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Relative dynamical elements and their stability Relative equilibria and relative periodic orbits

Relative equilibria

M is a G-manifold and X € X(M)® a G-equivariant vector field with
G-equivariant flow F;.

e mis a relative equilibrium (RE) when there exists a velocity € € g
such that :

X(m) =&m(m)  or equivalently  Fi(m) = exp t& - m.

e mis a relative periodic orbit (RPO) when there exists an element
g € G (phase shift) and a positive constant 7 > 0 (relative period)
such that

Fiir(m) =g - Fi(m).

If the action is free and proper and X can be projected to a vector field
X€ € X(M/G). REs and RPOs of X amount to equilibria and periodic
orbits of X ¢, respectively.
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Relative dynamical elements and their stability Relative equilibria and relative periodic orbits

Drifts and neutral directions

@ REs come in orbits.

o If mis a RE with velocity £ € g then so is g - m with velocity Adg¢:

Fe(g-m)=g-F:(m)=gexpté m=gexptég ‘g-m=expt(Adg€) - m

@
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Relative dynamical elements and their stability Relative equilibria and relative periodic orbits

The Hamiltonian case

(M, w) a symplectic manifold and G a Lie group acting properly on M in
a globally Hamiltonian fashion with associated equivariant momentum
map J: M — g*.
o J(m)=yp € g"
@ G, the isotropy of 1 under the coadjoint action of G.
o H:= Gp.
Let h € C>°(M)® be a G-invariant Hamiltonian. A point m € M is a
relative equilibrium (respectively relative periodic orbit (RPO)) of h
with respect to the G—symmetry of M, if the point [m]LH) = WELH)(m) is an
equilibrium (respectively periodic point) of the Hamiltonian dynamical
(H) h(H))
) M .
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Relative equilibria and relative periodic orbits
The following statements are equivalent:
(i) me I )N M(G,f,‘) with H := G, is a relative equilibrium.
(i) There is a unique A € Lie(Ng,(H)/H) C [ such that

Fi(m) =exp, tA-m for all teR,

with exp; : [ — L the exponential map associated to
L:= N(H)/H. X € lis called the canonical velocity of m.
(ii) Thereis a £ € Lie(Ng,(H)) such that

Fi(m) =exptf-m for all teR.

¢ € Lie(Ng, (H)) is called a velocity of m. The set of all
possible velocities coincides with the set of representatives of
the canonical velocity in the Lie algebra of Ng,(H), that is,
¢ € Lie(Ng, (H)) is a velocity if and only if [{] = A.

(iv) Thereis a £ € Lie(Ng,(H)) such that X,(m) = Eu(m).

(v) Thereis a £ € Lie(Ng,(H)) such that the augmented
Hamiltonian L¢ := h — J¢ satisfies @

dL5(m)=0.
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Relative dynamical elements and their stability Relative equilibria and relative periodic orbits

The RPO case

The conservation of isotropy and momentum implies that the phase shift
of a Hamiltonian RPO satisfies:

g € Ng,(H) :== N(H) N G,,.
Indeed:
@ Fryr(m) =g - Fy(m) implies that

J(Feyr(m)) = J(g - Fe(m)) = g - J(F:(m)) or equivalently = g - .
e By equivariance H := Gp, = Gf,(m) and hence

H:= Gm = G (m) = Gg.m = gGmg = gHg L.

@
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ST
Stability modulo a subgroup

Definition

Let X € X(M) be a G—equivariant vector field on the G-manifold M and
let G’ be a subgroup of G.

@ A relative equilibrium m € M of X, is called G’—stable, or stable
modulo G, if for any G’—invariant open neighborhood V of the orbit
G’ - m, there is an open neighborhood U C V of m, such that if F; is
the flow of the vector field X and v € U, then F(u) € V for all t > 0.

@ The RPO m is G’-stable, or stable modulo G, if for any
G'—invariant open neighborhood V of the set G’ - {F:(m)}¢~0, there

is an open neighborhood U C V of m such that F(U) C V, for any
t>0.

v

@
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Relative dynamical elements and their stability Orthogonal velocities

Orthogonal velocities

m € M relative equilibrium and unique A € Lie(Ng,(H)/H) such that
Fe(m) = exp, tA-m

where the dot denotes the free action of Ng,(H)/H on My. The
properness of the G—action allows us to choose an Ady—invariant inner
product in n, := Lie(Ng,(H)) and we have an orthogonal direct sum
decomposition

n,=bdp,.
From here it follows that
Lie(Ng, (H)/H) ~ /b ~ p,.

Let £ € p, C ny be the unique image of A € Lie(Ng, (H)) under this
isomorphism. We have

Fi(m) = exp; tA- m=expt& - m. @
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Relative dynamical elements and their stability Orthogonal velocities

Definition
The unique element £ € p, just defined is called the orthogonal velocity
of the relative equilibrium m € M, relative to the splitting n, = b @ p,,.

Important: the orthogonal velocity depends on the splitting and is unique
only if this splitting is specified. In applications, probing the stability of
the system with all its possible orthogonal velocities, that is, considering
all possible splittings, is the way to obtain optimal stability conditions.

