Geometric Discretization and Motion Planning of Nonholonomic Systems with Symmetries

> Marin Kobilarov, California Institute of Technology

> > December 16, 2008

A robotic aerial vehicle example

Autonomous helicopter flying among buildings

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Motivation: autonomous vehicles in natural environments

DARPA Challenges

JPL Rover

BigDog

USC RESL Boat

 ${\sf SLOCUM}\ {\sf glider}$

LittleDog

USC RESL Heli

Satellite

RHex Robot

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimizing a trajectory in a complex state space

Optimizing a trajectory in a complex state space

Optimizing a trajectory in a complex state space

Optimizing a trajectory in a complex state space

Key Points

- Trajectory numerical representation: accuracy and efficiency
 - geometric discretization
 - variational integrators
- Optimal control
 - discrete necessary conditions
 - local optimality
- Global solution among multiple homotopy classes
 - global state-space exploration

- optimal motion primitives
- dynamic programming

Framework for integration and control of vehicles

Preview of some results: examples of computed motions

Helicopter - optimal landingExample developed models:

Multiple vehicles in an urban canyon

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Discrete Nonholonomic Systems with Symmetries

Equations of Motion Optimal Control Examples

Global Motion Planning

Global Exploration using Roadmaps Motion Primitives Dynamic Programming Search Extensions

Discrete Nonholonomic Systems with Symmetries

Equations of Motion Optimal Control Examples

Global Motion Planning

Global Exploration using Roadmaps Motion Primitives Dynamic Programming Search Extensions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Discrete Nonholonomic Systems with Symmetries Equations of Motion

Optimal Control Examples

Global Motion Planning

Global Exploration using Roadmaps Motion Primitives Dynamic Programming Search Extensions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Continuous vs. Discrete Mechanics

・ロト・西ト・モート ヨー シタク

Continuous vs. Discrete Mechanics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Superior numerics of discrete geometric integrators

Orbits of the rigid Body on SE(3)- large time-steps

Ground truth

Runge-Kutta 4 variational integrator

Accuracy and efficiency vs. resolution

Nonholonimic Integrators

- DLA: Discrete Lagrange-d'Alembert (Cortez, 2002)
- GNI: Geometric Nonholonomic Integrator (Ferraro, Iglesias, De Diego, 2007)

3

► *RDP*: Reduced d'Alembert-Pontryagin (Kobilarov, 2007)

A typical system setup

- ▶ configuration space $Q = M \times G$, configuration $q \in Q$
- ▶ *M* − *shape space*, e.g. joint angles
- G Lie group, e.g. SE(3) denoting the system pose
- nonholonomic constraints $\dot{q} \in \mathcal{D}$, distribution $\mathcal{D} \subset TQ$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- symmetries associated with group transformations
- external forces, e.g. gravity, friction

State Space Structure

Principle bundle $\pi: Q \to Q/G$; distribution $\mathcal{D}_q \subset T_q Q$, $q \in Q$.

$$\mathcal{V}_q = \mathcal{T}_q \operatorname{Orb}(q), \quad \mathcal{S}_q = \mathcal{D}_q \cap \mathcal{V}_q, \quad \mathcal{D}_q = \mathcal{S}_q \oplus \mathcal{H}_q.$$

- ▶ V_q: space of tangent vectors parallel to symmetry directions, i.e. the vertical space
- S_q : space of symmetry directions that satisfy the constraints (generated by $\mathfrak{s}_q = \{\xi \in \mathfrak{g} \mid \xi_Q(q) \in S_q\} \subset T_q Q/G$)
- ► H_q: space of tangent vectors that satisfy the constraints but are not aligned with any directions of symmetry, i.e. the *horizontal space*

Nonholonomic Connection

A principle connection $\mathcal{A}: TQ \to \mathfrak{g}$ with horizontal distribution \mathcal{H}_q .

