
Geometric Discretization and Motion Planning of
Nonholonomic Systems with Symmetries

Marin Kobilarov,
California Institute of Technology

December 16, 2008

A robotic aerial vehicle example

Autonomous helicopter flying among buildings

Motivation: autonomous vehicles in natural environments

DARPA Challenges JPL Rover BigDog

USC RESL Boat SLOCUM glider LittleDog

USC RESL Heli Satellite RHex Robot

A more abstract view

Optimizing a trajectory in
a complex state space

xi

xf

X

qi

qf

Q

state space, e.g. X = TQ

configuration space

xi

xf

X

qi

qf

Q

state space, e.g. X = TQ

configuration space

Key Points
I Trajectory numerical representation:

accuracy and efficiency
I geometric discretization
I variational integrators

I Optimal control
I discrete necessary conditions
I local optimality

I Global solution among multiple
homotopy classes

I global state-space exploration
I optimal motion primitives
I dynamic programming

A more abstract view

Optimizing a trajectory in
a complex state space

xi

xf

X

qi

qf

Q

state space, e.g. X = TQ

configuration space

xi

xf

X

qi

qf

Q

state space, e.g. X = TQ

configuration space

Key Points
I Trajectory numerical representation:

accuracy and efficiency
I geometric discretization
I variational integrators

I Optimal control
I discrete necessary conditions
I local optimality

I Global solution among multiple
homotopy classes

I global state-space exploration
I optimal motion primitives
I dynamic programming

A more abstract view

Optimizing a trajectory in
a complex state space

xi

xf

X

qi

qf

Q

state space, e.g. X = TQ

configuration space

xi

xf

X

qi

qf

Q

state space, e.g. X = TQ

configuration space

Key Points
I Trajectory numerical representation:

accuracy and efficiency
I geometric discretization
I variational integrators

I Optimal control
I discrete necessary conditions
I local optimality

I Global solution among multiple
homotopy classes

I global state-space exploration
I optimal motion primitives
I dynamic programming

A more abstract view

Optimizing a trajectory in
a complex state space

xi

xf

X

qi

qf

Q

state space, e.g. X = TQ

configuration space

xi

xf

X

qi

qf

Q

state space, e.g. X = TQ

configuration space

Key Points
I Trajectory numerical representation:

accuracy and efficiency
I geometric discretization
I variational integrators

I Optimal control
I discrete necessary conditions
I local optimality

I Global solution among multiple
homotopy classes

I global state-space exploration
I optimal motion primitives
I dynamic programming

Framework for integration and control of vehicles

I Preview of some results: examples of computed motions

Helicopter - optimal landing Multiple vehicles in an urban canyon

I Example developed models:

(x, y)

θ

φ

ψ

d
am

p
in

g

d
am

p
in

g

th
ru

st
er

s

w
in

d

(x, y)

θ
ψ

φ

φ

Car Helicopter Boat Snakeboard

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

Continuous vs. Discrete Mechanics

q(0)

q(T)

Q

continuous variations δq(t)

q0

qN

Q

discrete variations δqi

... qi−1qi qi+1 ...

continuous variational principle discrete variational principle

δ
∫ T
0
L(q, q̇)dt+

∫ T
0
f · δqdt = 0 δ

N−1∑
k=0

Ld(qk, qk+1) +
N∑
k=0

fk · δqkdt = 0

Ld(qk, qk+1) = hL(qk+qk+1
2

qk+1−qk

h)

Euler-Lagrange equations

d
dt
∂L
∂q̇ − ∂L

∂q = f

discrete Euler-Lagrange equations

∂Ld

∂qk
(qk−1, qk) − ∂Ld

∂qk
(qk, qk+1) = h2fk

Continuous Mechanics Discrete Mechanics

finite differences
stadard ODE integrators

discretization

variational integrator
used directly for computation

q0

qN

Q

discrete variations (δqi, δvi, δpi)

... qi−1qi qi+1 ...

discrete variational principle

δ

N−1∑
k=0

L (qk, vk) +
〈
pk,

qk+1 − qk
h

− vk

〉
+

N∑
k=0

fk · δqkdt = 0

discrete Euler-Lagrange equations

pk − pk−1 = h∂L∂q (qk, vk) + hfk

Discrete Mechanics
(Pontryagin-D’Alembert)

vi

subject to: qk+1−qk

h − vk = 0

qk+1 = qk + hvk

pk = ∂L
∂v (qk, vk) Legendre transform

reconstruction

Continuous vs. Discrete Mechanics

q(0)

q(T)

Q

continuous variations δq(t)

q0

qN

Q

discrete variations δqi

... qi−1qi qi+1 ...

