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A robotic aerial vehicle example

Autonomous helicopter flying among buildings



Motivation: autonomous vehicles in natural environments

DARPA Challenges JPL Rover BigDog

USC RESL Boat SLOCUM glider LittleDog

USC RESL Heli Satellite RHex Robot



A more abstract view

Optimizing a trajectory in
a complex state space
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Key Points
I Trajectory numerical representation:

accuracy and efficiency
I geometric discretization
I variational integrators

I Optimal control
I discrete necessary conditions
I local optimality

I Global solution among multiple
homotopy classes

I global state-space exploration
I optimal motion primitives
I dynamic programming
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Framework for integration and control of vehicles

I Preview of some results: examples of computed motions

Helicopter - optimal landing Multiple vehicles in an urban canyon

I Example developed models:
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Continuous vs. Discrete Mechanics
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Q
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discrete variations δqi

... qi−1qi qi+1 ...

continuous variational principle discrete variational principle

δ
∫ T
0
L(q, q̇)dt+

∫ T
0
f · δqdt = 0 δ

N−1∑
k=0

Ld(qk, qk+1) +
N∑
k=0

fk · δqkdt = 0

Ld(qk, qk+1) = hL( qk+qk+1
2

qk+1−qk

h )

Euler-Lagrange equations

d
dt
∂L
∂q̇ − ∂L

∂q = f

discrete Euler-Lagrange equations

∂Ld

∂qk
(qk−1, qk) − ∂Ld

∂qk
(qk, qk+1) = h2fk

Continuous Mechanics Discrete Mechanics

finite differences
stadard ODE integrators

discretization

variational integrator
used directly for computation
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discrete variational principle

δ
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L (qk, vk) +
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h
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+
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k=0

fk · δqkdt = 0

discrete Euler-Lagrange equations

pk − pk−1 = h∂L∂q (qk, vk) + hfk

Discrete Mechanics
(Pontryagin-D’Alembert)
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subject to: qk+1−qk

h − vk = 0

qk+1 = qk + hvk

pk = ∂L
∂v (qk, vk) Legendre transform

reconstruction
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Superior numerics of discrete geometric integrators

I Orbits of the rigid Body on SE (3)- large time-steps

Ground truth Runge-Kutta 4 variational integrator

I Accuracy and efficiency vs. resolution



Nonholonimic Integrators
I Comparisons: Accuracy and efficiency vs. resolution
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Figure: Snakeboard 10 second trajectories
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Figure: Snakeboard 10 minute trajectories

I DLA: Discrete Lagrange-d’Alembert (Cortez, 2002)
I GNI: Geometric Nonholonomic Integrator (Ferraro, Iglesias, De

Diego, 2007)
I RDP: Reduced d’Alembert-Pontryagin (Kobilarov, 2007)



A typical system setup

I configuration space Q = M × G , configuration q ∈ Q

I M – shape space, e.g. joint angles

I G – Lie group, e.g. SE (3) denoting the system pose

I nonholonomic constraints q̇ ∈ D, distribution D ⊂ TQ

I symmetries associated with group transformations

I external forces, e.g. gravity, friction



State Space Structure

Principle bundle π : Q → Q/G ; distribution Dq ⊂ TqQ, q ∈ Q.

Vq = Tq Orb(q), Sq = Dq ∩ Vq, Dq = Sq ⊕Hq.

I Vq: space of tangent vectors parallel to symmetry directions,
i.e. the vertical space

I Sq: space of symmetry directions that satisfy the constraints
(generated by sq = {ξ ∈ g | ξQ(q) ∈ Sq} ⊂ TqQ/G )

I Hq: space of tangent vectors that satisfy the constraints but
are not aligned with any directions of symmetry, i.e. the
horizontal space

Nonholonomic Connection

A principle connection A : TQ → g with horizontal distribution Hq.



Nonholonomic Connection (Bloch 2003; Cendra, Marsden, 2001)

Constructed as A = Akin +Asym,
Akin is the kinematic, Asym is the mechanical connection

g−1ġ +A(r)ṙ = Ω,

defining vertical and horizontal velocity components

q̇ = verr q̇ + horr q̇ ⇔ (ṙ , g−1ġ)r = (0,Ω) + (ṙ ,−A(r)ṙ),

where Ω ∈ sr is the locked angular velocity.

