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Weighted Lie algebroids out of reductions

For a Lie groupoid G = M, consider the subbundle TG c TG
consisting of all higher order velocities tangent to source-leaves. The
bundle

Fi = AK(G) == TrG®

)

inherits graded bundle structure of degree k as a graded subbundle of
TKG. Of course, A = A(G) can be identified with the Lie algebroid of G.

Theorem
The linearisation of AX(G) is given as
(A(G)) = {(Y,Z) € A(G) x TA"H(G)| p(Y)=Tr(2Z)},

viewed as a vector bundle over AK=1(G) with respect to the obvious
projection of part Z onto AK"1(G), where p : A(G) — TM is the standard
anchor of the Lie algebroid and T : Ax"1(G) — M is the obvious
projection. Moreover, the above bundle is canonically a weighted Lie
algebroid, a Lie algebroid prolongation in the sense of Popescu and

Martinez.
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Total linerization of A%(G)

Continuing description of I(A¥(G), we note that the linearisation functor
as a subfunctor of the tangent functor respects products and commutes
with the tangent functor. In particular, we have

12)(A3(G)) C I(A(G) x TA%(G)) = A(G) x TI(A%(G)),
Thus, proceeding by induction, we get:
L(A3(G)) C A(G) x TA(G) x TP A(G).
Theorem

The full linearisation of AK(G) is given as
L(AX(G)) = {(xl, o Xe) € A(G) X TA(G) - x TE-DA(G)|
p(X1) = Tr(Xa), -+, THp(Xe1) = T(kfl)W(Xk)}v

where T) = TT ... T (I-times), 7 : A(G) — M is the standard projection,
and p : A(G) — TM is the anchor of the Lie algebroid.

v
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Variational calculus in statics
f & A
N
dq

@ @ - manifold of configurations
o [ - admissible processes, i.e., one-dimensional oriented submanifolds
with boundary (sometimes, however, we use a parametrization)

@ W : I — R - the cost function
W(7) = / w,
y

for W being a positively homogeneous function on the set A C TQ of
vectors dq tangent to admissible processes.
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Variational calculus in statics

Definition

Point g € Q is an equilibrium point of the system if for all processes
starting in g the cost function is non-negative, at least initially.
First-order condition: W(q) > 0.

Interactions between systems are described by composite systems

% O @ system (1) and (2) have the

same configurations @
e A=A1NA,
o W=W+W,

of
2
The interaction with an ‘external’ system is usually described in terms of

forces ¢ € T*Q: Wa(dq) = —(p,dq).
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Variational Calculus

The subset C C T*Q of all external forces in equilibrium with our system is
called the constitutive set.

We will consider only ‘potential systems’ without constraints, where
A =TQ and W(dq) = (dU, dq) for a function U : Q — R, so that the
constitutive set is C = dU(Q).

In general, also for other theories, e.g. statics of an elastic rod, mechanics,
different field theories, etc., we need

e Configurations Q,

@ Processes (or at least infinitesimal processes),
e Functions on Q (to define regular systems),
°

Covectors T*Q (to define constitutive sets).
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Mechanics for finite time interval

Let M be a manifold of positions of mechanical system. We will use
smooth paths in M and first-order Lagrangians L : TM — R.

e Configurations:

Q ={q:[to,ts] = M}.
e Functions: 5(q) = /tl L(g)dt. N

to
@ Processes in @ come from
homotopies gs(t) = x(s, t),
Y :R2D[0,1] x [to, t1] = M. RN
@ Tangent vectors are equivalence
classes of curves.

o Cotangent vectors are
equivalence classes of functions.
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Mechanics for finite time interval

We need convenient representations of vectors and covectors:

t1

Sogs = / (EL(G),5q)dt + (PL(d),5q)

0

d

ds

t1

)

5=0 to

where EL : T?M — T*M and PL = d'L : TM — T*M are bundle maps.

@ Tangent vectors are in one-to-one correspondence

with paths dg in TM
oq

e Covectors are in one-to-one correspondence with triples (£, po, p1)

Po

f:to, t1] = T*M, p; € TZ(t,-)M-

P
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Mechanics for finite time interval

We have found another representation of covectors (Liouville structure):

a:PQ={(f,po,p1)} — T"Q

Definition
The (phase) dynamics is a subset D of PQ = {(f, po, p1)} given by

D = a~}(dS(Q)),

i.e.,

D =A{(f,po,p1): f(t)=2EL(G(t)), pa=PL(g(ts)), a=0,1}.