continuous variational principle discrete variational principle

δ
∫ T
0
L(q, q̇)dt+

∫ T
0
f · δqdt = 0 δ

N−1∑
k=0

Ld(qk, qk+1) +
N∑
k=0

fk · δqkdt = 0

Ld(qk, qk+1) = hL(qk+qk+1
2

qk+1−qk

h)

Euler-Lagrange equations

d
dt
∂L
∂q̇ − ∂L

∂q = f

discrete Euler-Lagrange equations

∂Ld

∂qk
(qk−1, qk) − ∂Ld

∂qk
(qk, qk+1) = h2fk

Continuous Mechanics Discrete Mechanics

finite differences
stadard ODE integrators

discretization

variational integrator
used directly for computation

q0

qN

Q

discrete variations (δqi, δvi, δpi)

... qi−1qi qi+1 ...

discrete variational principle

δ

N−1∑
k=0

L (qk, vk) +
〈
pk,

qk+1 − qk
h

− vk

〉
+

N∑
k=0

fk · δqkdt = 0

discrete Euler-Lagrange equations

pk − pk−1 = h∂L∂q (qk, vk) + hfk

Discrete Mechanics
(Pontryagin-D’Alembert)

vi

subject to: qk+1−qk

h − vk = 0

qk+1 = qk + hvk

pk = ∂L
∂v (qk, vk) Legendre transform

reconstruction

Superior numerics of discrete geometric integrators

I Orbits of the rigid Body on SE (3)- large time-steps

Ground truth Runge-Kutta 4 variational integrator

I Accuracy and efficiency vs. resolution

Nonholonimic Integrators
I Comparisons: Accuracy and efficiency vs. resolution

10
3

10
4

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

timesteps

m
et

er
s

Average Position Error

10
3

10
4

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

timesteps

ra
d.

Average Rotation Error (θ)

 RDP

DLA

GNI

Eul

RK2

RK4

10
3

10
4

0

5

10

15

20

25

30

timesteps

m
ic

ro
se

c
~

 1
0−

6 s
ec

Average Runtime per Update

Figure: Snakeboard 10 second trajectories

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

timesteps

m
et

er
s

Average Position Error

 RDP

DLA

GNI

Eul

RK2

RK4

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

timesteps

ra
d.

Average Rotation Error (θ)

10
3

10
4

0.5

1

1.5

2

2.5

3

3.5

timesteps

m
ic

ro
se

c
~

 1
0−

6 s
ec

Average Runtime per Update

Figure: Snakeboard 10 minute trajectories

I DLA: Discrete Lagrange-d’Alembert (Cortez, 2002)
I GNI: Geometric Nonholonomic Integrator (Ferraro, Iglesias, De

Diego, 2007)
I RDP: Reduced d’Alembert-Pontryagin (Kobilarov, 2007)

A typical system setup

I configuration space Q = M × G , configuration q ∈ Q

I M – shape space, e.g. joint angles

I G – Lie group, e.g. SE (3) denoting the system pose

I nonholonomic constraints q̇ ∈ D, distribution D ⊂ TQ

I symmetries associated with group transformations

I external forces, e.g. gravity, friction

State Space Structure

Principle bundle π : Q → Q/G ; distribution Dq ⊂ TqQ, q ∈ Q.

Vq = Tq Orb(q), Sq = Dq ∩ Vq, Dq = Sq ⊕Hq.

I Vq: space of tangent vectors parallel to symmetry directions,
i.e. the vertical space

I Sq: space of symmetry directions that satisfy the constraints
(generated by sq = {ξ ∈ g | ξQ(q) ∈ Sq} ⊂ TqQ/G)

I Hq: space of tangent vectors that satisfy the constraints but
are not aligned with any directions of symmetry, i.e. the
horizontal space

Nonholonomic Connection

A principle connection A : TQ → g with horizontal distribution Hq.

Nonholonomic Connection (Bloch 2003; Cendra, Marsden, 2001)

Constructed as A = Akin +Asym,
Akin is the kinematic, Asym is the mechanical connection

g−1ġ +A(r)ṙ = Ω,

defining vertical and horizontal velocity components

q̇ = verr q̇ + horr q̇ ⇔ (ṙ , g−1ġ)r = (0,Ω) + (ṙ ,−A(r)ṙ),

where Ω ∈ sr is the locked angular velocity.

