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Weighted Lie algebroids out of reductions

For a Lie groupoid G ⇒ M, consider the subbundle TkG s ⊂ TkG
consisting of all higher order velocities tangent to source-leaves. The
bundle

Fk = Ak(G ) := TkG s
∣∣∣
M
,

inherits graded bundle structure of degree k as a graded subbundle of
TkG . Of course, A = A1(G ) can be identified with the Lie algebroid of G .

Theorem

The linearisation of Ak(G ) is given as

l(Ak(G )) ' {(Y ,Z ) ∈ A(G )× TAk−1(G )| ρ(Y ) = Tτ(Z )} ,

viewed as a vector bundle over Ak−1(G ) with respect to the obvious
projection of part Z onto Ak−1(G ), where ρ : A(G )→ TM is the standard
anchor of the Lie algebroid and τ : Ak−1(G )→ M is the obvious
projection. Moreover, the above bundle is canonically a weighted Lie
algebroid, a Lie algebroid prolongation in the sense of Popescu and
Mart́ınez.
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Total linerization of Ak(G )

Continuing description of l(Ak(G ), we note that the linearisation functor
as a subfunctor of the tangent functor respects products and commutes
with the tangent functor. In particular, we have

l(2)(A3(G )) ⊂ l(A(G )× TA2(G )) = A(G )× Tl(A2(G )),

Thus, proceeding by induction, we get:

L(A3(G )) ⊂ A(G )× TA(G )× T(2)A(G ).

Theorem

The full linearisation of Ak(G ) is given as

L(Ak(G )) =
{

(X1, · · · ,Xk) ∈ A(G )× TA(G ) · · · × T(k−1)A(G )|

ρ(X1) = Tπ(X2), · · · , T(k−2)ρ(Xk−1) = T(k−1)π(Xk)
}
,

where T(l) = TT · · ·T (l-times), π : A(G )→ M is the standard projection,
and ρ : A(G )→ TM is the anchor of the Lie algebroid.
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Variational calculus in statics

bb

∆

δq

Q - manifold of configurations

Γ - admissible processes, i.e., one-dimensional oriented submanifolds
with boundary (sometimes, however, we use a parametrization)

W : Γ→ R - the cost function

W(γ) =

∫
γ
W ,

for W being a positively homogeneous function on the set ∆ ⊂ TQ of
vectors δq tangent to admissible processes.
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Variational calculus in statics

Definition

Point q ∈ Q is an equilibrium point of the system if for all processes
starting in q the cost function is non-negative, at least initially.
First-order condition: W (q) ≥ 0.

Interactions between systems are described by composite systems

b

1

2

system (1) and (2) have the
same configurations Q

∆ = ∆1 ∩∆2

W = W1 + W2

The interaction with an ‘external’ system is usually described in terms of
forces ϕ ∈ T∗Q: W2(δq) = −〈ϕ, δq〉.
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Variational Calculus

The subset C ⊂ T∗Q of all external forces in equilibrium with our system is
called the constitutive set.

We will consider only ‘potential systems’ without constraints, where
∆ = TQ and W (δq) = 〈dU, δq〉 for a function U : Q → R, so that the
constitutive set is C = dU(Q).

In general, also for other theories, e.g. statics of an elastic rod, mechanics,
different field theories, etc., we need

Configurations Q,

Processes (or at least infinitesimal processes),

Functions on Q (to define regular systems),

Covectors T∗Q (to define constitutive sets).
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Mechanics for finite time interval

Let M be a manifold of positions of mechanical system. We will use
smooth paths in M and first-order Lagrangians L : TM → R.

Configurations:

Q = {q : [t0, t1]→ M} .

Functions: S(q) =

∫ t1

t0

L(q̇)dt.

Processes in Q come from
homotopies qs(t) = χ(s, t),

χ : R2 ⊃ [0, 1]× [t0, t1]→ M .

Tangent vectors are equivalence
classes of curves.