Vertical Variations (δr , δg)

Variations such that δr = 0 and δgg−1 = A(r , g) · (δr , δg) ∈ sr

Horizontal Variations (δr , δg)

Variations such that A(r , g) · (δr , δg) = 0, or (δr , g−1δg) =
(δr ,−A(r)δr) ∈ (TM × g)r



Discrete Trajectory
Pick coordinates (r , g) ∈ M × G

M

rk−1

rk

rk+1

uk−1

uk

rk−1+α

rk+α

rk+1 − rk = huk
G

gk−1

gk
gk+1

gk−1+αξk−1

gk+αξk

gk−1+α

gk+α

τ−1(g−1
k gk+1) = hξk

Discrete path
(r , u, p, g ,Ω, µ)d : {tk}Nk=0 → (TM ⊕ T ∗M)× G × s× g∗

subject to the constraints

rk+1 − rk = huk , τ−1(g−1
k gk+1) = hξk ,

where ξk = Ωk −A(rk+α)uk , with rk+α := (1− α)rk + αrk+1 for a
chosen α ∈ [0, 1] and the map τ : g→ G represents the difference
between two configurations in the group
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Lagrange-D’Alembert-Pontryagin Nonholonomic Principle

Discrete Reduced LDAP Principle

Denoting ξk := Ωk −A(rk+α)uk :

δ

N−1∑
k=0

h [`(rk+α, uk , ξk) + 〈pk , (rk+1 − rk)/h − uk〉

+〈µk , τ
−1(g−1

k gk+1)/h − ξk〉
]

+
N−1∑
k=0

[h〈fk+α, δrk+α〉] = 0,

subject to:

vertical variations (δrk , g
−1
k δgk) = (0, ηk), ηk ∈ srk

horizontal variations (δrk , g
−1
k δgk) = (δrk ,−A(rk)δrk),

`(r , ṙ , ξ) = L(r , ṙ , e, g−1ġ): the reduced Lagrangian



Discrete Equations of Motion

g−1
k gk+1 = τ(h(Ωk −A(rk+α)uk)),

rk+1 − rk = huk ,

µk =
∂`k+α

∂Ω
,

〈DEPτ (k), eb(rk)〉 = 0,(
∂`k+α

∂u
− ∂`k−1+α

∂u

)
− h

(
α
∂`k−1+α

∂r
+ (1− α)

∂`k+α

∂r

)
= A(rk)∗DEPτ (k) + h (αfk−1+α + (1− α)fk+α) ,

where the discrete Euler-Poincaré operator DEPτ is defined as

DEPτ (k) := (dτ−1
h(Ωk−A(rk+α)uk ))∗µk−(dτ−1

−h(Ωk−1−A(rk−1+α)uk−1))∗µk−1



Disrete Euler-Poincare equations

I the unconstrained case Q = G

Figure: Tangent maps dτ−1 transforming momenta

Continuous Discrete

µ̇ = ad∗ξ µ+ f (dτ−1
hξk

)∗µk − (dτ−1
−hξk−1

)∗µk−1 = hfk



Implementation

Simple matrix operations. Example: G = SE (2), τ = cay

cay(v̂)=

 1
4+(v1)2

[
(v 1)2− 4 −4v 1 −2v 1v 3 + 4v 2

4v 1 (v 1)2− 4 2v 1v 2 + 4v 3

]
0 0 1


The maps [dτ−1

ξ ] can be expressed as the 3× 3 matrices:

[dcay−1bv ] = I3 − 1

2
[adv ] +

1

4

[
v 1 · v 03×2

]
where

[adv ] =

 0 0 0
v 3 0 −v 1

−v 2 v 1 0

 .
Note: a general method for any matrix group is also available



Discrete Nonholonomic Momentum Map

I Define the local discrete momentum map Jloc : TM × g→ g∗

Jloc(rk , uk , ξk) = (dτ−1
hξk

)∗µk , where µk =
∂`

∂ξ
(rk+αuk , uk , ξk),

and the spatial discrete momentum map J : TQ → g∗ through

J(rk , uk , gk , vk) := Ad∗
g−1

k

Jloc(rk , uk , g
−1
k vk),

where (rk , uk) ∈ TM and (gk , vk) ∈ TG .