Explicitly, writing g = (x/(t)), g = (x'(t), ¥/(t)),

()= o (a0) — 5 (S50 . pa= St a=01.
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Mechanics: infinitesimal version

Let M be a manifold of positions of mechanical system. We will use
smooth curves in M and first-order Lagrangians

e Configurations: Q@ = TM,
q= (Xv X)

e Functions: S(q) = L(x, x) &)

@ Curves in @ come from
homotopies: y : R> — M

@ Tangent vectors: TQ =TTM,
i.e, equivalence classes of curves I\
in TM, 0q = dx. 5|
Additionally,
Epm TTM — TTM,
£(x)(s, t) = x(t,s).

o Covectors: T"Q =T*TM
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By (usually implicit) first-order dynamics on a manifold N we will
understand a submanifold D in TN.

A curve v :R — N satisfies this dynamics (is a solution), if its tangent
prolongation belongsto D, ¥:R — D C TN.

Example
A vector field X on N, i.e. a section of the tangent bundle
X : N — TN, defines the dynamics D = X(N) C TN.

In local coordinates, for the vector field X = fa(q)a%a, we have

D ={(q°,4") € TN : ¢" = fp(q)}

and the explicit dynamical equations %(t) = f2(q(t)) are the equations

for trajectories of this vector field.

J.Grabowski (IMPAN) Graded bundles 4 Miraflores, 23/06/2016 11 /24



Canonical isomorphisms

@ Tangent vectors dx are in one-to-one correspondence with vectors
tangent to curves t — x(t) in TM

kM TTM S 6% — (0x) € TTM

@ We get also the tangent evaluation between TT*M and TTM defined
on elements p and (0x) with the same tangent projection dx on TM:

d
dtt()

(P, (6x)) = (p(t), 0x(t))-

@ The map dual to «,
apy TT"M — T*TM

gives us an identification of covectors from T*TM with elements of
TT*M.
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The Tulczyjew triple - Lagrangian side

Any D C TN can be viewed as implicit dynamics whose solutions are
curves v : R — N s.t. 4 € D. For the lagrangian phase equations:
M - positions DTT*M o T*TM

TM - (kinematic) \ It WW\i\
configurations, T/V/ N
L:TM — R - Lagrangian /

T*M - phase space . ™M

D = ey (dL(TM))) = TL(TM),

the image of the Tulczyjew differential T L, is the phase dynamics,

o oL . oL
D:{(X7P7X7p): p:&7 p_aX}

whence the Euler-Lagrange equation: 2t = 4 (95). Note that L can be

as well singular for the price that D is an implicit equation.
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The Tulczyjew triple - Hamiltonian side

T*T*M TT*M <D
dH \ \
H:T*M - R ™
M' L
D = N7, (dH(T*M))

D:{(Xapv)(?p) p:_av X:ap}7

whence the Hamilton equations.
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Tulczyjew triple in mechanics

D
T*T*M TT*M T*TM

A AN
-

NN,

The dynamics is in the middle, the right-hand side is Lagrangian, the
left-hand side — Hamiltonian.

Bm

I\/I
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The Legendre transform

The Legendre transform is a pass from the Lagrange to the Hamilton
description of the dynamics:

we try to describe the Lagrangian phase dynamics as a Hamiltonian phase
dynamics.

It is easy in the case of hyperregular Lagrangians (the Legendre map
(g,p) — A(g,9) = (q,p) is a diffeomorhism).

In this case the Lagrangian phase dynamics D; is simultaneously
Hamiltonian with the Hamiltonian function

H(g,p) = d°pa—L(q,9),
(.9) = M '(a.p).

In other words, the Lagrangian submanifolds dL(TM) C T*TM and
dH(T*M) C T*T*M are related by the canonical isomorphism R,,,.
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Euler-Lagrange equations

The Euler-Lagrange equation for a curve v : R — M takes in this model
the form
t(A\poy)=TLox,

where TL =codL and v = t(y) is the tangent prolongation of 7.