Cotangent vectors are
equivalence classes of functions.

b
b

t0
t1

b

b

b

b

b

b

b

b

b

b

b

b

t

s
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Mechanics for finite time interval

We need convenient representations of vectors and covectors:

d

ds

∣∣∣∣
s=0

S ◦ qs =

∫ t1

t0

〈EL(q̈), δq〉dt + 〈 PL(q̇), δq 〉
∣∣∣t1

t0

,

where EL : T2M → T∗M and PL = dvL : TM → T∗M are bundle maps.

Tangent vectors are in one-to-one correspondence

with paths δq in TM

b

b

b

b

b

b

b

b

bδq

Covectors are in one-to-one correspondence with triples (f , p0, p1)

f : [t0, t1]→ T∗M, pi ∈ T∗q(ti )
M.

b

b

b

b

b

b

b

b

bf

p0

p1
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Mechanics for finite time interval

We have found another representation of covectors (Liouville structure):

α : PQ = {(f , p0, p1)} −→ T∗Q

Definition

The (phase) dynamics is a subset D of PQ = {(f , p0, p1)} given by

D = α−1(dS(Q)),

i.e.,

D = {(f , p0, p1) : f (t) = EL(q̈(t)), pa = PL(q̇(ta)) , a = 0, 1} .

Explicitly, writing q = (x i (t)), q̇ = (x i (t), ẋ j(t)),

f (t) =
∂L

∂x i
(q̇(t))− d

dt

(
∂L

∂ẋ i
(q̇(t))

)
, pa =

∂L

∂ẋ i
(q̇(ta)) , a = 0, 1 .
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Mechanics: infinitesimal version

Let M be a manifold of positions of mechanical system. We will use
smooth curves in M and first-order Lagrangians

Configurations: Q = TM,
q = (x , ẋ)

Functions: S(q) = L(x , ẋ)

Curves in Q come from
homotopies: χ : R2 → M

Tangent vectors: TQ = TTM,
i.e, equivalence classes of curves
in TM, δq = δẋ .

Additionally,
κM : TTM → TTM,
κ(χ)(s, t) = χ(t, s).

Covectors: T∗Q = T∗TM

b

ẋ(t)

b

b

b

b

b

b

t

s
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Dynamics

By (usually implicit) first-order dynamics on a manifold N we will
understand a submanifold D in TN.

A curve γ : R→ N satisfies this dynamics (is a solution), if its tangent
prolongation belongs to D, γ̂ : R→ D ⊂ TN.

Example

A vector field X on N, i.e. a section of the tangent bundle
X : N → TN, defines the dynamics D = X (N) ⊂ TN.

In local coordinates, for the vector field X = fa(q) ∂
∂qa , we have

D = {(qa, q̇b) ∈ TN : q̇b = fb(q)}

and the explicit dynamical equations dqa

dt (t) = fa(q(t)) are the equations
for trajectories of this vector field.
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Canonical isomorphisms

Tangent vectors δẋ are in one-to-one correspondence with vectors
tangent to curves t 7→ δx(t) in TM

κM : TTM 3 δẋ 7→ (δx)· ∈ TTM
b

b

b

b

b

b

t

s

b

b

b

b

b

b

b

b

bδq

We get also the tangent evaluation between TT∗M and TTM defined
on elements ṗ and (δx)· with the same tangent projection δx on TM:

〈〈ṗ, (δx)·〉〉 =
d

dt

∣∣∣∣
t=0

〈p(t), δx(t)〉.

The map dual to κ,
αM : TT∗M −→ T∗TM

gives us an identification of covectors from T∗TM with elements of
TT∗M.
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The Tulczyjew triple - Lagrangian side

Any D ⊂ TN can be viewed as implicit dynamics whose solutions are
curves γ : R→ N s.t. γ̇ ∈ D. For the lagrangian phase equations:

M - positions,
TM - (kinematic)
configurations,
L : TM → R - Lagrangian
T∗M - phase space

D �
� // TT∗M

""

��

T∗TM

πTM ""

εMoo

��

TM TM

dLjj

λL

uu

T L
ll

T∗M T∗M

M M

D = εM(dL(TM))) = T L(TM) ,

the image of the Tulczyjew differential T L, is the phase dynamics,

D =

{
(x , p, ẋ , ṗ) : p =

∂L

∂ẋ
, ṗ =

∂L

∂x

}
,

whence the Euler-Lagrange equation: ∂L
∂x = d

dt

(
∂L
∂ẋ

)
. Note that L can be

as well singular for the price that D is an implicit equation.
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The Tulczyjew triple - Hamiltonian side