I The momentum components Jnh
b (rk , uk , gk , vk) at point k

along the basis elements eb : Q → s are

Jnh
b (rk , uk , gk , vk) = 〈J(rk , uk , gk , vk), eb(rk , gk)〉

= 〈Jloc(rk , uk , g
−1
k vk), eb(rk)〉.
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Discrete Momentum Map Evolution

Grk

grk

e

eb(rk)

Jloc
k

srk

rk−1
rk

M

Grk−1

grk−1

e

eb(rk−1)

Jloc
k−1

srk−1

Ad∗
g−1

k−1gk
Jloc
k−1

change of basis
balance of momentum
projected onto srk

Discrete Momentum Map Change

The momentum components Jnh
b evolve along discrete LDAP solu-

tion trajectories according to (denote J(k) := J(rk , uk , gk , vk))

Jnh
b (k)− Jnh

b (k − 1) = 〈J(k − 1), eb(rk , gk)− eb(rk−1, gk−1)〉.
* consistent with previous results, e.g. Cortes, 2001; Ferraro et. al. 2007
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Optimal Control

Goal: find an optimal trajectory to a desired state

I Compute the forces f (t) such that the systems moves from
(q(0), q̇(0)) to (q(T ), q̇(T )) during a time interval [0,T ]

I minimizing the cost function

J(q, f ) =

∫ T

0
C (q(t), f (t))dt, (1)

e.g. minimum control effort: C = 1
2‖f ‖2;

min. time: C = 1.

I subject to discrete equations of motion

I other constraints such as joint limits, obstacles, etc...



For clarity, consider the simpler case Q = G

Nonholonomic distribution h ⊂ g (the sub-Riemannian case):

velocity ξ ∈ h = span{X1, ...,Xm},m < n, 〈〈Xi ,Xj〉〉 = δij

The dynamics satisfies

〈(dτ−1
hξk

)∗µk − (dτ−1
−hξk−1

)∗µk−1 − hfk ,Xi 〉 = 0, i = 1, ...,m,

〈〈ξk ,Xi 〉〉 = 0, i = m + 1, ..., n,

〈µk ,Xi 〉 =

{ 〈I ξk ,Xi 〉, i = 1, ...,m
0, i = m + 1, ..., n

,

g−1
k gk+1 = τ(hξk).



Necessary Conditions for Optimality
Define the Lagrangian multipliers ηk ∈ h, ρk ∈ h⊥∗, λk ∈ g∗ and
and the Hamiltonian function

Hk := H(ξk−1, ξk , fk , ηk) =

〈(dτ−1
hξk

)∗ I ξk − (dτ−1
−hξk−1

)∗ I ξk−1 − hfk , ηk〉+
h

2
‖fk‖2,

and the augmented discrete cost function

J ′d(ξ0:N−1, f0:N , ζ0:N , ρ0:N−1, λ0:N−1)

=
N∑

k=0

Hk +
N−1∑
k=0

(
h〈ρk , ξk〉+ 〈λk , τ

−1(g−1
k gk+1)− hξk〉

)
,

An optimal solution must satisfy

(dτ−1
hξk

)∗λk − (dτ−1
−hξk−1

)∗λk−1 = 0,

where λk =
∂(Hk + Hk+1)

∂ξk
+ ρk =

∂H̃k

∂ξk
+ ρk ,

H̃k := −〈(dτ−1
hξk

)∗ I ξk ,Adτ(hξk ) f̃ ]
k+1 − f̃ ]

k 〉.



Indirect Optimal Control Formulation

An optimal trajectory (minimizing the control effort
h

2

NX
k=0

‖efk‖2) satisfies

(dτ−1
hξk

)∗λk − (dτ−1
−hξk−1

)∗λk−1 = 0, k = 1, ...,N − 1 (2)

τ−1(τ(hξ0) · · · τ(hξN−1) · (g(0)−1g(T ))−1) = 0, (3)

where λk ∈ g∗is computed through

(λk)i =

fi
I(dτ−1

hξk
(νk))− h(dτ hξk )∗ ad∗“

Adτ(hξk )
ef ]
k+1

”(dτ−1
hξk

)∗ I(ξk) + ρk , e
i

fl
+
D

I(ξk), h
“

D dτ−1
hξk
·e i
”

(νk)
E
, where {e i} is the basis for g

νk = Adτ(hξk )
ef ]
k+1 − ef ]

k ,

ξk ∈ h, ρk ∈ h⊥
∗
.