@
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The energy-momentum method
The energy-momentum method

Theorem

Let (M, {-,-}, h) be a Poisson system. Lie group G acting properly on M
with equivariant momentum map J : M — g*. The Hamiltonian

h € C>*(M) is G—=invariant. m € M relative equilibrium such that

J(m) = p € g%, g* admits an Adg —invariant inner product, H := Gp,, and
¢ € Lie(Ng, (H)) is its orthogonal ve/oc:ty, relative to a given
Adpy—invariant splitting. If the quadratic form

d®(h = J9)(m)|wxw
is definite for some (and hence for any) subspace W such that
ker Tmd = W @ Tr(G - m),

then m is a G,,—stable relative equilibrium. d*(h — J¢)(m)|wxw will be
called the stability form of the relative equilibrium m.

4
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Relative dynamical elements and their stability Proof of the energy-momentum method

Proof of the energy-momentum method

Let S be a slice at the point m associated to the Hamiltonian action of G,
on M. Let now T := G, - S, be a tube around the orbit G, - m. By
definition,

TmM = TS & Trn(Gy - m). (1)
Let now be

Z = TS Nker Tpd. (2)

Since Try(Gy - m) C ker T, we have that

ker Tmd = Z @ Tp(Gp - m);
and hence Z satisfies the requirements of W in the statement of the
theorem. Importance of the orthogonal velocity:
Lemma

Fix a splitting and let £ € p,, be the corresponding orthogonal velocity of
the relative equilibrium m € M whose symmetry group is H := Gp,. Then
Adpé =& forany h € H.
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Relative dynamical elements and their stability Proof of the energy-momentum method

We now introduce a singular Patrick velocity map. Let r be the
G,—equivariant retraction associated to the slice S

r. G,-S — G,-m
gz +—> g-m.

We define

V: Go-m — G,-&
g-m — Adg¢

with £ the orthogonal velocity of the relative equilibrium. The previous
lemma guarantees that W is well-defined: if g-m=g -mthenglg ¢ H
and therefore g7lg’ - ¢ =€ andso g - éE =g - €.
Patrick velocity map: WV :=Vor:g-z € Gy-S— Adg € G, - & Note
that W(m) = U(m) = € and that for any g € G, and any
z=g'-2¢€G,-S,

V(g-z) = V(gg'-Z') = Adger& = Adg(Ady &) = AdgV(g'-2') = Adglll(%@

Also, ImV = G, - { and (11, V(2)) = (1, &), forany z € G, - S.
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Relative dynamical elements and their stability Proof of the energy-momentum method

Let 1 and f, be the functions defined by

fo= [ — ull?,

where in f, the modulus is taken using the norm associated to some
Ad*(‘;u—invariant inner product in g* (always available by hypothesis).
@ f5 is a G,—invariant conserved quantity.
@ f1 is G,—invariant but in general not conserved.
e h— J¢ and fi|s differ on S by a constant, which implies that
d(f1]s)(m) = 0 and d?(f1|s)(m) is well-defined. Moreover,

d*(Als)(m)lzxz = d*(h — J°)(m)|zxz.

e Since Z satisfies the requirements of W, d?(fi|s)(m)|zxz is definite.

o Z is the kernel of d?(f|s)(m).

@ Patrick’s lemma guarantees the existence of a positive constant a > 0
for which f := afy + f and such that d?(f|s)(m) is positive definit
and f > 0 in a given neighborhood of the point m.
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Relative dynamical elements and their stability Proof of the energy-momentum method

Note that f is G,—invariant but, in general, it is not a constant of the
motion since (J, V) is not conserved. It can be shown:

%(f(Ft(z)) — £(2)) = (3(2) — p, W(Fe(2)) =€),

where we used Noether's Theorem, W(z) = £ because z € S, and
(n, V(z2)) = (u, &), for any z € G, - S. Hence, for any z € S such that
Ft(Z) S G:U' . 5,

0 < f(Fe(2)) < f(2) + al(J(2) — p, W(Fe(2)) = &)
f(2) + allJ(2) — ull((V(Fe(2)I -+ T1E1)
f

(2) +2al&ll [19(2) = wll, (3)

<
<

where we used that ImV = G, - £, and the G,—invariance of the norm
|| - || These tools suffice to prove the G,—stability of m by thinking of f as
a distance function to the relative equilibrium that we are studying. @
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Relative dynamical elements and their stability Proof of the energy-momentum method

Remarks and improvements

@ The hypothesis on the existence of a Adg ~invariant inner product on
g* cannot be dropped. See SL(2,R) example in [OR99] paper.

e Montaldi and Rodriguez-Olmos [2011] drop orthogonal velocities
when G, is compact. It is relevant in the absence of non-trivial
orthogonal velocities.

o Poster by Miquel Teixid6-Romdn.
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Relative dynamical elements and their stability T-energy-momentum method

T>-energy-momentum method

@ G proper and free action on (M,w). Momentum map J: M — g* is a
submersion. h € C®(M)C.

e m relative equilibrium such that J(m) = p and S slice at m.