Nonholonomic Connection (Bloch 2003; Cendra, Marsden, 2001)

Constructed as $\mathcal{A} = \mathcal{A}^{kin} + \mathcal{A}^{sym}$, \mathcal{A}^{kin} is the kinematic, \mathcal{A}^{sym} is the mechanical connection

$$g^{-1}\dot{g}+\mathcal{A}(r)\dot{r}=\Omega,$$

defining vertical and horizontal velocity components

$$\dot{q} = \operatorname{ver}_{r} \dot{q} + \operatorname{hor}_{r} \dot{q} \Leftrightarrow (\dot{r}, g^{-1} \dot{g})_{r} = (0, \Omega) + (\dot{r}, -\mathcal{A}(r)\dot{r})_{r}$$

where $\Omega \in \mathfrak{s}_r$ is the *locked angular velocity*. Vertical Variations $(\delta r, \delta g)$

Variations such that $\delta r = 0$ and $\delta gg^{-1} = \mathcal{A}(r,g) \cdot (\delta r, \delta g) \in \mathfrak{s}_r$

Horizontal Variations $(\delta r, \delta g)$

Variations such that $\mathcal{A}(r,g) \cdot (\delta r, \delta g) = 0$, or $(\delta r, g^{-1}\delta g) = (\delta r, -\mathcal{A}(r)\delta r) \in (TM \times \mathfrak{g})_r$

Discrete Trajectory

Pick coordinates $(r,g) \in M \times G$

Discrete Trajectory

Pick coordinates $(r,g) \in M \times G$

Discrete path $(r, u, p, g, \Omega, \mu)_d : \{t_k\}_{k=0}^N \to (TM \oplus T^*M) \times G \times \mathfrak{s} \times \mathfrak{g}^*$ subject to the constraints

$$r_{k+1} - r_k = hu_k, \qquad \tau^{-1}(g_k^{-1}g_{k+1}) = h\xi_k,$$

where $\xi_k = \Omega_k - \mathcal{A}(r_{k+\alpha})u_k$, with $r_{k+\alpha} := (1-\alpha)r_k + \alpha r_{k+1}$ for a chosen $\alpha \in [0, 1]$ and the map $\tau : \mathfrak{g} \to G$ represents the *difference* between two configurations in the group

三 つへの

Lagrange-D'Alembert-Pontryagin Nonholonomic Principle

Discrete Reduced LDAP Principle Denoting $\xi_k := \Omega_k - \mathcal{A}(r_{k+\alpha})u_k$:

$$\delta \sum_{k=0}^{N-1} h\left[\ell(r_{k+\alpha}, u_k, \xi_k) + \langle p_k, (r_{k+1} - r_k)/h - u_k \rangle \right]$$

$$+\langle \mu_k, \tau^{-1}(g_k^{-1}g_{k+1})/h - \xi_k \rangle \Big] + \sum_{k=0} \left[h\langle f_{k+\alpha}, \delta r_{k+\alpha} \rangle \right] = 0,$$

subject to:

vertical variations $(\delta r_k, g_k^{-1} \delta g_k) = (0, \eta_k), \eta_k \in \mathfrak{s}_{r_k}$ horizontal variations $(\delta r_k, g_k^{-1} \delta g_k) = (\delta r_k, -\mathcal{A}(r_k) \delta r_k),$

 $\ell(r,\dot{r},\xi) = L(r,\dot{r},e,g^{-1}\dot{g})$: the reduced Lagrangian

Discrete Equations of Motion

$$g_{k}^{-1}g_{k+1} = \tau(h(\Omega_{k} - \mathcal{A}(r_{k+\alpha})u_{k})),$$

$$r_{k+1} - r_{k} = hu_{k},$$

$$\mu_{k} = \frac{\partial \ell_{k+\alpha}}{\partial \Omega},$$

$$\langle \mathcal{DEP}_{\tau}(k), e_{b}(r_{k}) \rangle = 0,$$

$$\left(\frac{\partial \ell_{k+\alpha}}{\partial u} - \frac{\partial \ell_{k-1+\alpha}}{\partial u}\right) - h\left(\alpha \frac{\partial \ell_{k-1+\alpha}}{\partial r} + (1-\alpha) \frac{\partial \ell_{k+\alpha}}{\partial r}\right)$$

$$= \mathcal{A}(r_{k})^{*} \mathcal{DEP}_{\tau}(k) + h\left(\alpha f_{k-1+\alpha} + (1-\alpha) f_{k+\alpha}\right),$$

where the discrete Euler-Poincaré operator \mathcal{DEP}_{τ} is defined as

$$\mathcal{DEP}_{\tau}(k) := (\mathsf{d}\tau_{h(\Omega_k - \mathcal{A}(r_{k+\alpha})u_k)}^{-1})^* \mu_k - (\mathsf{d}\tau_{-h(\Omega_{k-1} - \mathcal{A}(r_{k-1+\alpha})u_{k-1})}^{-1})^* \mu_{k-1}$$