Vertical Variations (δr , δg)

Variations such that δr = 0 and δgg−1 = A(r , g) · (δr , δg) ∈ sr

Horizontal Variations (δr , δg)

Variations such that A(r , g) · (δr , δg) = 0, or (δr , g−1δg) =
(δr ,−A(r)δr) ∈ (TM × g)r

Discrete Trajectory
Pick coordinates (r , g) ∈ M × G

M

rk−1

rk

rk+1

uk−1

uk

rk−1+α

rk+α

rk+1 − rk = huk
G

gk−1

gk
gk+1

gk−1+αξk−1

gk+αξk

gk−1+α

gk+α

τ−1(g−1
k gk+1) = hξk

Discrete path
(r , u, p, g ,Ω, µ)d : {tk}Nk=0 → (TM ⊕ T ∗M)× G × s× g∗

subject to the constraints

rk+1 − rk = huk , τ−1(g−1
k gk+1) = hξk ,

where ξk = Ωk −A(rk+α)uk , with rk+α := (1− α)rk + αrk+1 for a
chosen α ∈ [0, 1] and the map τ : g→ G represents the difference
between two configurations in the group

Discrete Trajectory
Pick coordinates (r , g) ∈ M × G

M

rk−1

rk

rk+1

uk−1

uk

rk−1+α

rk+α

rk+1 − rk = huk
G

gk−1

gk
gk+1

gk−1+αξk−1

gk+αξk

gk−1+α

gk+α

τ−1(g−1
k gk+1) = hξk

Discrete path
(r , u, p, g ,Ω, µ)d : {tk}Nk=0 → (TM ⊕ T ∗M)× G × s× g∗

subject to the constraints

rk+1 − rk = huk , τ−1(g−1
k gk+1) = hξk ,

where ξk = Ωk −A(rk+α)uk , with rk+α := (1− α)rk + αrk+1 for a
chosen α ∈ [0, 1] and the map τ : g→ G represents the difference
between two configurations in the group

Lagrange-D’Alembert-Pontryagin Nonholonomic Principle

Discrete Reduced LDAP Principle

Denoting ξk := Ωk −A(rk+α)uk :

δ

N−1∑
k=0

h [`(rk+α, uk , ξk) + 〈pk , (rk+1 − rk)/h − uk〉

+〈µk , τ
−1(g−1

k gk+1)/h − ξk〉
]

+
N−1∑
k=0

[h〈fk+α, δrk+α〉] = 0,

subject to:

vertical variations (δrk , g
−1
k δgk) = (0, ηk), ηk ∈ srk

horizontal variations (δrk , g
−1
k δgk) = (δrk ,−A(rk)δrk),

`(r , ṙ , ξ) = L(r , ṙ , e, g−1ġ): the reduced Lagrangian

Discrete Equations of Motion

g−1
k gk+1 = τ(h(Ωk −A(rk+α)uk)),

rk+1 − rk = huk ,

µk =
∂`k+α

∂Ω
,

〈DEPτ (k), eb(rk)〉 = 0,(
∂`k+α

∂u
− ∂`k−1+α

∂u

)
− h

(
α
∂`k−1+α

∂r
+ (1− α)

∂`k+α

∂r

)
= A(rk)∗DEPτ (k) + h (αfk−1+α + (1− α)fk+α) ,

where the discrete Euler-Poincaré operator DEPτ is defined as

DEPτ (k) := (dτ−1
h(Ωk−A(rk+α)uk))∗µk−(dτ−1

−h(Ωk−1−A(rk−1+α)uk−1))∗µk−1

Disrete Euler-Poincare equations

I the unconstrained case Q = G

Figure: Tangent maps dτ−1 transforming momenta

Continuous Discrete

µ̇ = ad∗ξ µ+ f (dτ−1
hξk

)∗µk − (dτ−1
−hξk−1

)∗µk−1 = hfk

Implementation

Simple matrix operations. Example: G = SE (2), τ = cay

cay(v̂)=

 1
4+(v1)2

[
(v 1)2− 4 −4v 1 −2v 1v 3 + 4v 2

4v 1 (v 1)2− 4 2v 1v 2 + 4v 3

]
0 0 1

The maps [dτ−1

ξ] can be expressed as the 3× 3 matrices:

[dcay−1bv] = I3 − 1

2
[adv] +

1

4

[
v 1 · v 03×2

]
where

[adv] =

 0 0 0
v 3 0 −v 1

−v 2 v 1 0

 .
Note: a general method for any matrix group is also available

Discrete Nonholonomic Momentum Map

I Define the local discrete momentum map Jloc : TM × g→ g∗

Jloc(rk , uk , ξk) = (dτ−1
hξk

)∗µk , where µk =
∂`

∂ξ
(rk+αuk , uk , ξk),

and the spatial discrete momentum map J : TQ → g∗ through

J(rk , uk , gk , vk) := Ad∗
g−1

k

Jloc(rk , uk , g
−1
k vk),

where (rk , uk) ∈ TM and (gk , vk) ∈ TG .