Nn equations (2)-(3) in the Nn unknowns ξ0:N−1, ρ0:N−1

solved with standard root-finding
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Simple boat model

I Group G = SE(2) with coordinates q = (θ, x , y)

I body fixed velocity ξ ∈ se(2) defined by ξ = (ω, v , v⊥)

I forces f : SE(2)× se(2)→ se(2)∗ in the form

f (g , ξ) = −R(g , ξ)ξ + fext(g , ξ) + Bu,

where R is a damping matrix, fext are external forces due to wind or
current, and u = (ur , ul) are the thruster control inputs and B is

B =

24 −c c
1 1
0 0

35 .

Boat station-keeping RESL boat



Snakeboard
I Q = SE(2)× S × S , shape r = (ψ, φ), G = SE(2) with coordinates

(θ, x , y); distance l center-to-wheels, mass m, moments of inertia I and J.

I Constraint distribution:

Dq = span


∂

∂ψ
,
∂

∂φ
, c

∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

ff
,

(x, y)

θ
ψ

φ

φ

where a = −2l cos θ cos2 φ, b = −2l sin θ cos2 φ, c = sin 2φ.

I Vertical space:

Vq = span


∂

∂θ
,
∂

∂x
,
∂

∂y

ff
,

I Constrained symmetry space:

Sq = Vq ∩ Dq = span


c
∂

∂θ
+ a

∂

∂x
+ b

∂

∂y

ff
.

Optimal trajectories:

forward motion 90o turn parallel parking axis turn
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Challenges

I So far we have considered:
Optimal Control based on variational geometric integrators
(approach termed DMOC: Discrete Mechanics and Optimal Control)

I Benefits:
I a principled way to construct mechanical integrators
I respects the geometric structure of the state-space
I numerical stability, accuracy
I suitable for discrete optimal control

I Limitations (as with any optimal control method):
I lots of complex constraint ⇒ expensive or even impossible
I locally optimal ⇒ solution might be in a “bad” homotopy class

I Goal of this part:
I extend DMOC to complex state-spaces cluttered with obstacles
I find near globally optimal solution
I guarantee efficiency
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Finding global solution

I Example - what is the optimal motion in this complex terrain?

optimal motion?

sampling-based roadmap

I Approach: sampling-based roadmaps
(Kavraki; Latombe; LaValle; Amato; etc... 1996-present)

I approximate free space as a tree/graph of reachable nodes
I nodes are sampled in order to explore the state-space
I edges correspond to motions satisfying the dynamics
I optimal control path = shortest path on the graph
I global solution, optimal with respect to the approximation
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Combining DMOC with incremental roadmaps
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optimal motion primitives

DYNAMICS ABSTRACTION

INVARIANCE

optimal motion primitives

I DMOC primitives
I simple optimized motions (precomputed)
I invariant to group transformations
I can be concatenated to produce complex trajectories

I paths constructed from sequences of compatible primitives [1]
I Main benefits:

I control problem decomposed into two simpler sub-problems:
1. how to sequence primitives to create roadmap edges
2. find optimal trajectory through dynamic programming

I the complex differential control problem reduced to a lower
dimensional algebraic one

Frazzoli, Dahleh, Feron, IEEE Trans. on Robotics and Automation, 2005.
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Primitive Invariance
Denote state-space by X , state x ∈ X , and control set U, u ∈ U,
e.g. X = TQ, x = (q, v)

I The flow ϕ : X × R→ X of a primitive is G -invariant i.e.

Φg (ϕ(x0, t)) = ϕ(Φg (x0), t), Φg is the group action with g ∈ G

I Two primitives π1 and π2 are equivalent, if ∃g ,T s.t.