Disrete Euler-Poincare equations

• the unconstrained case Q = G

Figure: Tangent maps $d\tau^{-1}$ transforming momenta

 $\begin{array}{c|c} \mbox{Continuous} & \mbox{Discrete} \\ \hline \dot{\mu} = \mbox{ad}_{\xi}^{*} \mu + f & (\mbox{d}\tau_{h\xi_{k}}^{-1})^{*} \mu_{k} - (\mbox{d}\tau_{-h\xi_{k-1}}^{-1})^{*} \mu_{k-1} = hf_{k} \end{array}$

Implementation

Simple matrix operations. Example: G = SE(2), $\tau = cay$

$$\operatorname{cay}(\widehat{v}) = \begin{bmatrix} \frac{1}{4 + (v^{1})^{2}} \begin{bmatrix} (v^{1})^{2} - 4 & -4v^{1} & -2v^{1}v^{3} + 4v^{2} \\ 4v^{1} & (v^{1})^{2} - 4 & 2v^{1}v^{2} + 4v^{3} \\ 0 & 0 & 1 \end{bmatrix}$$

The maps $[d\tau_{\xi}^{-1}]$ can be expressed as the 3 \times 3 matrices:

$$[\mathsf{dcay}_{\widehat{v}}^{-1}] = \mathbf{I}_3 - \frac{1}{2}[\mathsf{ad}_v] + \frac{1}{4} \begin{bmatrix} v^1 \cdot v & \mathbf{0}_{3 \times 2} \end{bmatrix}$$

where

$$[\mathsf{ad}_v] = \left[egin{array}{ccc} 0 & 0 & 0 \ v^3 & 0 & -v^1 \ -v^2 & v^1 & 0 \end{array}
ight]$$

Note: a general method for any matrix group is also available

Discrete Nonholonomic Momentum Map

▶ Define the *local* discrete momentum map $\mathsf{J}^{\mathsf{loc}}$: $TM \times \mathfrak{g} \to \mathfrak{g}^*$

$$\mathsf{J}^{\mathsf{loc}}(\mathbf{r}_k, \mathbf{u}_k, \xi_k) = (\mathsf{d}\tau_{h\xi_k}^{-1})^* \mu_k, \quad \text{ where } \mu_k = \frac{\partial \ell}{\partial \xi} (\mathbf{r}_k + \alpha \mathbf{u}_k, \mathbf{u}_k, \xi_k),$$

and the spatial discrete momentum map $\mathsf{J}: \mathit{TQ} \to \mathfrak{g}^*$ through

$$\mathsf{J}(\mathbf{r}_k, u_k, \mathbf{g}_k, \mathbf{v}_k) := \mathsf{Ad}_{\mathbf{g}_k^{-1}}^* \mathsf{J}^{\mathsf{loc}}(\mathbf{r}_k, u_k, \mathbf{g}_k^{-1} \mathbf{v}_k),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $(r_k, u_k) \in TM$ and $(g_k, v_k) \in TG$.

Discrete Nonholonomic Momentum Map

▶ Define the *local* discrete momentum map $\mathsf{J}^{\mathsf{loc}}$: $TM \times \mathfrak{g} \to \mathfrak{g}^*$

$$\mathsf{J}^{\mathsf{loc}}(\mathbf{r}_k, \mathbf{u}_k, \xi_k) = (\mathsf{d}\tau_{h\xi_k}^{-1})^* \mu_k, \quad \text{ where } \mu_k = \frac{\partial \ell}{\partial \xi} (\mathbf{r}_k + \alpha \mathbf{u}_k, \mathbf{u}_k, \xi_k),$$

~ ~

and the spatial discrete momentum map $\mathsf{J}: \mathit{TQ} \to \mathfrak{g}^*$ through

$$\mathsf{J}(r_k, u_k, g_k, v_k) := \mathsf{Ad}_{g_k^{-1}}^* \mathsf{J}^{\mathsf{loc}}(r_k, u_k, g_k^{-1} v_k),$$

where $(r_k, u_k) \in TM$ and $(g_k, v_k) \in TG$.