I The momentum components Jnh
b (rk , uk , gk , vk) at point k

along the basis elements eb : Q → s are

Jnh
b (rk , uk , gk , vk) = 〈J(rk , uk , gk , vk), eb(rk , gk)〉

= 〈Jloc(rk , uk , g
−1
k vk), eb(rk)〉.

Discrete Nonholonomic Momentum Map

I Define the local discrete momentum map Jloc : TM × g→ g∗

Jloc(rk , uk , ξk) = (dτ−1
hξk

)∗µk , where µk =
∂`

∂ξ
(rk+αuk , uk , ξk),

and the spatial discrete momentum map J : TQ → g∗ through

J(rk , uk , gk , vk) := Ad∗
g−1

k

Jloc(rk , uk , g
−1
k vk),

where (rk , uk) ∈ TM and (gk , vk) ∈ TG .

I The momentum components Jnh
b (rk , uk , gk , vk) at point k

along the basis elements eb : Q → s are

Jnh
b (rk , uk , gk , vk) = 〈J(rk , uk , gk , vk), eb(rk , gk)〉

= 〈Jloc(rk , uk , g
−1
k vk), eb(rk)〉.

Discrete Momentum Map Evolution

Grk

grk

e

eb(rk)

Jloc
k

srk

rk−1
rk

M

Grk−1

grk−1

e

eb(rk−1)

Jloc
k−1

srk−1

Ad∗
g−1

k−1gk
Jloc
k−1

change of basis
balance of momentum
projected onto srk

Discrete Momentum Map Change

The momentum components Jnh
b evolve along discrete LDAP solu-

tion trajectories according to (denote J(k) := J(rk , uk , gk , vk))

Jnh
b (k)− Jnh

b (k − 1) = 〈J(k − 1), eb(rk , gk)− eb(rk−1, gk−1)〉.
* consistent with previous results, e.g. Cortes, 2001; Ferraro et. al. 2007

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

Optimal Control

Goal: find an optimal trajectory to a desired state

I Compute the forces f (t) such that the systems moves from
(q(0), q̇(0)) to (q(T), q̇(T)) during a time interval [0,T]

I minimizing the cost function

J(q, f) =

∫ T

0
C (q(t), f (t))dt, (1)

e.g. minimum control effort: C = 1
2‖f ‖2;

min. time: C = 1.

I subject to discrete equations of motion

I other constraints such as joint limits, obstacles, etc...

For clarity, consider the simpler case Q = G

Nonholonomic distribution h ⊂ g (the sub-Riemannian case):

velocity ξ ∈ h = span{X1, ...,Xm},m < n, 〈〈Xi ,Xj〉〉 = δij

The dynamics satisfies

〈(dτ−1
hξk

)∗µk − (dτ−1
−hξk−1

)∗µk−1 − hfk ,Xi 〉 = 0, i = 1, ...,m,

〈〈ξk ,Xi 〉〉 = 0, i = m + 1, ..., n,

〈µk ,Xi 〉 =

{ 〈I ξk ,Xi 〉, i = 1, ...,m
0, i = m + 1, ..., n

,

g−1
k gk+1 = τ(hξk).

Necessary Conditions for Optimality
Define the Lagrangian multipliers ηk ∈ h, ρk ∈ h⊥∗, λk ∈ g∗ and
and the Hamiltonian function

Hk := H(ξk−1, ξk , fk , ηk) =

〈(dτ−1
hξk

)∗ I ξk − (dτ−1
−hξk−1

)∗ I ξk−1 − hfk , ηk〉+
h

2
‖fk‖2,

and the augmented discrete cost function

J ′d(ξ0:N−1, f0:N , ζ0:N , ρ0:N−1, λ0:N−1)

=
N∑

k=0

Hk +
N−1∑
k=0

(
h〈ρk , ξk〉+ 〈λk , τ

−1(g−1
k gk+1)− hξk〉

)
,

An optimal solution must satisfy

(dτ−1
hξk

)∗λk − (dτ−1
−hξk−1

)∗λk−1 = 0,

where λk =
∂(Hk + Hk+1)

∂ξk
+ ρk =

∂H̃k

∂ξk
+ ρk ,

H̃k := −〈(dτ−1
hξk

)∗ I ξk ,Adτ(hξk) f̃]
k+1 − f̃]

k 〉.

Indirect Optimal Control Formulation

An optimal trajectory (minimizing the control effort
h

2

NX
k=0

‖efk‖2) satisfies

(dτ−1
hξk

)∗λk − (dτ−1
−hξk−1

)∗λk−1 = 0, k = 1, ...,N − 1 (2)

τ−1(τ(hξ0) · · · τ(hξN−1) · (g(0)−1g(T))−1) = 0, (3)

where λk ∈ g∗is computed through

(λk)i =

fi
I(dτ−1

hξk
(νk))− h(dτ hξk)∗ ad∗“

Adτ(hξk)
ef]
k+1

”(dτ−1
hξk

)∗ I(ξk) + ρk , e
i

fl
+
D

I(ξk), h
“

D dτ−1
hξk
·e i
”

(νk)
E
, where {e i} is the basis for g

νk = Adτ(hξk)
ef]
k+1 − ef]

k ,

ξk ∈ h, ρk ∈ h⊥
∗
.