(x1(t), u1(t)) = (Φg (x2(t − T )), u2(t − T )),∀t ∈ [ti ,1, tf ,1]

I Two primitives π1 and π2 are compatible if ∃g12 ∈ G s.t.

x1(T1) = Φ(g12, x2(0))

——————————————————————————–
For discrete DMOC trajectories use discrete flow ϕd : X × N→ X

ϕd(xk , i) ≈ ϕ(x(kh), ih), xk ≈ x(kh)



Types of Primitives
I Trim Primitives: continuously parametrized steady-state motions

α : t ∈ [0,T ]→ (xα(t), ua(t))

along left invariant vector field ξα ∈ g with constant control inputs

xα(t) = Φ(exp(tξα), xα(0)), uα(t) = uα, ∀t ∈ [0,T ].

The trim primitives are denoted

α(τ) : t ∈ [0,T ]→ (Φ(exp(tξα), xα(0)), uα),

where τ is called coasting time, and the set of all such primitives defined
by Tα = {α(τ), τ ≥ 0}.
The displacement of a trim primitive α with coasting time τ is simply
gα = exp(τξα).

I Maneuvers: switches b/n steady-state motions. Therefore they are
defined to be compatible form left and right with trim primitives. The set
of maneuvers is denoted M(S,G) ⊆ P(S,G). Formally, a maneuver π
satisfies

π ∈M(S,G)⇔ ∃α, β ∈ T (S,G) : απβ ∈ P(S,G).

The displacement as a result of executing the maneuver is denoted gπ.



Example: helicopter

I Model – underactuated rigid body

I State: orientatation R ∈ SO(3), position x ∈ R3, angular
velocity ω ∈ R3, linear velocity v ∈ R3

I Controls: collective uc , yaw uψ, rotor forward pitch γp, rotor
sideways roll γr with control input covectors

f 1(γ) = (dt sin γr , dt sin γp cos γr , 0, sin γp, cos γp cos γr ),

f 2(γ) = (0, 0, dr , 0,−1, 0).

I gravity; bounds on velocity and controls
I Primitives: invariant under G ′ = SO(2)× R3

trim vector ξα ∈ se(3):

ξα =

2664
0 −ωz 0 vx

ωz 0 0 vy

0 0 0 vz

0 0 0 0

3775 .
invariance conditions (ξ̇ = 0), with θ-pitch, φ-roll:

γp = 0, γr = 0, uψ = 0,

vyωz = −g sin θ,

− vxωz = g cos θ sinφ,

uc = g cos θ cosφ.



Example: helicopter (cont.)

Trim Primitives:
α1 α2 α3

Maneuvers:
π1 π2 π3
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State space exploration

START

GOAL

time-discrete optimal control:

dynamic programming - Bellman equation

e.g. discrete Pontryagin principle

high-level state space discretization/approximation

DMOC primitives

s

s′

c(s, s′)

Bellman’s principle : optimal cost J∗(s) = mins′[J
∗(s′) + c(s, s′)],

where J(s) - cost-to-go from s to the goal; c(s, s′) - cost b/n s and s′.

I State space approximation/discretization: sets of
orbit of invariant vector fields
X ≈ {xα(t) | Φg (ϕ(xα, t)) = ϕ(Φg (xα), t)}

I Each graph node is a set of orbits attached at
some g ∈ G .

I The Control Problem: Find {πi , αi , τi} such that

g−1
0 gf = [Πi exp(τiξαi )gπi ] exp(τNξαN )}

minimizing total cost, for cost c : Cd → R

J =
X

i

[(τic(αi ) + c(πi )] + τNc(αN)

g0

gf

G

roadmap G-nodes

integral curves γ : t→ exp(tξ)

roadmap X/G nodes
g× TM

g0

gf

G

roadmap G-nodes

integral curves γ : t→ exp(tξ)

maneuver π

trim motion α

roadmap X/G nodes
g× TM
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Example: helicopter

Part of the roadmap

topview sideview closeview



Example: car

roadmap construction
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Roadmap extensions

I Goal with time-dependent dynamics

roadmap construction motion

I Maximizing coverage

roadmap construction
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Goal with uncertain dynamics

I goal distribution as particles

I goal heading north with
uncertainty

I two vehicles with circular
sensing radius

I vehicle controlled to gain
maximum information about
goal position
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Control under uncertainty

I Propagation of uncertainty

I Planning with Uncertainty: distance vs. uncertainty

Shortest Distance Minimum Uncertainty



Issues / Directions

I Improve motion planning control in complex state spaces

I More insight into the structure / numerics of optimal control
problems?

I Propagation of uncertainty / robustness to noise
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