The momentum components J^{nh}_b(r_k, u_k, g_k, v_k) at point k along the basis elements e_b : Q → s are

$$\begin{aligned} \mathsf{J}_b^{\mathsf{nh}}(r_k, u_k, g_k, v_k) &= & \langle \mathsf{J}(r_k, u_k, g_k, v_k), e_b(r_k, g_k) \rangle \\ &= & \langle \mathsf{J}^{\mathsf{loc}}(r_k, u_k, g_k^{-1} v_k), e_b(r_k) \rangle. \end{aligned}$$

Discrete Momentum Map Evolution

Discrete Momentum Map Change

The momentum components J_b^{nh} evolve along discrete LDAP solution trajectories according to (denote $J(k) := J(r_k, u_k, g_k, v_k)$)

$$J_b^{hh}(k) - J_b^{hh}(k-1) = \langle J(k-1), e_b(r_k, g_k) - e_b(r_{k-1}, g_{k-1}) \rangle.$$

* consistent with previous results, e.g. Cortes, 2001; Ferraro et. al. 2007

Discrete Nonholonomic Systems with Symmetries Equations of Motion Optimal Control Examples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Global Motion Planning

Global Exploration using Roadmaps Motion Primitives Dynamic Programming Search Extensions

Optimal Control

Goal: find an optimal trajectory to a desired state

- Compute the forces f(t) such that the systems moves from (q(0), q(0)) to (q(T), q(T)) during a time interval [0, T]
- minimizing the cost function

$$J(q,f) = \int_0^T C(q(t), f(t)) \mathrm{d}t, \qquad (1)$$

- e.g. minimum control effort: $C = \frac{1}{2} ||f||^2$; min. time: C = 1.
- subject to discrete equations of motion
- other constraints such as joint limits, obstacles, etc...

For clarity, consider the simpler case Q = G

Nonholonomic distribution $\mathfrak{h} \subset \mathfrak{g}$ (the *sub-Riemannian* case):

velocity
$$\xi \in \mathfrak{h} = \operatorname{span}\{X_1, ..., X_m\}, m < n, \quad \langle\!\langle X_i, X_j \rangle\!\rangle = \delta_{ij}$$

The dynamics satisfies

$$\begin{split} \langle (\mathrm{d}\tau_{h\xi_{k}}^{-1})^{*}\mu_{k} - (\mathrm{d}\tau_{-h\xi_{k-1}}^{-1})^{*}\mu_{k-1} - hf_{k}, X_{i} \rangle &= 0, \quad i = 1, ..., m, \\ \langle \langle \xi_{k}, X_{i} \rangle \rangle &= 0, \qquad \qquad i = m+1, ..., n, \\ \langle \mu_{k}, X_{i} \rangle &= \begin{cases} \langle \mathbb{I}\xi_{k}, X_{i} \rangle, & i = 1, ..., m \\ 0, & i = m+1, ..., n \end{cases}, \\ g_{k}^{-1}g_{k+1} &= \tau(h\xi_{k}). \end{split}$$

Necessary Conditions for Optimality

Define the Lagrangian multipliers $\eta_k \in \mathfrak{h}$, $\rho_k \in \mathfrak{h}^{\perp *}$, $\lambda_k \in \mathfrak{g}^*$ and and the *Hamiltonian* function

$$H_k := H(\xi_{k-1}, \xi_k, f_k, \eta_k) =$$

$$\langle (\mathsf{d}\tau_{h\xi_k}^{-1})^* \mathbb{I}\xi_k - (\mathsf{d}\tau_{-h\xi_{k-1}}^{-1})^* \mathbb{I}\xi_{k-1} - hf_k, \eta_k \rangle + \frac{h}{2} \|f_k\|^2$$

.

and the augmented discrete cost function

$$J'_{d}(\xi_{0:N-1}, f_{0:N}, \zeta_{0:N}, \rho_{0:N-1}, \lambda_{0:N-1}) \\ = \sum_{k=0}^{N} H_{k} + \sum_{k=0}^{N-1} \left(h \langle \rho_{k}, \xi_{k} \rangle + \langle \lambda_{k}, \tau^{-1}(g_{k}^{-1}g_{k+1}) - h\xi_{k} \rangle \right),$$

An optimal solution must satisfy

$$(\mathrm{d}\tau_{h\xi_{k}}^{-1})^{*}\lambda_{k} - (\mathrm{d}\tau_{-h\xi_{k-1}}^{-1})^{*}\lambda_{k-1} = 0,$$

where $\lambda_{k} = \frac{\partial(H_{k} + H_{k+1})}{\partial\xi_{k}} + \rho_{k} = \frac{\partial\widetilde{H}_{k}}{\partial\xi_{k}} + \rho_{k},$
 $\widetilde{H}_{k} := -\langle(\mathrm{d}\tau_{h\xi_{k}}^{-1})^{*}\mathbb{I}\xi_{k}, \mathrm{Ad}_{\tau(h\xi_{k})}\widetilde{f}_{k+1}^{\sharp} - \widetilde{f}_{k}^{\sharp}\rangle.$

