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Relative dynamical elements and their stability Relative equilibria and relative periodic orbits

Relative equilibria

M is a G -manifold and X ∈ X(M)G a G -equivariant vector field with
G -equivariant flow Ft .

m is a relative equilibrium (RE) when there exists a velocity ξ ∈ g
such that :

X (m) = ξM(m) or equivalently Ft(m) = exp tξ ·m.

m is a relative periodic orbit (RPO) when there exists an element
g ∈ G (phase shift) and a positive constant τ > 0 (relative period)
such that

Ft+τ (m) = g · Ft(m).

If the action is free and proper and X can be projected to a vector field
XG ∈ X(M/G ). REs and RPOs of X amount to equilibria and periodic
orbits of XG , respectively.
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Relative dynamical elements and their stability Relative equilibria and relative periodic orbits

Drifts and neutral directions

REs come in orbits.

If m is a RE with velocity ξ ∈ g then so is g ·m with velocity Adgξ:

Ft(g ·m) = g · Ft(m) = g exp tξ ·m = g exp tξg−1g ·m = exp t (Adgξ) ·m
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Relative dynamical elements and their stability Relative equilibria and relative periodic orbits

The Hamiltonian case

(M, ω) a symplectic manifold and G a Lie group acting properly on M in
a globally Hamiltonian fashion with associated equivariant momentum
map J : M → g∗.

J(m) = µ ∈ g∗.

Gµ the isotropy of µ under the coadjoint action of G .

H := Gm.

Let h ∈ C∞(M)G be a G –invariant Hamiltonian. A point m ∈ M is a
relative equilibrium (respectively relative periodic orbit (RPO)) of h

with respect to the G –symmetry of M, if the point [m]
(H)
µ = π

(H)
µ (m) is an

equilibrium (respectively periodic point) of the Hamiltonian dynamical

system (M
(H)
µ , ω

(H)
µ , h

(H)
µ ).
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Relative dynamical elements and their stability Relative equilibria and relative periodic orbits

The following statements are equivalent:

(i) m ∈ J−1(µ) ∩M
Gµ
(H) with H := Gm is a relative equilibrium.

(ii) There is a unique λ ∈ Lie(NGµ(H)/H) ⊂ l such that

Ft(m) = expL tλ ·m for all t ∈ R,

with expL : l→ L the exponential map associated to
L := N(H)/H. λ ∈ l is called the canonical velocity of m.

(iii) There is a ξ ∈ Lie(NGµ(H)) such that

Ft(m) = exp tξ ·m for all t ∈ R.

ξ ∈ Lie(NGµ(H)) is called a velocity of m. The set of all
possible velocities coincides with the set of representatives of
the canonical velocity in the Lie algebra of NGµ(H), that is,
ξ ∈ Lie(NGµ(H)) is a velocity if and only if [ξ] = λ.

(iv) There is a ξ ∈ Lie(NGµ(H)) such that Xh(m) = ξM(m).
(v) There is a ξ ∈ Lie(NGµ(H)) such that the augmented

Hamiltonian Lξ := h − Jξ satisfies

d Lξ(m) = 0.
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Relative dynamical elements and their stability Relative equilibria and relative periodic orbits

The RPO case

The conservation of isotropy and momentum implies that the phase shift
of a Hamiltonian RPO satisfies:

g ∈ NGµ(H) := N(H) ∩ Gµ.

Indeed:

Ft+τ (m) = g · Ft(m) implies that
J(Ft+τ (m)) = J(g · Ft(m)) = g · J(Ft(m)) or equivalently µ = g · µ.

By equivariance H := Gm = GFt(m) and hence

H := Gm = GFτ (m) = Gg ·m = gGmg−1 = gHg−1.
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Relative dynamical elements and their stability Stability modulo a subgroup

Stability modulo a subgroup

Definition

Let X ∈ X(M) be a G –equivariant vector field on the G –manifold M and
let G ′ be a subgroup of G .

A relative equilibrium m ∈ M of X , is called G ′–stable, or stable
modulo G ′, if for any G ′–invariant open neighborhood V of the orbit
G ′ ·m, there is an open neighborhood U ⊂ V of m, such that if Ft is
the flow of the vector field X and u ∈ U, then Ft(u) ∈ V for all t ≥ 0.