@ If there exists an open neighborhood Us of m in S and an open
neighborhood U,, of i in g* such that

P (h(m)) N 37T () N Us = {m}.
then m is G-stable.

@ Sketch of the proof: due to the freeness of the action M ~ G x §
locally and hence M/G ~ S. Hence the G-stability of m amounts to
the stability of m as an equilibrium of (S,{-,-}s, h|s). The statement
follows from the Ty-energy-Casimir theorem by noticing that J
induces a homeomorphism between the leaf space of Us an that of
U,. In particular:

sy = 12 (7 @
Ty5(m) = 371 (T(w)) 0 Us.
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Relative dynamical elements and their stability T-energy-momentum method

@ In this case the symplectic leaf space of M/G at G - m is Hausdorff iff
¢*/G is Hausdorff at G - . If this holds then the stability condition
reduces to

h=Y(h(m)) NI~ () N Us = {m},
which in general only ensures leafwise stability.

@ In the case of the existence of G-invariant inner products in g* the
G-invariance can be improved to G,-invariance.

@
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Evamples
The heavy top

Q

M = total mass

g = gravitational acceleration center of mass
Q = body angular velocity of top

I = distance from fixed point
to center of mass
g
fixed point
r\ |k
Figure : Taken from Introduction to Mechanics and Symmetry @
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Relative dynamical elements and their stability Examples
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sl
Sleeping and hanging tops

o Elements of TSO(3) in spatial representation (that is, right
trivialization) will be expressed as (A, 55/\) where A € SO(3) and 50
is the skew—symmetric matrix associated to 60 € R3 via the relation
50x = 60 x x.

@ Analogously, the elements of T*SO(3) have the form (A, wA) with
m e R3.

e g = ges denotes the gravity vector, where {e;, ey, e3} is a spatial
orthonormal basis of R3.

@ The mass vector by M := [ prer(X)Xd®X, where B is a reference
configuration.

o If mis the total mass of the body and / is the distance from the fixed
point to the center of mass, then | M |= ml.

@ The reference inertia tensor I, is defined as

. 2 3
Ler 1= / prer(X)(| X 2 T3 — X @ X)d3X @
B
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Relative dynamical elements and their stability Examples

@ The current spatial inertia tensor is given by
Ip := ALerAT.

o If m := AM is the spatial representation of the mass vector, in these
variables, the Hamiltonian of the heavy top is given by

1
h(A, ) :=m-g+ 5T ]IXIT&'.

@ Choose, without loss of generality, I,.r = diag[h, I1, l3] for some
constants ;1 and /3 and M = mles.

@ Symmetries: G = S! x S1. Using spatial variables, the G—action on
the phase space

GxT*SO(3) — T*S0(3)
((01,62), (N, 7)) — (exp(61€3)Aexp(—02€3), exp(—01€3)m).

@ Infinitesimal generators:
(6,)alh) = (A, €es — whes). @
Stability in Symmetric Hamiltonian Systems 22 / 57



@ Momentum map: J: T*SO(3) — g* = R%:
<J(/\7 7T)7 (§7 LU)> - <(A7 ﬂ-)a (/\a §e3 - W/\e3)> = §7T -e3 —wm - Nes,

hence
JIN,7) = (7 - e3, —7 - Ne3).

@ We show how any sleeping top is a relative equilibrium, in other
words, for every point in T*SO(3) of the form z = (/, Alze3) there is
an element (a1, a2) € g = R? for which

d(h — J(@r22))(z) = 0.
@ The derivative of the augmented Hamiltonian equals to
d(h — J@22))(2) (A, 67) = ((€ — w) — \)ém - es.

where A := 8OA. Therefore, in order to prove that z is a relative @
equilibrium we just need to take A\ = (a3 — an).
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Relative dynamical elements and their stability Examples

@ z has non—trivial symmetry. Indeed if (61,62) € G is such that
(01,62) - z = z, that is,

(exp((01,02)€3), (f - w)I3e3) = (/, (f - w)/3e3), then 61 = 6> and
thus
H = {(91,92) G | 91 = 92}.

@ |t is easy to check that
(T*SO(3))1 = {(exp(v'€3), me3) | ¥ € Lie(S*) =R, m € R}.
o Additionally,
ker T,J = {(0A,dm) € T,(T*SO(3)) | = -e3 = 0}.
One computes similarly

T(6,2) = Ta(G - 2) = span {(€3,0)}

W = ker T,JN T,(G - 2)*
= {(6M,ém) € T,(T*SO(3)) | A -e3 =7 -e3 =0}
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Relative dynamical elements and their stability Examples

@ We write the second summand of the augmented Hamiltonian using
an orthogonal velocity, that is, the projection of (£,w) on the
orthogonal complement of h = Lie(H) = span {(1,1)} with respect to
an Adg—invariant metric on g. Since G is Abelian, any metric is
Adg—invariant, hence the most general situation consists of taking
the inner product in g given by the quadratic form

(3 ?)