Indirect Optimal Control Formulation

An optimal trajectory (minimizing the control effort $rac{h}{2}\sum_{k=0}^{N}\|\widetilde{f}_k\|^2$) satisfies

$$(\mathsf{d}\tau_{h\xi_k}^{-1})^*\lambda_k - (\mathsf{d}\tau_{-h\xi_{k-1}}^{-1})^*\lambda_{k-1} = 0, \quad k = 1, ..., N-1$$
(2)

$$\tau^{-1}(\tau(h\xi_0)\cdots\tau(h\xi_{N-1})\cdot(g(0)^{-1}g(T))^{-1})=0,$$
(3)

where $\lambda_k \in \mathfrak{g}^*$ is computed through

$$\begin{split} (\lambda_k)_i &= \left\langle \mathbb{I}(\mathsf{d}\tau_{h\xi_k}^{-1}(\nu_k)) - h(\mathsf{d}\tau_{h\xi_k})^* \operatorname{ad}_{\left(\mathsf{Ad}_{\tau(h\xi_k)}, \tilde{f}_{k+1}^{\sharp}\right)}^* (\mathsf{d}\tau_{h\xi_k}^{-1})^* \mathbb{I}(\xi_k) + \rho_k, e^i \right\rangle \\ &+ \left\langle \mathbb{I}(\xi_k), h\left(\mathsf{D}\,\mathsf{d}\tau_{h\xi_k}^{-1} \cdot e^i\right)(\nu_k) \right\rangle, \text{ where } \{e^i\} \text{ is the basis for } \mathfrak{g} \\ \nu_k &= \mathsf{Ad}_{\tau(h\xi_k)}, \tilde{f}_{k+1}^{\sharp} - \tilde{f}_k^{\sharp}, \\ \xi_k \in \mathfrak{h}, \ \rho_k \in \mathfrak{h}^{\perp *}. \end{split}$$

Nn equations (2)-(3) in the *Nn* unknowns $\xi_{0:N-1}$, $\rho_{0:N-1}$ solved with standard root-finding

Discrete Nonholonomic Systems with Symmetries

Equations of Motion Optimal Control Examples

Global Motion Planning

Global Exploration using Roadmaps Motion Primitives Dynamic Programming Search Extensions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Simple boat model

- Group G = SE(2) with coordinates $q = (\theta, x, y)$
- ▶ body fixed velocity $\xi \in \mathfrak{se}(2)$ defined by $\xi = (\omega, \nu, \nu^{\perp})$
- forces $f: SE(2) \times \mathfrak{se}(2) \to \mathfrak{se}(2)^*$ in the form

$$f(g,\xi) = -R(g,\xi)\xi + f_{ext}(g,\xi) + Bu,$$

where R is a damping matrix, f_{ext} are external forces due to wind or current, and $u = (u_r, u_l)$ are the thruster control inputs and B is

$$B = \left[\begin{array}{rrr} -c & c \\ 1 & 1 \\ 0 & 0 \end{array} \right].$$

Boat station-keeping

RESL boat

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Snakeboard

Q = SE(2) × S × S, shape r = (ψ, φ), G = SE(2) with coordinates (θ, x, y); distance *I* center-to-wheels, mass *m*, moments of inertia *I* and *J*.
 Constraint distribution:

$$\mathcal{D}_q = \operatorname{span}\left\{\frac{\partial}{\partial\psi}, \frac{\partial}{\partial\phi}, c\frac{\partial}{\partial\theta} + a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right\},$$

where $a = -2I \cos \theta \cos^2 \phi$, $b = -2I \sin \theta \cos^2 \phi$, $c = \sin 2\phi$.

Vertical space:

$$\mathcal{V}_q = \operatorname{span}\left\{\frac{\partial}{\partial \theta}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}
ight\},$$

Constrained symmetry space:

$$\mathcal{S}_q = \mathcal{V}_q \cap \mathcal{D}_q = \operatorname{span} \left\{ c \frac{\partial}{\partial \theta} + a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}
ight\}.$$

Optimal trajectories:

Snakeboard

Q = SE(2) × S × S, shape r = (ψ, φ), G = SE(2) with coordinates (θ, x, y); distance *I* center-to-wheels, mass *m*, moments of inertia *I* and *J*.
 Constraint distribution:

$$\mathcal{D}_q = \operatorname{span}\left\{\frac{\partial}{\partial\psi}, \frac{\partial}{\partial\phi}, c\frac{\partial}{\partial\theta} + a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right\},$$

where $a = -2I \cos \theta \cos^2 \phi$, $b = -2I \sin \theta \cos^2 \phi$, $c = \sin 2\phi$.

