exercise 4. Compare the constraint distributions \mathcal{D} , the reaction forces $R(q, \dot{q})$ and the reaction–annihilator distributions \mathcal{R}° of the two systems, what do you observe? What do you observe if the constraint change: $\dot{z} + x\dot{y} - y\dot{x} = 0$?

Exercise 6. Consider a nonholonomic particle in $Q = \mathbb{R}^3$ subject to the potential energy V(q) = z, with $\in \mathbb{R}$ and to a constraint affine in the velocities

$$\dot{z} + x\dot{y} - y\dot{x} - \kappa = 0\,,$$

with $\kappa \in \mathbb{R} \setminus \{0\}$. Prove that the energy (or Jacobi integral) is not conserved along the flow of the dynamics.

Exercise 7. Consider a vertical disk of mass m that rolls without sliding on a plane and assume if is under the effect of a positional force. The configuration space is $Q \cong \mathbb{R}^2 \times S^1 \times S^1$ with coordinates $q = (x, y, \varphi, \theta)$, where (x, y) are the coordinates of the center of mass of the disk, φ is the angle between the x-axis and the projection of the disk on the plane, θ is the angle between a fixed radius of the disk and the vertical. The Lagrangian of the system is

$$L(q, \dot{q}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}J\dot{\varphi}^2 + \frac{1}{2}I\dot{\theta}^2 - x\sin\varphi - y\cos\varphi$$

where I and J are the pertinent moments of inertia and $V(q) = x \sin \varphi - y \cos \varphi$ is the potential acting on the system. The rolling without slipping nonholonomic constraint is²

$$\dot{x} = \dot{\theta} \cos \varphi$$
 and $\dot{y} = \dot{\theta} \sin \varphi$.

- (1) Write the fibers of the constraint distribution \mathcal{D} ;
- (2) Compute the reaction force $R(q, \cdot q)$;
- (3) write the Lagrangian of the system;
- (4) Determine the reaction annihilator distribution \mathcal{R}° ;
- (5) the system is invariant with respect to the action of the group $G = S^1 \times S^1$ of translations of the angles. Prove that $T\mathcal{O}_G \cap \mathcal{D} = \emptyset$;
- (6) Prove that $T\mathcal{O}_G \cap \mathcal{R}^\circ \neq \emptyset$;
- (7) Does the system admit a \mathcal{R}° -momentum? If so write its expression.

Exercise 8. Consider a free unit mass particle on the plane. Assuming that the symmetry group is just the group of translations on the plane, prove that the angular momentum along the vertical is a gauge momentum with respect to the group of translations on the plane.

Exercise 9. ('5-dimensional particle') Consider a free particle on $\mathbb{R}^5 \ni q = (q_1, \ldots, q_5)$ subject to the linear nonholonomic constraint given by the non-integrable rank-two distribution with fibers

$$\mathcal{D}_q = \operatorname{span} R\{\partial_{q_1}, q_1\partial_{q_2} + q_3\partial_{q_3} + q_3\partial_{q_4} + \partial_{q_5}\}.$$

The matrix S(q) such that $\mathcal{D}_q = \ker S(q)$ is the 3×5 matrix with block structure

$$S(q) = \begin{pmatrix} 0_3 & \mathbb{I}_3 & -\hat{q} \end{pmatrix},$$

where $0_3 \in \mathbb{R}^3$ is the zero vector, \mathbb{I}_3 is the (3) × (3) identity matrix, and $\hat{q} \in \mathbb{R}^3$ is the vector whose components are the first 3 coordinates of q. The Lagrangian and the constraint are invariant with respect to the action of $G = \mathbb{R}^3$ of translations along q_2, q_4, q_5 .

- Prove that $\mathcal{D} \cap T\mathcal{O}_G = \emptyset$.
- Write the reaction force $R(q, \dot{q})$. (*Hint. Note that the kinetic energy has the identity and there is no potential energy*).
- Write the equations of motions.
- Compute the reaction annihilator distribution \mathcal{R}° and prove that $\mathcal{R}^{\circ} \cap T\mathcal{O}_G \neq \emptyset$.

²The system is analogous to the classical vertical disk with the addiction of an active force of potential energy $V = x \sin \varphi - y \cos \varphi$.

• Prove that the function $J_D = \dot{q}_5 \sqrt{1 + q_1^2 + q_2^2 + q_3^2}$ is a first integral of the system. Prove that J_D is an \mathcal{R}° -gauge momentum.

Exercise 10. Does the Chaplygin sleigh admit any \mathcal{D} -gauge momenta?

3. Part 3

Exercise 11. Consider a nonholonomic particle in $Q = \mathbb{R} \times S^1 \times \mathbb{R} \ni q = (x, y, z)$ under the effect of a positional force of potential energy $V(q) = \frac{1}{2}(x^2 + z^2)$ and subjected to the linear constraint $z - y\dot{x} = 0$. Is the system B-integrable?

Exercise 12. Consider a nonholonomic particle in $Q = \mathbb{R} \times S^1 \times \mathbb{R} \ni q = (x, y, z)$ under the effect of a positional force of potential energy $V(q) = \frac{1}{2}(x^2 + z^2)$ and subjected to the linear constraint $z - y\dot{x} = 0$. Is the system B-integrable?

Exercise 13. Consider an heavy ball that rolls without sliding inside a vertical cylinder under the action of gravity. Recall that one can reduce in stages the system with respect to SO(3) and then to the S^1 action ending up with a 4-dimensional reduced space $\mathcal{M} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R}$, parametrized with coordinates $(z, \dot{z}, \dot{\theta}, \vec{n} \cdot \omega)$, where (z, θ) are cylindrical coordinates on $\mathbb{R} \times S^1$, $(\dot{z}, \dot{\theta}) \in \mathbb{R} \times \mathbb{R}$ their velocities and $\vec{n} \cdot \omega$ is the normal component to the cylinder of the angular velocities of the sphere written in the space frame. Moreover, recall that the (full) system admits three $SO_3(\times)S^1$ -invariant, independent first integrals: $J_{1,D} = -\frac{r}{a}(ma^2 + I_C)$, $J_{2,D} = r \vec{n} \cdot \omega - \frac{r}{a} z \dot{\theta}$ and the energy (on D), that go down to \mathcal{M} .

Consider the dynamical system defined by the reduced system.

- (1) Write the energy $E_{L,D}$ of the full system, and then restrict it to \mathcal{M} .
- (2) Prove that z oscillates harmonically, provided $\dot{\theta} \neq 0.^3$
- (3) Prove that the three first integrals are independent in an open and dense subset $\overline{\mathcal{M}}$ of \mathcal{M} .
- (4) What do you need to guarantee that the motions on $\overline{\mathcal{M}}$ are periodic?
- (5) Prove that the motion on $\overline{\mathcal{M}}$ are periodic.

³If you need some help you can have a look to L.M. Bates, H. Graumann and C. MacDonnell, *Examples of gauge conservation laws in nonholonomic systems*, Rep. Math. Phys., **37** (1996), 295–308.