subject to the condition det g = ac — b®> > 0, which ensures the
positive definiteness of g.
@ The orthogonal complement p,, of b with respect to g is

pu = span{(1, —k)}
where k = (a+ b)/(b + ¢). This implies that the orthogonal velocity
ve of z with respect to the splitting determined by g is

ve(k) = A <1ik1_+kk> . i)
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Relative dynamical elements and their stability Examples

@ The matrix of the Hessian d?(h — J¥<(k))(z) restricted to W is

7mg/7A213(1$k7%) 0 0 A(’3g’1 + )
0 —mgl — X2 (ﬁ*%) —A(’3g'1 + ) 0
(5t s ) : ; :

whose eigenvalues are

or = At /-ah(1+ k2B + A2,
with
A= (14 k) — mglh(1+ k)® + BN (13(1 + 2k) — h(1 + k))
B = )(hk + k5 — k) — mgl(1+ k)>.

It is clear that d?(h — J¥<(K))(z) is positive definite iff B > 0, that is

2 (14 k)3
AL
A > mel e @
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Relative dynamical elements and their stability Examples

@ For each k (for each orthogonal velocity) we have a lower bound for
the values of A for which the sleeping top is stable. The optimal
stability condition will be achieved when

(1+ k)2
Bk+ 11— KL

reaches a minimum.
@ Taking the first and second derivatives of this function, one checks

that this happens when
_2h—£h

/3
and therefore, the optimal stability condition is

k

4Amgll?
- *mely

'3 @
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Examles
The orbitron (Grigoryeva, JPO, Zub (2014))

Consider a small axisymmetric magnetized rigid body (permanent magnet or a
current-carrying loop) with magnetic moment i, in the permanent magnetic field created
by two fixed magnetic poles/ “charges” placed at distance h in the absence of gravity.

z

+qN

- ©
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Relative dynamical elements and their stability Examples

Phase space

o The configuration space of the orbitron is SE(3) = SO(3) x R3
@ The orbitron is a simple mechanical system

@ Phase space is the cotangent bundle T*SE(3) of its configuration
space SE(3) endowed with the canonical symplectic structure w
obtained as minus the differential of the corresponding Liouville one
form

o Left/right trivializations provide an identification of the bundle
T*SE(3) with the product SE(3) x se(3)*. We work in body
coordinates and denote by (A, x) the elements of SE(3) = SO(3) x R3
and by ((A,x), (M, p)) those of T*SE(3) ~ SE(3) x se(3)*.
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Relative dynamical elements and their stability Examples

The Hamiltonian of the orbitron is

h((A,X),(er)) = T(n,p)—l— V(A7X) (4)

with 1 i
T(M,p) = ST+ ol )
V(A,x) = —(B(x), Aes), (6)

where M is the mass of the axisymmetric magnetic body, the reference inertia
tensor I,er = diag(h, I, ), x = (x,y,z) € R3, 1 is the magnetic moment of the
axisymmetric rigid body/dipole, and B(x) is the strength of the magnetic field
created by two magnetic poles/ “charges” +q placed at the points (0,0, h) and
(0,0,—h), h >0, that is,

B(x)_,uoq< X X y y z—h z—i—h)

T 4 3/2 3/2° 3/2 3/2° 32 32 |

4m \D)Y? DY DY DY DY Dx)Y .
7

with D(x)y = x?> 4+ y2 + (z — h)?, D(x)_ = x*> + y?> + (z + h)?, and g the @

magnetic permeability of vacuum.
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Relative dynamical elements and their stability Examples

The standard and generalized orbitron

Definition
A small axisymmetric magnetized rigid body subjected to a external magnetic field of
the form specified in (7) is called a standard orbitron.

The external magnetic field B in (7) has the following symmetry properties, namely:
(i) Equivariance with respect to rotations RQZS around the OZ axis:

B(Ri,x) = R;.B(x) for 0s € R.

(ii) Behavior with respect to the mirror transformation (x,y, z) — (x,y, —2)
according to the prescription

BX(vavz) = _BX(X7y7 _2)7 B}’(vavz) = _B)’(X7y7_z)’ BZ(X7y72) = BZ(vav —Z).

Definition
A small axisymmetric magnetized rigid body subjected to the influence of an arbitrary

magnetic field in the magnetostatic approximation in a domain free of other magnetic
sources that satisfies these symmetry properties is called a generalized orbitron.
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Relative dynamical elements and their stability Examples

Equations of motion

The equations of motion of the orbitron are determined by Hamilton's equations:

A= Aﬂre}” (8)
1 9
VAP (9)
N=nNxI_MN+A'B(x) x e, (10)
p=pxI_tMN+pADB(x)" Aes. (11)

The symbol ]Irefl'l stands for the antisymmetric matrix associated to the vector
I_tM € R3 via the Lie algebra isomorphism ~: (R3, x) — (s0(3),[,"]) and D

for the differential.
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Relative dynamical elements and their stability Examples

Toral symmetry and associated momentum map

The axial symmetry of the magnetic rigid body + the rotational spatial
symmetry of the external magnetic field w.r.t. rotations around OZ =
toral symmetry. The action on SE(3):