Vertical space:

$$\mathcal{V}_q = \operatorname{span}\left\{\frac{\partial}{\partial \theta}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}
ight\},$$

Constrained symmetry space:

$$\mathcal{S}_q = \mathcal{V}_q \cap \mathcal{D}_q = \operatorname{span} \left\{ c \frac{\partial}{\partial \theta} + a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}
ight\}.$$

Optimal trajectories:

Outline

Discrete Nonholonomic Systems with Symmetries

- Equations of Motion Optimal Control
- Examples

Global Motion Planning

Global Exploration using Roadmaps Motion Primitives Dynamic Programming Search Extensions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

So far we have considered:

Optimal Control based on variational geometric integrators (approach termed DMOC: Discrete Mechanics and Optimal Control)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

So far we have considered:

Optimal Control based on variational geometric integrators (approach termed DMOC: Discrete Mechanics and Optimal Control)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Benefits:
 - a principled way to construct mechanical integrators
 - respects the geometric structure of the state-space
 - numerical stability, accuracy
 - suitable for discrete optimal control

So far we have considered:

Optimal Control based on variational geometric integrators (approach termed DMOC: Discrete Mechanics and Optimal Control)

Benefits:

- a principled way to construct mechanical integrators
- respects the geometric structure of the state-space
- numerical stability, accuracy
- suitable for discrete optimal control
- Limitations (as with any optimal control method):
 - lots of complex constraint \Rightarrow expensive or even impossible
 - ▶ locally optimal \Rightarrow solution might be in a "bad" homotopy class

So far we have considered:

Optimal Control based on variational geometric integrators (approach termed DMOC: Discrete Mechanics and Optimal Control)

Benefits:

- a principled way to construct mechanical integrators
- respects the geometric structure of the state-space
- numerical stability, accuracy
- suitable for discrete optimal control
- Limitations (as with any optimal control method):
 - lots of complex constraint \Rightarrow expensive or even impossible
 - ▶ locally optimal \Rightarrow solution might be in a "bad" homotopy class
- ► Goal of this part:
 - extend DMOC to complex state-spaces cluttered with obstacles
 - find near globally optimal solution
 - guarantee efficiency

Outline

Discrete Nonholonomic Systems with Symmetries

Equations of Motion Optimal Control Examples

Global Motion Planning

Global Exploration using Roadmaps

Motion Primitives Dynamic Programming Search Extensions

Example - what is the optimal motion in this complex terrain?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example - what is the optimal motion in this complex terrain?

sampling-based roadmap

Example - what is the optimal motion in this complex terrain?

optimal motion?

sampling-based roadmap

- Approach: sampling-based roadmaps (Kavraki; Latombe; LaValle; Amato; etc... 1996-present)
 - approximate free space as a tree/graph of reachable nodes

Example - what is the optimal motion in this complex terrain?

optimal motion?

sampling-based roadmap

- Approach: sampling-based roadmaps (Kavraki; Latombe; LaValle; Amato; etc... 1996-present)
 - approximate free space as a tree/graph of reachable nodes
 - nodes are sampled in order to explore the state-space

Example - what is the optimal motion in this complex terrain?

optimal motion?

sampling-based roadmap

- Approach: sampling-based roadmaps (Kavraki; Latombe; LaValle; Amato; etc... 1996-present)
 - approximate free space as a tree/graph of reachable nodes
 - nodes are sampled in order to explore the state-space
 - edges correspond to motions satisfying the dynamics

Example - what is the optimal motion in this complex terrain?

optimal motion?

sampling-based roadmap

- Approach: sampling-based roadmaps (Kavraki; Latombe; LaValle; Amato; etc... 1996-present)
 - approximate free space as a tree/graph of reachable nodes
 - nodes are sampled in order to explore the state-space
 - edges correspond to motions satisfying the dynamics
 - optimal control path = shortest path on the graph

Example - what is the optimal motion in this complex terrain?

optimal motion?

sampling-based roadmap

- Approach: sampling-based roadmaps (Kavraki; Latombe; LaValle; Amato; etc... 1996-present)
 - approximate free space as a tree/graph of reachable nodes
 - nodes are sampled in order to explore the state-space
 - edges correspond to motions satisfying the dynamics
 - optimal control path = shortest path on the graph
 - global solution, optimal with respect to the approximation

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Bellman's principle: optimal cost $J^*(\mathbf{s}) = \min_{\mathbf{s}'}[J^*(\mathbf{s}') + c(\mathbf{s}, \mathbf{s}')]$, where $J(\mathbf{s})$ - cost-to-go from \mathbf{s} to the goal; $c(\mathbf{s}, \mathbf{s}')$ - cost b/n \mathbf{s} and \mathbf{s}' .