H : T∗M → R

T∗T∗M

##

��

Π#
M // TT∗M

""

��

D_?oo

TM TM

T∗M

dH

88

T∗M

M M

D = Π#
M(dH(T∗M))

D =

{
(x , p, ẋ , ṗ) : ṗ = −∂H

∂x
, ẋ =

∂H

∂p

}
,

whence the Hamilton equations.
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Tulczyjew triple in mechanics

D� _
��

T∗T∗M

  

��

TT∗M
αM //

��

��

βMoo T∗TM

��

��

TM

��

TM //

��

oo TM

����

dLii

T∗M

!!

dH

::

T∗M //

  

oo T∗M

  
M M //oo M

The dynamics is in the middle, the right-hand side is Lagrangian, the
left-hand side – Hamiltonian.
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The Legendre transform

The Legendre transform is a pass from the Lagrange to the Hamilton
description of the dynamics:

we try to describe the Lagrangian phase dynamics as a Hamiltonian phase
dynamics.

It is easy in the case of hyperregular Lagrangians (the Legendre map
(q, p) 7→ λL(q, q̇) = (q, p) is a diffeomorhism).

In this case the Lagrangian phase dynamics DL is simultaneously
Hamiltonian with the Hamiltonian function

H(q, p) = q̇apa − L(q, q̇) ,

(q, q̇) = λ−1
L (q, p) .

In other words, the Lagrangian submanifolds dL(TM) ⊂ T∗TM and
dH(T∗M) ⊂ T∗T∗M are related by the canonical isomorphism RτM .
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Euler-Lagrange equations

The Euler-Lagrange equation for a curve γ : R→ M takes in this model
the form

t(λL ◦ γ) = T L ◦ γ ,

where T L = ε ◦ dL and γ = t(γ) is the tangent prolongation of γ.

In this sense, the Euler-Lagrange equation can be viewed as a first-order
differential equation on curves γ in TM:

TT∗M

τT∗M

��
T∗M TM

λL
oo
T L

ff

Rγ
oo

t(λL◦γ)

jj

The equation just tells that the curve T L ◦ γ is admissible, i.e. that it is
a tangent prolongation of a curve (it must be λL ◦ γ) on the phase space,
T L ◦ γ = t(λL ◦ γ).
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Euler-Lagrange equations (continued)

In local coordinates,

T L(q, q̇) = (q,
∂L

∂q̇
(q, q̇), q̇,

∂L

∂q
(q, q̇)) .

For γ(t) = (q(t), q̇(t)) this implies the equations

q̇(t) =
dq

dt
(t) ,

d

dt

∂L

∂q̇
(q(t), q̇(t)) =

∂L

∂q
(q(t), q̇(t)) .

These equations are second-order equations for curves q = q(t) in M.

Regularity of the Lagrangian is completely irrelevant for this formalism.
Irregular Lagrangians just produce complicated and implicit dynamics, but
the geometric model is the same.
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Algebroid setting

DH� _

��

D� _
��

DL� _

��
T∗E ∗

""

��

Π#
// TE ∗

##

��

T∗E

!!

��

εoo

E
ρ //

��

TM

��

E

��

ρoo

dLll

λL

vv

T L
ll

E ∗ //

##

dH

99

E ∗

""

E ∗oo

""
M // M Moo

H : E ∗ −→ R

DH ⊂ T∗E ∗

D = T L(E )

D = Π#(dH(E ∗))

L : E −→ R

DL ⊂ T∗E

The Euler-Lagrange equations read T L ◦ γ = t(λL ◦ γ).
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E-L equations for algebroids

If (qa) are local coordinates in M,
(y i ) i (ξi ) are linear coordinates in fibers of, respectively, E and E ∗,
and

P = ckij (q)ξk∂ξi ⊗ ∂ξj + ρbi (q)∂ξi ⊗ ∂qb − σ
a
j (q)∂qa ⊗ ∂ξj ,

then the Euler-Lagrange equations read

(1)
dqa

dt
= ρak(q)yk ,

(2)
d

dt

(
∂L

∂y j

)
(q, y) = ckij (q)y i

∂L

∂yk
(q, y) + σaj (q)

∂L

∂qa
(q, y) .