¢: (T?2=S'xS)xSE(B) — SE(3)
((es,e),(Ax))  +— (RARZ,,, Rf.x). (12)
The cotangent lift ® is a canonical symmetry given by
®: (T?=8!'xSY)x T*SE(3) — T*SE(3)

((ei957 eieB) s ((A7 X)7 (n7 p))) — ((RGSAR—937 R@sx)v (R93n7 Rng))
that has an invariant momentum map associated J : T*SE(3) — t* :

J((AX),(N,p)) = (AN +x x Ap,es), —(M,es)).  (13)

@

Juan-Pablo Ortega (CNRS) Stability in Symmetric Hamiltonian Systems 33 /57



Relative dynamical elements and their stability Examples

Relative equilibria equations of the orbitron

Proposition

Consider the orbitron system whose Hamiltonian function is given by (4) and let
z=((A,x),(N,p)) € T*SE(3). Then:

(i) The point z is a relative equilibrium of the orbitron with velocity (£1,&) € R? with
respect to the introduced toral symmetry if and only if the following identities are

satisfied:
w[B(x) x Aes] + &1 [Ap x (x x e3) — AN X e3] =0, (14)
— uDB(x)" (Aes) — &1 (Ap x e3) =0, (15)
I./N+&es — & A Tes =0, (16)
%p A (es x x) = 0. (17)
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Relative dynamical elements and their stability Examples

Proposition (Continued)

(ii) Consider now Ay = Rgzo, xo = (x,¥,0), Mo = k(& — &) es and
po = M&A; ! (—y, x,0). The point zo = ((Ao, %o0), (Mo, po)) is a relative
equilibrium of the standard orbitron with velocity (§1,&2), where & is an arbitrary
real number and & is either arbitrary when xo = 0 or
3huquo  \"?
b=+ <— 27TMD(XO)5/2> , (18)
when xo # 0 (the existence is only guaranteed when ug < 0).

(iii) In the case of the generalized orbitron: B,(x,y,z) = f(x* + y?, z) for some
f € C°°(R?), and the spatial velocity & of the relative equilibria with xo # 0 is

2 1/2
o= (i) (19)

(exists only when puf{ <0).
v=x2+4y2 7z=0

where f{ = 0f(v.2)

ov

The relative equilibria for which xo # 0 (resp. xo = 0) have trivial (resp. nontrivial H)
isotropy and hence belong to the orbit type (T"SE(3)),., (resp. (T"SE(3))); we refer
to them as regular relative equilibria (resp. singular relative equilibria).
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Relative dynamical elements and their stability

Examples

Figure : Regular and singular relative equilibria of the standard orbitron. rmi, and rimax
represent the stability region in config. space determined by the conditions below.
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Relative dynamical elements and their stability Examples
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g LLEHHEN IIOWAAN MATKHTHOTO TIOIOCA K KAIPATy PACCTOHHS MEXTy
nongcauu ISl KOZBUA 5TO OTHOLEHHe, HA0GOPOT, GOMBbIIOE).
. N w —t CA KOMbIA COOCHE! H GTH3KO PACHOAOKEIb!, YXOGHO NOME30BATS-
T aaiinG poeoss: % bR 5 TaKolt popMyi10fi Baainof niayKTHBHOCTH (28, C. 148]:
¥y, ¥, = const 4 a1 2 -
& RES2 Lo=ra(l+ 48— 8+ Bttt o Jindm
1 31 247
| —2—dpy Hg M ] € =2aR™). (10.13)
Ta6anua 102
Torza s L Ry oMo e ycrobe Yoo
Omers yerowmx anpofi tpackropun S =3R™'U, + U, >0, sanmcamnoe orio-
o armnao crcres Sexus Fadioreh e iy
105 ¢ b m
i s o 2 2 Hesamuenuo o7 45" ye- (6— TER e Jat—7-+ Fe—
oo warima 5 oflunmocri er
| [ 1233
-t Z‘* e >0 (10.14)
Bum?run cpeporn — @ Wims Crcrema neycTofiansa B unrepsae 0 < § < 1 oHo yaoBreTsopsiercs, ecan
o
”" £>0,85. (10.15)
122 o
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......... AR U IALUGH

MEPOM OPGHTHI 7, H pasy AT
1o PaSMepoM MaruuTa 2/ MPOHCXOANT «nepexoy

- gakoH U ~ — o Pasnensiomnii B3aumoieficTBHA ¢ YCTOHYHBBIMH H He-

| YCTOHYMBBIMHTpaeKTopusiMu. JLi5 0NHHAKOBEIX LIHHHBIX ILHJTH AP HYECKHX
MATHHTOB 3TO COOTBETCTBYET YCJIOBHIO (5.4.7).

Ecan pasmepsi oanoro mariura nammoro Goubite pasmepos Apyroro,
BMecTo (5.4.7) ucnoasayem yesosne

lry' >0,5, (5.4.8)

Ecau HMOYbCEl cOOCTBEHNHOTO BPAUICHHA MarHHTOB HaMmHoro GoJiblie
HMIIYJbca OpOUTANBLHOTO Bpauennus

Mi»M,>0, i=1, 2,

YTO pealHiyemo BbIGOpo.'\I. Hanpumep, ckopocTH co0CTBEHHOTO BpalleHns
MarHuToB, TO Kos(pnunents Uy g, 1 onpeteaurens (5.4.5) Gyayr nosoxi-
TeJbHEIMH NpH Mmobuix i y.