Nn equations (2)-(3) in the Nn unknowns ξ0:N−1, ρ0:N−1

solved with standard root-finding

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

Simple boat model

I Group G = SE(2) with coordinates q = (θ, x , y)

I body fixed velocity ξ ∈ se(2) defined by ξ = (ω, v , v⊥)

I forces f : SE(2)× se(2)→ se(2)∗ in the form

f (g , ξ) = −R(g , ξ)ξ + fext(g , ξ) + Bu,

where R is a damping matrix, fext are external forces due to wind or
current, and u = (ur , ul) are the thruster control inputs and B is

B =

24 −c c
1 1
0 0

35 .

Boat station-keeping RESL boat

Snakeboard
I Q = SE(2)× S × S , shape r = (ψ, φ), G = SE(2) with coordinates

(θ, x , y); distance l center-to-wheels, mass m, moments of inertia I and J.

I Constraint distribution:

Dq = span

∂

∂ψ
,
∂

∂φ
, c

∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

ff
,

(x, y)

θ
ψ

φ

φ

where a = −2l cos θ cos2 φ, b = −2l sin θ cos2 φ, c = sin 2φ.

I Vertical space:

Vq = span

∂

∂θ
,
∂

∂x
,
∂

∂y

ff
,

I Constrained symmetry space:

Sq = Vq ∩ Dq = span

c
∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

ff
.

Optimal trajectories:

forward motion 90o turn parallel parking axis turn

Snakeboard
I Q = SE(2)× S × S , shape r = (ψ, φ), G = SE(2) with coordinates

(θ, x , y); distance l center-to-wheels, mass m, moments of inertia I and J.

I Constraint distribution:

Dq = span

∂

∂ψ
,
∂

∂φ
, c

∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

ff
,

(x, y)

θ
ψ

φ

φ

where a = −2l cos θ cos2 φ, b = −2l sin θ cos2 φ, c = sin 2φ.

I Vertical space:

Vq = span

∂

∂θ
,
∂

∂x
,
∂

∂y

ff
,

I Constrained symmetry space:

Sq = Vq ∩ Dq = span

c
∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

ff
.

Optimal trajectories:

forward motion 90o turn parallel parking axis turn

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

Challenges

I So far we have considered:
Optimal Control based on variational geometric integrators
(approach termed DMOC: Discrete Mechanics and Optimal Control)

I Benefits:
I a principled way to construct mechanical integrators
I respects the geometric structure of the state-space
I numerical stability, accuracy
I suitable for discrete optimal control

I Limitations (as with any optimal control method):
I lots of complex constraint ⇒ expensive or even impossible
I locally optimal ⇒ solution might be in a “bad” homotopy class

I Goal of this part:
I extend DMOC to complex state-spaces cluttered with obstacles
I find near globally optimal solution
I guarantee efficiency

Challenges

I So far we have considered:
Optimal Control based on variational geometric integrators
(approach termed DMOC: Discrete Mechanics and Optimal Control)

I Benefits:
I a principled way to construct mechanical integrators
I respects the geometric structure of the state-space
I numerical stability, accuracy
I suitable for discrete optimal control

I Limitations (as with any optimal control method):
I lots of complex constraint ⇒ expensive or even impossible
I locally optimal ⇒ solution might be in a “bad” homotopy class

I Goal of this part:
I extend DMOC to complex state-spaces cluttered with obstacles
I find near globally optimal solution
I guarantee efficiency

Challenges

I So far we have considered:
Optimal Control based on variational geometric integrators
(approach termed DMOC: Discrete Mechanics and Optimal Control)

I Benefits:
I a principled way to construct mechanical integrators
I respects the geometric structure of the state-space
I numerical stability, accuracy
I suitable for discrete optimal control

I Limitations (as with any optimal control method):
I lots of complex constraint ⇒ expensive or even impossible
I locally optimal ⇒ solution might be in a “bad” homotopy class

I Goal of this part:
I extend DMOC to complex state-spaces cluttered with obstacles
I find near globally optimal solution
I guarantee efficiency

Challenges

I So far we have considered:
Optimal Control based on variational geometric integrators
(approach termed DMOC: Discrete Mechanics and Optimal Control)

I Benefits:
I a principled way to construct mechanical integrators
I respects the geometric structure of the state-space
I numerical stability, accuracy
I suitable for discrete optimal control