The RPO m is G ′-stable, or stable modulo G ′, if for any
G ′–invariant open neighborhood V of the set G ′ · {Ft(m)}t>0, there
is an open neighborhood U ⊆ V of m such that Ft(U) ⊂ V , for any
t > 0.
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Relative dynamical elements and their stability Orthogonal velocities

Orthogonal velocities

m ∈ M relative equilibrium and unique λ ∈ Lie(NGµ(H)/H) such that

Ft(m) = expL tλ ·m

where the dot denotes the free action of NGµ(H)/H on MH . The
properness of the G –action allows us to choose an AdH–invariant inner
product in nµ := Lie(NGµ(H)) and we have an orthogonal direct sum
decomposition

nµ = h⊕ pµ.

From here it follows that

Lie(NGµ(H)/H) ' nµ/h ' pµ.

Let ξ ∈ pµ ⊂ nµ be the unique image of λ ∈ Lie(NGµ(H)) under this
isomorphism. We have

Ft(m) = expL tλ ·m = exp tξ ·m.
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Relative dynamical elements and their stability Orthogonal velocities

Definition

The unique element ξ ∈ pµ just defined is called the orthogonal velocity
of the relative equilibrium m ∈ M, relative to the splitting nµ = h⊕ pµ.

Important: the orthogonal velocity depends on the splitting and is unique
only if this splitting is specified. In applications, probing the stability of
the system with all its possible orthogonal velocities, that is, considering
all possible splittings, is the way to obtain optimal stability conditions.
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Relative dynamical elements and their stability The energy-momentum method

The energy-momentum method

Theorem

Let (M, {·, ·}, h) be a Poisson system. Lie group G acting properly on M
with equivariant momentum map J : M → g∗. The Hamiltonian
h ∈ C∞(M) is G –invariant. m ∈ M relative equilibrium such that
J(m) = µ ∈ g∗, g∗ admits an Ad∗Gµ–invariant inner product, H := Gm, and
ξ ∈ Lie(NGµ(H)) is its orthogonal velocity, relative to a given
AdH–invariant splitting. If the quadratic form

d2(h − Jξ)(m)|W×W

is definite for some (and hence for any) subspace W such that

ker TmJ = W ⊕ Tm(Gµ ·m),

then m is a Gµ–stable relative equilibrium. d2(h − Jξ)(m)|W×W will be
called the stability form of the relative equilibrium m.
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Relative dynamical elements and their stability Proof of the energy-momentum method

Proof of the energy-momentum method

Let S be a slice at the point m associated to the Hamiltonian action of Gµ
on M. Let now T := Gµ · S , be a tube around the orbit Gµ ·m. By
definition,

TmM = TmS ⊕ Tm(Gµ ·m). (1)

Let now be
Z := TmS ∩ ker TmJ. (2)

Since Tm(Gµ ·m) ⊂ ker TmJ, we have that

ker TmJ = Z ⊕ Tm(Gµ ·m);

and hence Z satisfies the requirements of W in the statement of the
theorem. Importance of the orthogonal velocity:

Lemma

Fix a splitting and let ξ ∈ pµ be the corresponding orthogonal velocity of
the relative equilibrium m ∈ M whose symmetry group is H := Gm. Then
Adhξ = ξ for any h ∈ H.
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Relative dynamical elements and their stability Proof of the energy-momentum method

We now introduce a singular Patrick velocity map. Let r be the
Gµ–equivariant retraction associated to the slice S

r : Gµ · S −→ Gµ ·m
g · z 7−→ g ·m.

We define
Ψ̃ : Gµ ·m −→ Gµ · ξ

g ·m 7−→ Adgξ

with ξ the orthogonal velocity of the relative equilibrium. The previous
lemma guarantees that Ψ̃ is well-defined: if g ·m = g ′ ·m then g−1g ′ ∈ H
and therefore g−1g ′ · ξ = ξ and so g ′ · ξ = g · ξ.
Patrick velocity map: Ψ := Ψ̃ ◦ r : g · z ∈ Gµ · S 7→ Adgξ ∈ Gµ · ξ. Note
that Ψ(m) = Ψ̃(m) = ξ and that for any g ∈ Gµ and any
z = g ′ · z ′ ∈ Gµ · S ,

Ψ(g ·z) = Ψ(gg ′·z ′) = Adgg ′ξ = Adg (Adg ′ξ) = AdgΨ(g ′·z ′) = AdgΨ(z).