Takum oGpasom, maaterapuas KOHQHTYpPALHs ABYX HHIHHAPHYECKHX
MarHHTOB, L‘OBCPL[JEIJO[IL]I.‘L (JLJL‘T[!O(_’ coOCTBEHHOE Bp{lLLlOIiHE BD}(I_)YI‘ MArCHHT-
HOli OCH, NepHenAnKyAapHoil K MIockoeTit 0pGHTE, ABseTes yeroiuuboi,
ec/lit TOJBKO pPasMep HEBO3Myllennoil opOHTH He NPeBOCXoHT pasMepa,
CPABHHMOIO C PasMepoM Marnura.

Ecau pasmepnl opOnThl GobLIHE 10 CPABHEHHIO ¢ PA3MEPOM MATHHTA,
YCTOHUHBOCTD HeBO3MOXKHA (HapyLUaercs yC/IoBHe (5.4.6)), H MBI NIPHXOIHM .
K H3BECTHOMY pesyabTary neyc’l‘oi’lHHBOCTli JBHAKEHHA Napbl MariHHTHBIX @

Tas) - _—A

wemsrmermemen [
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Relative dynamical elements and their stability Examples

Nonlinear stability of the orbitron relative equilibria

Theorem

Consider the relative equilibria introduced in Proposition 7. Then:

(i) The regular relative equilibria of the standard orbitron in part (ii) of Proposition 7,
that is, those for which xo # 0, are T?—stable whenever the following three
inequalities are satisfied:

2 r?
3<E<4 (20)
. 0 0 2 (r2 + h2)h2
sign(é1)k2 < — [ & | (/1 —h+ ng ) (21)
h 12 .
where r* = ||xo||*, & = + (—%) , and pq < 0. The singular
relative equilibria (xo = 0) are always formally unstable, in the sense that the
stability form exhibits a nontrivial signature.

@
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Relative dynamical elements and their stability Examples

Theorem (Continued)

(i) The regular relative equilibria of the generalized orbitron in part (iii) of
Proposition 7 are T>=stable whenever the following conditions hold:

pf <0,
M(Qﬂl+f2f1//) <0,
ph' <0,

sign(€f)hes < 1601 (b= )+ 3m (£ +ar 1)),

where r? = ||xo||%, f € C>(R?) is the function such that B,(x,y,z) = f(r?, z),

Of (v, 2) &f(v,2)

fo=f(r?,0), i = — = M= 5 :

o (r,0), I B ! oV |2,
9*f(v, z) 2 v

n__ 2 T\" <) 0 = — /

f2 - 822 v=r2 z:0, and El * Mufl .

(22)
(23)
(24)

(25)
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Relative dynamical elements and their stability Examples

Theorem (Continued)

The singular branch (xo = 0) is T?-stable if the following conditions are satisfied:
pf <0,
ph <0,
2 2 !
2 uf
51 < MN 1
h&t — pfy
(ST
where Mo = I (&1 — &) and we use the same notation as above for fy, f{, and £,
2
M
can be replaced by the following single &1—independent optimal condition:

IMo| > 2v/—pifoh.

This optimal condition is achieved by using the spatial velocities & = £ (—ufy/h)
the positive (resp. negative) sign for the velocity corresponds to positive (resp.
negative) values of IMg.

sign(&:)Mo >

. fo
replacing v = r* by v = 0. When ufy < 0 and f—o, <
1

h, the conditions (28) and (29)

(26)
(27)

(28)

(29)

(30)

1/2.
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Relative dynamical elements and their stability Examples

e Conditions (26)—(29) can be used in the design of magnetic fields
capable of confining magnetic rigid bodies that do not exhibit spatial
rotation.

@ This is the working principle of devices such as magnetic contactless
flywheels or levitrons. In the case of flywheels, up until now only
actively controlled versions have been developed.

@ As to the levitron, the potentials that have been considered so far
[Dullin 1999, 2004, Marsden, Krechetnikov 2006] do not allow to
conclude nonlinear stability using the methods put at work in
Theorem 9 and only the spectral stability of the corresponding
linearized systems has been considered.
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Relative dynamical elements and their stability Examples

The use of the energy-momentum method provides sufficient but not
necessary nonlinear stability conditions. The complementary spectral
stability analysis of the linearized system is required.
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Relative dynamical elements and their stability Linear stability/instability analysis of relative equilibria

Linear stability /instability analysis of relative equilibria

@ Standard equilibria: examine the spectral stability of the linearization
at the equilibrium of the vector field in question.

@ Regular relative equilibria: examine the spectral stability of the
linearization of the reduced Hamiltonian vector field at the
equilibrium corresponding to the relative equilibrium in the symplectic
Marsden—Weinstein reduced space.