I Limitations (as with any optimal control method):
I lots of complex constraint ⇒ expensive or even impossible
I locally optimal ⇒ solution might be in a “bad” homotopy class

I Goal of this part:
I extend DMOC to complex state-spaces cluttered with obstacles
I find near globally optimal solution
I guarantee efficiency

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

Finding global solution

I Example - what is the optimal motion in this complex terrain?

optimal motion?

sampling-based roadmap

I Approach: sampling-based roadmaps
(Kavraki; Latombe; LaValle; Amato; etc... 1996-present)

I approximate free space as a tree/graph of reachable nodes
I nodes are sampled in order to explore the state-space
I edges correspond to motions satisfying the dynamics
I optimal control path = shortest path on the graph
I global solution, optimal with respect to the approximation

Finding global solution

I Example - what is the optimal motion in this complex terrain?

optimal motion? sampling-based roadmap

I Approach: sampling-based roadmaps
(Kavraki; Latombe; LaValle; Amato; etc... 1996-present)

I approximate free space as a tree/graph of reachable nodes
I nodes are sampled in order to explore the state-space
I edges correspond to motions satisfying the dynamics
I optimal control path = shortest path on the graph
I global solution, optimal with respect to the approximation

Finding global solution

I Example - what is the optimal motion in this complex terrain?

optimal motion? sampling-based roadmap

I Approach: sampling-based roadmaps
(Kavraki; Latombe; LaValle; Amato; etc... 1996-present)

I approximate free space as a tree/graph of reachable nodes

I nodes are sampled in order to explore the state-space
I edges correspond to motions satisfying the dynamics
I optimal control path = shortest path on the graph
I global solution, optimal with respect to the approximation

Finding global solution

I Example - what is the optimal motion in this complex terrain?

optimal motion? sampling-based roadmap

I Approach: sampling-based roadmaps
(Kavraki; Latombe; LaValle; Amato; etc... 1996-present)

I approximate free space as a tree/graph of reachable nodes
I nodes are sampled in order to explore the state-space

I edges correspond to motions satisfying the dynamics
I optimal control path = shortest path on the graph
I global solution, optimal with respect to the approximation

Finding global solution

I Example - what is the optimal motion in this complex terrain?

optimal motion? sampling-based roadmap

I Approach: sampling-based roadmaps
(Kavraki; Latombe; LaValle; Amato; etc... 1996-present)

I approximate free space as a tree/graph of reachable nodes
I nodes are sampled in order to explore the state-space
I edges correspond to motions satisfying the dynamics

I optimal control path = shortest path on the graph
I global solution, optimal with respect to the approximation

Finding global solution

I Example - what is the optimal motion in this complex terrain?

optimal motion? sampling-based roadmap

I Approach: sampling-based roadmaps
(Kavraki; Latombe; LaValle; Amato; etc... 1996-present)

I approximate free space as a tree/graph of reachable nodes
I nodes are sampled in order to explore the state-space
I edges correspond to motions satisfying the dynamics
I optimal control path = shortest path on the graph

I global solution, optimal with respect to the approximation

Finding global solution

I Example - what is the optimal motion in this complex terrain?

optimal motion? sampling-based roadmap

I Approach: sampling-based roadmaps
(Kavraki; Latombe; LaValle; Amato; etc... 1996-present)

I approximate free space as a tree/graph of reachable nodes
I nodes are sampled in order to explore the state-space
I edges correspond to motions satisfying the dynamics
I optimal control path = shortest path on the graph
I global solution, optimal with respect to the approximation

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Combining DMOC with incremental roadmaps

START

GOAL

START

GOAL

sample

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

START

GOAL

pruned edges

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

Combining DMOC with incremental roadmaps

DYNAMICS ABSTRACTION

optimal motion primitives

DYNAMICS ABSTRACTION

INVARIANCE

optimal motion primitives

I DMOC primitives
I simple optimized motions (precomputed)
I invariant to group transformations
I can be concatenated to produce complex trajectories

I paths constructed from sequences of compatible primitives [1]
I Main benefits:

I control problem decomposed into two simpler sub-problems:
1. how to sequence primitives to create roadmap edges
2. find optimal trajectory through dynamic programming

I the complex differential control problem reduced to a lower
dimensional algebraic one

Frazzoli, Dahleh, Feron, IEEE Trans. on Robotics and Automation, 2005.