In this sense, the Euler-Lagrange equation can be viewed as a first-order
differential equation on curves v in TM:

TT*M
l \O\LO’Y)
TT* M
TL
™M ™ R

AL v

The equation just tells that the curve 7T Lo~ is admissible, i.e. that it is
a tangent prolongation of a curve (it must be A\; o) on the phase space,
TLoy=t(ALo7).
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Euler-Lagrange equations (continued)

In local coordinates,

aL oL
Lad) = (0. 2% 0 ara i an.
TL(g,4) = (a, aq(q’ a), 4, 8q(q, q))
For ~(t) = (q(t), g(t)) this implies the equations

dq d oL . oL

a(t) = 0. 435 a0.4(0) = 5 a(0).4(0).

These equations are second-order equations for curves g = q(t) in M.

Regularity of the Lagrangian is completely irrelevant for this formalism.
Irregular Lagrangians just produce complicated and implicit dynamics, but
the geometric model is the same.
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Algebroid setting

Dy

r

n#

D
] )
E *

T*E* TE* £ T*E <_dL
dH \ p M\
E / ™ ME
E* E* E*
NSNS .
M M M

H:E* —TR D = TL(E) L:E—R
Dy C TXE* D = N#(dH(E*)) D, C T'E

The Euler-Lagrange equations read 7L o~y = t(A; o).
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E-L equations for algebroids

If (g?) are local coordinates in M,

(y") i (&) are linear coordinates in fibers of, respectively, E and E*,
and

P = cf(q)k0¢, @ O¢, + pf(q)0e, ® Ogp — 07(q)ge @ O, ,

then the Euler-Lagrange equations read

dqg?®
(1) s pr(a)y”,

d /0L K ; OL oL
2) 4 <8yj>(q, ) cj(a)y’ By Sx(a.y) +07(q )a 5(a.y)
They are first-order differential equations (!) but for admissible curves in

E, i.e. for curves satisfying (1). For E = TM, they are exactly the
tangent prolongations of curves in M.
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E-L equations for algebroids (continued)

A particular example of the equation (2) is not only the classical
Euler-Lagrange equation

d oL . oL )
E(‘)T‘;a(q’q) = aiqa(q, CI)-

but also the Lagrange-Poincare equation for G-invariant Lagrangians on
principal G-bundle

(ditc’?;a - qua) (q’ q, V) - (Bl’)(a(q)qb + D/I;(q)v’) %(qa g, V) =0,
oL

£2L(g.4,v) — (Dl(a)a? + Chvi) 2 (. d,v) =0,

and the Euler-Poincare equations, for instance the rigid body equations,

d oL L oL

deou) Vg =0
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Algebroid setting with vakonomic constraints

D St
{ ] NG
TE* TE
/ N N
™ EDS
E* E*Z/
NS N

where Sy is the lagrangian submanifold in T*E induced by the Lagrangian
on the constraint S, and dL : S — T*E is the corresponding relation,

St ={ae € T,E:e€ S and (ae, ve) = dL(ve) for every ve € TeS}.

The vakonomically constrained phase dynamics is just D = ¢(S;) C TE*.
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Vakonomic equations in coordinates

Suppose that the vakonomic constraint S is defined as the zero-set of
functions k.

Then, for a Lagrangian L(x,y) on E, we have

k
S = {(X)Y)gi(x,y)v g)e(x)y) _Mk(xvy)aaq;(xvy)) |¢k(X’y) = O} )

where py, € C*°(S) are ‘Lagrange multipliers’.
Looking for curves in S; which are mapped by ¢ : T*E — TE*,

€(Xa7yi7pb7§j) = (Xa7€f7pk( ).y 7CI_[( )y Ek +U ( ) )
into admissible curves, we get the vakonomic E-L equations
K(x,y) =0, GF = pi(x)y¥,
Xy, t) = cf(x)y 55 (x v, t) = 0f(x) e (x. v, t) =

(D2 (x,y) + i) (£ (x, ) — ) (x)y 985 (x,y) — 07 (x) 5% (x.¥))
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Affine vakonomic constraints

In the case when S = A is an affine subbundle of an algebroid E (assume
for simplicity that A is supported on the whole M), we get the reduced

Tulczyjew triple for an affine vakonomic constraint:
D

glvp

— A LTE*4 A T*A < dL
//4 \ PA \T/\// PA \\A
/ v(e)* *(A)/ /

N / ~

M

Here, AT is the affine dual bundle, i.e. the bundle of affine functions on
fibers of A, and Hamiltonians are sections of the affine phase bundle P(A)
over v*(A) — the dual of the linear model v(A) of A.
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