@ Singular case: there exist reduced spaces that generalize the
Marsden—Weinstein reduced space, the equivalence between
G,-stability of a relative equilibrium and standard nonlinear stability
of the corresponding reduced equilibrium does not hold anymore,
which makes necessary the formulation of a criterion that provides a
linear stability analysis tool for relative equilibria whose formulation
does not need reduction. @
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Relative dynamical elements and their stability Linear stability/instability analysis of relative equilibria

Proposition

Let G be a Lie group acting canonically and properly on the symplectic manifold
(M, w) and suppose that there exists a coadjoint equivariant m. m. J: M — g*
that can be associated to it. Let h € C®(M)® be a G—invariant Hamiltonian and
let m € M be a relative equilibrium of the corresponding G—equivariant
Hamiltonian vector field X, with velocity £ € g. Consider a Gp,—invariant stability
space W such that

ker Tnd =W @ T (G, - m),

with .= J(m) and G, C G the coadjoint isotropy of |1 € g*. Then:
(i) (W,ww) with wyw := w(m)|w is a symplectic vector subspace of
(TmM,w(m)).
(ii) There exists a symplectic slice (S,ws) at m € M such that
(TmS,ws(m)) = (W, ww).
(iii) The Hamiltonian vector field th € X(S) in S associated to the Hamiltonian

function hg = (h - J5) exhibits an equilibrium at the point me€ S C M.

s

v

—_
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Relative dynamical elements and their stability Linear stability/instability analysis of relative equilibria

Proposition (Continued)

(iv) The linearization Xi/é € X(TyHS)=%(W) Oth§ at m € S coincides with
the linear Hamiltonian vector field Xq on (W,ww) that has as Hamiltonian
vector field the stability form

Q(w) :=d? (h— Jg) (m)(w, w), we W.

(v) Suppose that the two tangent spaces T, (G, - m) and Tp, (G - m) coincide.

Then TaM = W @& W*. (31)

Additionally, let h¢ := h — J¢ € C>(M) be the augmented Hamiltonian and
let X} € X(TmM) be the linearization of the Hamiltonian vector field Xpe
at m. Then

Xo = PwXlciw, (32)

where iy : W — T,,M is the inclusion, Py, : T,M — W s the projection
according to (31), and X;. is the linearization of Xue at m.

(vi) If the linear vector field Xg is spectrally unstable in the sense that it exhibits
eigenvalues with a nontrivial real part, then the relative equilibrium m € M
of Xy, is nonlinearly K—unstable, for any subgroup K C G.
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Relative dynamical elements and their stability Linear stability/instability analysis of relative equilibria

Proposition

Let G be a Lie group with Lie algebra g and let T*G be its cotangent bundle endowed
with the canonical symplectic form. Consider now the body coordinates expression

G x g of TG and let h € C*(G x g*) be a Hamiltonian function whose associated

Hamiltonian vector field X}, exhibits an equilibrium at point (g, ) € G x g*. Then the
linearization Xqe : g X g* — g X g* for any (§,7) € g X g is given by:

XQE (67 T) = (ﬂ-g* (Hess(f, 7—)) y —Tg (HGSS(é, T)) + ad:rg* Hess(f,r),u/) ) (33)

where mg 1 g X g* — g, g+ 1 g X g© — ¢ are the canonical projections and
Hess : g X g" — g X g" is the linear map associated to the Hessian of h® at (e, ) by the
relation

(Hess(&,7), (n, p)) = d°h8(e, ) ((&,7), (), (&7),(n.p) Egxg"

@
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Relative dynamical elements and their stability Linear stability/instability analysis of relative equilibria

Let h € C>°(T*(SE(3))) be a Hamiltonian function and let X}, be the corresponding
Hamiltonian vector field that we assume has an equilibrium at the point
2o = ((Ao, %0), (Mo, po)), that is, dh(zo) = 0. Let g = (Ao, x0) € SE(3) and let
z=((/,0),(Mo, po)); clear that zg = ¢, (z). Let
Hess(z) : s¢(3) x 5¢(3)" — se(3) x se¢(3)" be the linear map associated to the Hessian of
ho g at z, that is, for any v,w € T, (T*SE(3)) ~ se(3) x s¢(3)",
(v, Hess(z)w) = d*(h o ¢z)(z)(v,w). Now, given v = (§A, 6x, 81, dp) € se(3) x se(3)*,
define the projections:

msase(3) x se(3)* — R

(6A,6x,8M,6p) +— JA

By Proposition 14 the linearization X} of Xj at z is given by
Xp = g0 Xpg 0 ®,1, (34)

where X/ : 5¢(3) x 5¢(3)* ~ R — s¢(3) x 5¢(3)* ~ R*? is the linear map

msnHess(zo)
H
Xl = Tep ess(zo0) R (35)
—msaHess(zo) + MomsnHess(zo) + PorrspHess(zo)
—msxHess(zo) + porsnHess(zo) @
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Relative dynamical elements and their stability Linear stability/instability analysis of relative equilibria

Theorem
Consider the relative equilibria introduced in Proposition 7. Then:

(i) In the case of the standard orbitron in part (ii):

(a) The regular relative equilibria that do not satisfy the Kozorez relation
(r*/h? < 4) are unstable; the stability condition is sharp. The conditions
in (20) and (21) are not sharp, i.e. there are regions in parameter space that
do not satisfy them and where the linearized system is spectrally stable.