Combining DMOC with incremental roadmaps

DYNAMICS ABSTRACTION

optimal motion primitives

DYNAMICS ABSTRACTION

INVARIANCE

optimal motion primitives

I DMOC primitives
I simple optimized motions (precomputed)
I invariant to group transformations
I can be concatenated to produce complex trajectories

I paths constructed from sequences of compatible primitives [1]
I Main benefits:

I control problem decomposed into two simpler sub-problems:
1. how to sequence primitives to create roadmap edges
2. find optimal trajectory through dynamic programming

I the complex differential control problem reduced to a lower
dimensional algebraic one

Frazzoli, Dahleh, Feron, IEEE Trans. on Robotics and Automation, 2005.

Combining DMOC with incremental roadmaps

DYNAMICS ABSTRACTION

optimal motion primitives

DYNAMICS ABSTRACTION

INVARIANCE

optimal motion primitives

I DMOC primitives
I simple optimized motions (precomputed)
I invariant to group transformations
I can be concatenated to produce complex trajectories

I paths constructed from sequences of compatible primitives [1]
I Main benefits:

I control problem decomposed into two simpler sub-problems:
1. how to sequence primitives to create roadmap edges
2. find optimal trajectory through dynamic programming

I the complex differential control problem reduced to a lower
dimensional algebraic one

Frazzoli, Dahleh, Feron, IEEE Trans. on Robotics and Automation, 2005.

Combining DMOC with incremental roadmaps

DYNAMICS ABSTRACTION

optimal motion primitives

DYNAMICS ABSTRACTION

INVARIANCE

optimal motion primitives

I DMOC primitives
I simple optimized motions (precomputed)
I invariant to group transformations
I can be concatenated to produce complex trajectories
I paths constructed from sequences of compatible primitives [1]

I Main benefits:
I control problem decomposed into two simpler sub-problems:

1. how to sequence primitives to create roadmap edges
2. find optimal trajectory through dynamic programming

I the complex differential control problem reduced to a lower
dimensional algebraic one

Frazzoli, Dahleh, Feron, IEEE Trans. on Robotics and Automation, 2005.

Combining DMOC with incremental roadmaps

DYNAMICS ABSTRACTION

optimal motion primitives

DYNAMICS ABSTRACTION

INVARIANCE

optimal motion primitives

I DMOC primitives
I simple optimized motions (precomputed)
I invariant to group transformations
I can be concatenated to produce complex trajectories
I paths constructed from sequences of compatible primitives [1]

I Main benefits:
I control problem decomposed into two simpler sub-problems:

1. how to sequence primitives to create roadmap edges
2. find optimal trajectory through dynamic programming

I the complex differential control problem reduced to a lower
dimensional algebraic one

Frazzoli, Dahleh, Feron, IEEE Trans. on Robotics and Automation, 2005.

Combining DMOC with incremental roadmaps

DYNAMICS ABSTRACTION

optimal motion primitives

DYNAMICS ABSTRACTION

INVARIANCE

optimal motion primitives

I DMOC primitives
I simple optimized motions (precomputed)
I invariant to group transformations
I can be concatenated to produce complex trajectories
I paths constructed from sequences of compatible primitives [1]

I Main benefits:
I control problem decomposed into two simpler sub-problems:

1. how to sequence primitives to create roadmap edges
2. find optimal trajectory through dynamic programming

I the complex differential control problem reduced to a lower
dimensional algebraic one

Frazzoli, Dahleh, Feron, IEEE Trans. on Robotics and Automation, 2005.

Primitive Invariance
Denote state-space by X , state x ∈ X , and control set U, u ∈ U,
e.g. X = TQ, x = (q, v)

I The flow ϕ : X × R→ X of a primitive is G -invariant i.e.

Φg (ϕ(x0, t)) = ϕ(Φg (x0), t), Φg is the group action with g ∈ G

I Two primitives π1 and π2 are equivalent, if ∃g ,T s.t.

(x1(t), u1(t)) = (Φg (x2(t − T)), u2(t − T)),∀t ∈ [ti ,1, tf ,1]

I Two primitives π1 and π2 are compatible if ∃g12 ∈ G s.t.

x1(T1) = Φ(g12, x2(0))

——————————————————————————–
For discrete DMOC trajectories use discrete flow ϕd : X × N→ X

ϕd(xk , i) ≈ ϕ(x(kh), ih), xk ≈ x(kh)

Types of Primitives
I Trim Primitives: continuously parametrized steady-state motions

α : t ∈ [0,T]→ (xα(t), ua(t))

along left invariant vector field ξα ∈ g with constant control inputs

xα(t) = Φ(exp(tξα), xα(0)), uα(t) = uα, ∀t ∈ [0,T].

The trim primitives are denoted

α(τ) : t ∈ [0,T]→ (Φ(exp(tξα), xα(0)), uα),

where τ is called coasting time, and the set of all such primitives defined
by Tα = {α(τ), τ ≥ 0}.
The displacement of a trim primitive α with coasting time τ is simply
gα = exp(τξα).