Outline

Discrete Nonholonomic Systems with Symmetries

Equations of Motion Optimal Control Examples

Global Motion Planning

Global Exploration using Roadmaps Motion Primitives Dynamic Programming Search Extensions

- DMOC primitives
 - simple optimized motions (precomputed)
 - invariant to group transformations
 - can be concatenated to produce complex trajectories

- DMOC primitives
 - simple optimized motions (precomputed)
 - invariant to group transformations
 - can be concatenated to produce complex trajectories

- DMOC primitives
 - simple optimized motions (precomputed)
 - invariant to group transformations
 - can be concatenated to produce complex trajectories

- DMOC primitives
 - simple optimized motions (precomputed)
 - invariant to group transformations
 - can be concatenated to produce complex trajectories
 - paths constructed from sequences of *compatible* primitives [1]

- DMOC primitives
 - simple optimized motions (precomputed)
 - invariant to group transformations
 - can be concatenated to produce complex trajectories
 - paths constructed from sequences of *compatible* primitives [1]
- Main benefits:
 - control problem decomposed into two simpler sub-problems:
 - 1. how to sequence primitives to create roadmap edges
 - 2. find optimal trajectory through dynamic programming

- DMOC primitives
 - simple optimized motions (precomputed)
 - invariant to group transformations
 - can be concatenated to produce complex trajectories
 - paths constructed from sequences of *compatible* primitives [1]
- Main benefits:
 - control problem decomposed into two simpler sub-problems:
 - 1. how to sequence primitives to create roadmap edges
 - 2. find optimal trajectory through dynamic programming
 - the complex differential control problem reduced to a lower dimensional algebraic one

Primitive Invariance

Denote state-space by X, state $x \in X$, and control set U, $u \in U$, e.g. X = TQ, x = (q, v)

• The flow $\varphi: X \times \mathbb{R} \to X$ of a primitive is *G*-invariant i.e.

 $\Phi_g(\varphi(x_0,t))=\varphi(\Phi_g(x_0),t),\quad \Phi_g \text{ is the group action with } g\in G$

• Two primitives π_1 and π_2 are *equivalent*, if $\exists g, T$ s.t.

$$(x_1(t), u_1(t)) = (\Phi_g(x_2(t-T)), u_2(t-T)), \forall t \in [t_{i,1}, t_{f,1}]$$

• Two primitives π_1 and π_2 are *compatible* if $\exists g_{12} \in G$ s.t.

$$x_1(T_1) = \Phi(g_{12}, x_2(0))$$

For discrete DMOC trajectories use discrete flow $\varphi_d: X \times \mathbb{N} \to X$

$$\varphi_d(x_k, i) \approx \varphi(x(kh), ih), \qquad x_k \approx x(kh)$$

Types of Primitives

Trim Primitives: continuously parametrized steady-state motions

$$\alpha: t \in [0, T] \rightarrow (x_{\alpha}(t), u_{a}(t))$$

along left invariant vector field $\xi_{\alpha} \in \mathfrak{g}$ with constant control inputs

$$x_{\alpha}(t) = \Phi(\exp(t\xi_{\alpha}), x_{\alpha}(0)), u_{\alpha}(t) = u_{\alpha}, \forall t \in [0, T].$$

The trim primitives are denoted

$$lpha(au): t \in [0, T]
ightarrow (\Phi(\exp(t\xi_{lpha}), x_{lpha}(0)), u_{lpha}),$$

where τ is called coasting time, and the set of all such primitives defined by $\mathcal{T}_{\alpha} = \{\alpha(\tau), \tau \geq 0\}.$

The displacement of a trim primitive α with coasting time τ is simply $g_{\alpha} = \exp(\tau \xi_{\alpha})$.

Maneuvers: switches b/n steady-state motions. Therefore they are defined to be compatible form left and right with trim primitives. The set of maneuvers is denoted M(S, G) ⊆ P(S, G). Formally, a maneuver π satisfies

$$\pi \in \mathcal{M}(\mathcal{S}, \mathcal{G}) \Leftrightarrow \exists \alpha, \beta \in \mathcal{T}(\mathcal{S}, \mathcal{G}) : \alpha \pi \beta \in \mathcal{P}(\mathcal{S}, \mathcal{G}).$$

The displacement as a result of executing the maneuver is denoted g_{π} .