(b) The singular relative equilibria are nonlinearly unstable.
(i) In the case of the generalized orbitron in part (iii):

(a) The regular relative equilibria that do not satisfy the generalized Kozorez
relation (23) (u (2f{ 4+ r*fy") < 0), are unstable; the stability condition is
sharp. The conditions (22), (24), and (25) are not sharp.

(b) The spectral stability of the singular relative equilibria is equivalent to:

pfl <0, ph' <0, My > —4ufh, (36)

where My = k(& — &). The conditions (26) and (27) are sharp, the
remaining conditions are not.
v
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Maximum absolute value of the real part of the eigenvalues
Maximum absolute value of the real part of the eigenvalues

11 1 1 v ]
‘ B c TV |
Y . Y Y T R TR YR S 0 0 o ¥ aw o % Fr
Tanin max
Radius of the spatial rotation r Body rotation velocity &

Figure : Standard orbitron with h = 0.05 m, M = 0.0068 kg, o = 4w - 1077 N-A~2,
p=—0.18375 Am? q=1758 Am, h =0.17-107° kg-m?, 5k =0.1-10"° kg-m?. The
red bullets indicate the critical values of r (m) and & (rad-s™!) determined by the
stability conditions. The grey bands correspond to the stability gaps (the system is
spectrally stable while the stability form exhibits a nontrivial signature). @
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™ Radius of the spatial rotation r

I A II B III C I\Y
Figure : Evolution of the eigenvalues with r. @
Stability in Symmetric Hamiltonian Systems 52 / 57



Relative dynamical elements and their stability Linear stability/instability analysis of relative equilibria

real part of the sigenvaluss

of the

Maximum sbsolute value

.

3

Figure : Evolution of the eigenvalues with &. @
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Relative dynamical elements and their stability RPOs: symmetric energy-integrals method

RPOs: symmetric energy-integrals method

Theorem (The symmetric energy—integrals method)

(M, {-,-}, G, J: M — g*, h: M — R) Hamiltonian system with a
symmetry given by the Lie group G acting properly on M. h € C°(M) is
G—invariant and J is equivariant. Let m € M be a RPO such that

J(m) = p € g* and G, is compact. Then, if there is a set of G, ~invariant
conserved quantities Cy, ..., C, € C>°(M), for which

d(C1+—|—C,,)(m):0, and dz(Cl—i-—i-Cn)(m)’WXW
is definite for some (and hence for any) W such that

kerdCi(m)N...Nker dCp(m)Nker Tpd = W (span{ Xp(m)}+ Tm(Gm-m)),

(37)
then m is a G,—stable RPo. If dim W = 0, then m is always a Gp,—stable
RPP.
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Relative dynamical elements and their stability RPOs: symmetric energy-integrals method

G-invariant Poincaré sections
Definition

Let X € X(M)®. A G-invariant local transversal section of X at

m € M is a G—invariant submanifold S of codimension one with m€ S
such that for all z € S, X(z) is not contained in T,S.

If me M is a RPO with relative period 7 > 0, phase shift g € G, and S is
a G—invariant local transversal section at m then, a G—equivariant
Poincaré map of the RPP m is a mapping © : Wy — W satisfying:

(RPM1) Woh, Wi C S are open G—invariant neighborhoods of m in S
and © is a G—equivariant diffeomorphism;

(RPM2) there is a continuous G—invariant function, called the period
function, such that for all z € Wy, (z, 7 — 6(z)) € Dx, and
©(z) = F(z, 7 — 0(2)). The open set Dx C M x R is the
domain of the flow F : Dx C M x R — M of X;

(RPM3) if t € (0, 7 — 6(2)), then F(z, t) ¢ W,.
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Relative dynamical elements and their stability RPOs: symmetric energy-integrals method

Theorem (Existence and uniqueness of G—equivariant Poincaré maps)

Due to Field [1980, 1991]. Let m, M, and X be as in Definition.

(i) There exists a G—invariant local transversal section S and a
G—equivariant Poincaré map © : Wy — Wy for m € M.

(i) If©: Wy — W4 is a G—equivariant Poincaré map for m in
the G—invariant local transversal section S and similarly
O : Wy — W] for m’ := Fy,(m) in S', then © and ©' are
locally G—equivariantly conjugate, that is, the diagram

O 1 (We) N Ws —2— WhNO(Wh)

a K

e/
w2 s

commutes. )
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RYC L REG ]
RPO example: the Manev potential

o Potential of the form V/(r) = &+ .

e Manev [1924, 25, 30]. Diacu, Mioc, Stoica [1999], Delgado et al
[1996].

@ Proxy for relativistic correction.

@ SO(3) invariant. It reduces to Kepler with a momentum shift.

Reduced space is 2 dimensional. Obvious orbital stability.
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