I Maneuvers: switches b/n steady-state motions. Therefore they are
defined to be compatible form left and right with trim primitives. The set
of maneuvers is denoted M(S,G) ⊆ P(S,G). Formally, a maneuver π
satisfies

π ∈M(S,G)⇔ ∃α, β ∈ T (S,G) : απβ ∈ P(S,G).

The displacement as a result of executing the maneuver is denoted gπ.

Example: helicopter

I Model – underactuated rigid body

I State: orientatation R ∈ SO(3), position x ∈ R3, angular
velocity ω ∈ R3, linear velocity v ∈ R3

I Controls: collective uc , yaw uψ, rotor forward pitch γp, rotor
sideways roll γr with control input covectors

f 1(γ) = (dt sin γr , dt sin γp cos γr , 0, sin γp, cos γp cos γr),

f 2(γ) = (0, 0, dr , 0,−1, 0).

I gravity; bounds on velocity and controls
I Primitives: invariant under G ′ = SO(2)× R3

trim vector ξα ∈ se(3):

ξα =

2664
0 −ωz 0 vx

ωz 0 0 vy

0 0 0 vz

0 0 0 0

3775 .
invariance conditions (ξ̇ = 0), with θ-pitch, φ-roll:

γp = 0, γr = 0, uψ = 0,

vyωz = −g sin θ,

− vxωz = g cos θ sinφ,

uc = g cos θ cosφ.

Example: helicopter (cont.)

Trim Primitives:
α1 α2 α3

Maneuvers:
π1 π2 π3

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

State space exploration

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

I State space approximation/discretization: sets of
orbit of invariant vector fields
X ≈ {xα(t) | Φg (ϕ(xα, t)) = ϕ(Φg (xα), t)}

I Each graph node is a set of orbits attached at
some g ∈ G .

I The Control Problem: Find {πi , αi , τi} such that

g−1
0 gf = [Πi exp(τiξαi)gπi] exp(τNξαN)}

minimizing total cost, for cost c : Cd → R

J =
X

i

[(τic(αi) + c(πi)] + τNc(αN)

g0

gf

G

roadmap G-nodes

integral curves γ : t→ exp(tξ)

roadmap X/G nodes
g× TM

g0

gf

G

roadmap G-nodes

integral curves γ : t→ exp(tξ)

maneuver π

trim motion α

roadmap X/G nodes
g× TM

State space exploration

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

I State space approximation/discretization: sets of
orbit of invariant vector fields
X ≈ {xα(t) | Φg (ϕ(xα, t)) = ϕ(Φg (xα), t)}

I Each graph node is a set of orbits attached at
some g ∈ G .

I The Control Problem: Find {πi , αi , τi} such that

g−1
0 gf = [Πi exp(τiξαi)gπi] exp(τNξαN)}

minimizing total cost, for cost c : Cd → R

J =
X

i

[(τic(αi) + c(πi)] + τNc(αN)

g0

gf

G

roadmap G-nodes

integral curves γ : t→ exp(tξ)

roadmap X/G nodes
g× TM

g0

gf

G

roadmap G-nodes

integral curves γ : t→ exp(tξ)

maneuver π

trim motion α

roadmap X/G nodes
g× TM

Example: helicopter

Part of the roadmap

topview sideview closeview

Example: car

roadmap construction

Outline

Discrete Nonholonomic Systems with Symmetries
Equations of Motion
Optimal Control
Examples

Global Motion Planning
Global Exploration using Roadmaps
Motion Primitives
Dynamic Programming Search
Extensions

Roadmap extensions

I Goal with time-dependent dynamics

roadmap construction motion

I Maximizing coverage

roadmap construction

Roadmap extensions

I Goal with time-dependent dynamics

roadmap construction motion

I Maximizing coverage

roadmap construction

Goal with uncertain dynamics

I goal distribution as particles

I goal heading north with
uncertainty

I two vehicles with circular
sensing radius

I vehicle controlled to gain
maximum information about
goal position

Goal with uncertain dynamics

I goal distribution as particles

I goal heading north with
uncertainty

I two vehicles with circular
sensing radius

I vehicle controlled to gain
maximum information about
goal position

Control under uncertainty

I Propagation of uncertainty

I Planning with Uncertainty: distance vs. uncertainty

Shortest Distance Minimum Uncertainty

Issues / Directions

I Improve motion planning control in complex state spaces

I More insight into the structure / numerics of optimal control
problems?

I Propagation of uncertainty / robustness to noise

	Overview
	Discrete Nonholonomic Systems with Symmetries
	Equations of Motion
	Optimal Control
	Examples

	Global Motion Planning
	
	Global Exploration using Roadmaps
	Motion Primitives
	Dynamic Programming Search
	Extensions

	Future Directions