Example: helicopter

Model – underactuated rigid body

- State: orientatation R ∈ SO(3), position x ∈ ℝ³, angular velocity ω ∈ ℝ³, linear velocity v ∈ ℝ³
- Controls: collective u_c, yaw u_ψ, rotor forward pitch γ_p, rotor sideways roll γ_r with control input covectors

$$f^{1}(\gamma) = (d_{t} \sin \gamma_{r}, d_{t} \sin \gamma_{p} \cos \gamma_{r}, 0, \sin \gamma_{p}, \cos \gamma_{p} \cos \gamma_{r}),$$

$$f^{2}(\gamma) = (0, 0, d_{r}, 0, -1, 0).$$

gravity; bounds on velocity and controls

▶ Primitives: invariant under $G' = SO(2) \times \mathbb{R}^3$

trim vector $\xi_{\alpha} \in \mathfrak{se}(3)$: invariance conditions $(\dot{\xi} = 0)$, with θ -pitch, ϕ -roll:

$$\xi_{\alpha} = \begin{bmatrix} 0 & -\omega_{z} & 0 & v_{x} \\ \omega_{z} & 0 & 0 & v_{y} \\ 0 & 0 & 0 & v_{z} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$\gamma_{\rho} = 0, \gamma_{r} = 0, u_{\psi} = 0,$$

$$v_{y}\omega_{z} = -g\sin\theta,$$

$$-v_{x}\omega_{z} = g\cos\theta\sin\phi,$$

$$u_{c} = g\cos\theta\cos\phi$$

Example: helicopter (cont.)

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注: 釣A♡

Outline

Discrete Nonholonomic Systems with Symmetries

Equations of Motion Optimal Control Examples

Global Motion Planning

Global Exploration using Roadmaps Motion Primitives Dynamic Programming Search Extensions

State space exploration

- State space approximation/discretization: sets of orbit of invariant vector fields $X \approx \{x_{\alpha}(t) \mid \Phi_{g}(\varphi(x_{\alpha}, t)) = \varphi(\Phi_{g}(x_{\alpha}), t)\}$
- Each graph node is a set of orbits attached at some $g \in G$.
- ▶ The Control Problem: Find $\{\pi_i, \alpha_i, \tau_i\}$ such that

$$g_0^{-1}g_f = [\prod_i \exp(\tau_i \xi_{\alpha_i})g_{\pi_i}] \exp(\tau_N \xi_{\alpha_N})\}$$
State space exploration

- State space approximation/discretization: sets of orbit of invariant vector fields $X \approx \{x_{\alpha}(t) \mid \Phi_{g}(\varphi(x_{\alpha}, t)) = \varphi(\Phi_{g}(x_{\alpha}), t)\}$
- Each graph node is a set of orbits attached at some $g \in G$.
- ▶ The Control Problem: Find $\{\pi_i, \alpha_i, \tau_i\}$ such that

$$g_0^{-1}g_f = [\prod_i \exp(\tau_i \xi_{\alpha_i})g_{\pi_i}] \exp(\tau_N \xi_{\alpha_N})\}$$

Example: helicopter

Part of the roadmap

topview

Example: car

roadmap construction

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Outline

Discrete Nonholonomic Systems with Symmetries

Equations of Motion Optimal Control Examples

Global Motion Planning

Global Exploration using Roadmaps Motion Primitives Dynamic Programming Search Extensions

Roadmap extensions

Goal with time-dependent dynamics

roadmap construction

motion

Roadmap extensions

Goal with time-dependent dynamics

roadmap construction

motion

Maximizing coverage

roadmap construction

Goal with uncertain dynamics

- goal distribution as particles
- goal heading north with uncertainty
- two vehicles with circular sensing radius

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Goal with uncertain dynamics

- goal distribution as particles
- goal heading north with uncertainty
- two vehicles with circular sensing radius
- vehicle controlled to gain maximum information about goal position

Control under uncertainty

Propagation of uncertainty

▶ Planning with Uncertainty: distance vs. uncertainty

Shortest Distance

Minimum Uncertainty

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Issues / Directions

- Improve motion planning control in complex state spaces
- More insight into the structure / numerics of optimal control problems?

Propagation of uncertainty / robustness to noise