They are first-order differential equations (!) but for admissible curves in
E , i.e. for curves satisfying (1). For E = TM, they are exactly the
tangent prolongations of curves in M.
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E-L equations for algebroids (continued)

A particular example of the equation (2) is not only the classical
Euler-Lagrange equation

d

dt

∂L

∂q̇a
(q, q̇) =

∂L

∂qa
(q, q̇) .

but also the Lagrange-Poincare equation for G -invariant Lagrangians on
principal G -bundle(

d
dt

∂L
∂q̇a −

∂L
∂qa

)
(q, q̇, v)−

(
Bk
ba(q)q̇b + Dk

ia(q)v i
)
∂L
∂vk (q, q̇, v) = 0 ,

d
dt

∂L
∂v j (q, q̇, v)−

(
Dk
aj(q)q̇a + C k

ij v
i
)

∂L
∂vk (q, q̇, v) = 0 ,

and the Euler-Poincare equations, for instance the rigid body equations,

d

dt

∂L

∂v j
(v)− C k

ij v
i ∂L

∂vk
(v) = 0 .
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Algebroid setting with vakonomic constraints

D� _
��

SLoo
� _

��
TE ∗

##

��

T∗E

%%

��

εoo

TM

��

E ⊃ S

��

ρoo

d̃L

hh

λL

uu
E ∗

##

E ∗oo

##
M Moo

where SL is the lagrangian submanifold in T∗E induced by the Lagrangian
on the constraint S , and d̃L : S → T∗E is the corresponding relation,

SL = {αe ∈ T∗eE : e ∈ S and 〈αe , ve〉 = dL(ve) for every ve ∈ TeS} .

The vakonomically constrained phase dynamics is just D = ε(SL) ⊂ TE ∗.
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Vakonomic equations in coordinates

Suppose that the vakonomic constraint S is defined as the zero-set of
functions Φk .
Then, for a Lagrangian L(x , y) on E , we have

SL =

{(
x , y ,

∂L

∂x
(x , y),

∂L

∂y
(x , y)− µk(x , y)

∂Φk

∂y
(x , y)

)
|Φk(x , y) = 0

}
.

where µk ∈ C∞(S) are ‘Lagrange multipliers’.
Looking for curves in SL which are mapped by ε : T∗E → TE ∗,

ε(xa, y i , pb, ξj) = (xa, ξi , ρ
b
k(x)yk , ckij (x)y iξk + σaj (x)pa) ,

into admissible curves, we get the vakonomic E-L equations

Φk(x , y) = 0 , dxa

dt = ρak(x)yk ,
d

dt
∂L
∂y j (x , y , t)− c lij(x)y i ∂L

∂y l (x , y , t)− σaj (x) ∂L∂xa (x , y , t) =

µ̇k(t)∂Φk

∂y j (x , y) + µk(t)
(

d
dt
∂Φk

∂y j (x , y)− c lij(x)y i ∂Φk

∂y l (x , y)− σaj (x)∂Φk

∂xa (x , y)
)
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Affine vakonomic constraints

In the case when S = A is an affine subbundle of an algebroid E (assume
for simplicity that A is supported on the whole M), we get the reduced
Tulczyjew triple for an affine vakonomic constraint:

D� _
��

P(A†)
εA◦R−1

A � ,2

��

""

TE ∗

��

##

T∗A

��

!!

εA�lr

A
ρA //

��

TM

��

A
ρAoo

������

dLmm

v∗(A)

&&&&

dH
88

E ∗
v(ι)∗oo v(ι)∗ //

""

v∗(A)

%%
M M M

Here, A† is the affine dual bundle, i.e. the bundle of affine functions on
fibers of A, and Hamiltonians are sections of the affine phase bundle P(A†)
over v∗(A) – the dual of the linear model v(A) of A.
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