Also, ImΨ = Gµ · ξ and 〈µ,Ψ(z)〉 = 〈µ, ξ〉, for any z ∈ Gµ · S .
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Relative dynamical elements and their stability Proof of the energy-momentum method

Let f1 and f2 be the functions defined by

f1 = (h − h(m)) + (〈J, Ψ〉 − 〈µ, ξ〉),
f2 = ‖J− µ‖2,

where in f2, the modulus is taken using the norm associated to some
Ad∗Gµ–invariant inner product in g∗ (always available by hypothesis).

f2 is a Gµ–invariant conserved quantity.

f1 is Gµ–invariant but in general not conserved.

h − Jξ and f1|S differ on S by a constant, which implies that
d(f1|S)(m) = 0 and d2(f1|S)(m) is well–defined. Moreover,

d2(f1|S)(m)|Z×Z = d2(h − Jξ)(m)|Z×Z .

Since Z satisfies the requirements of W , d2(f1|S)(m)|Z×Z is definite.

Z is the kernel of d2(f2|S)(m).

Patrick’s lemma guarantees the existence of a positive constant a > 0
for which f := af1 + f2 and such that d2(f |S)(m) is positive definite
and f ≥ 0 in a given neighborhood of the point m.
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Relative dynamical elements and their stability Proof of the energy-momentum method

Note that f is Gµ–invariant but, in general, it is not a constant of the
motion since 〈J, Ψ〉 is not conserved. It can be shown:

1

a
(f (Ft(z))− f (z)) = 〈J(z)− µ, Ψ(Ft(z))− ξ〉 ,

where we used Noether’s Theorem, Ψ(z) = ξ because z ∈ S , and
〈µ, Ψ(z)〉 = 〈µ, ξ〉, for any z ∈ Gµ · S . Hence, for any z ∈ S such that
Ft(z) ∈ Gµ · S ,

0 ≤ f (Ft(z)) ≤ f (z) + a |〈J(z)− µ, Ψ(Ft(z))− ξ〉|
≤ f (z) + a‖J(z)− µ‖(‖Ψ(Ft(z))‖+ ‖ξ‖)
= f (z) + 2a‖ξ‖ ‖J(z)− µ‖, (3)

where we used that ImΨ = Gµ · ξ, and the Gµ–invariance of the norm
‖ · ‖. These tools suffice to prove the Gµ–stability of m by thinking of f as
a distance function to the relative equilibrium that we are studying.
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Relative dynamical elements and their stability Proof of the energy-momentum method

Remarks and improvements

The hypothesis on the existence of a Ad∗Gµ–invariant inner product on
g∗ cannot be dropped. See SL(2,R) example in [OR99] paper.

Montaldi and Rodŕıguez-Olmos [2011] drop orthogonal velocities
when Gµ is compact. It is relevant in the absence of non-trivial
orthogonal velocities.

Poster by Miquel Teixidó-Román.
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Relative dynamical elements and their stability T2-energy-momentum method

T2-energy-momentum method

G proper and free action on (M, ω). Momentum map J : M → g∗ is a
submersion. h ∈ C∞(M)G .
m relative equilibrium such that J(m) = µ and S slice at m.
If there exists an open neighborhood US of m in S and an open
neighborhood Uµ of µ in g∗ such that

h−1(h(m)) ∩ J−1(T
Uµ
2 (µ)) ∩ US = {m},

then m is G -stable.
Sketch of the proof: due to the freeness of the action M ' G × S
locally and hence M/G ' S . Hence the G -stability of m amounts to
the stability of m as an equilibrium of (S , {·, ·}S , h|S). The statement
follows from the T2-energy-Casimir theorem by noticing that J
induces a homeomorphism between the leaf space of US an that of
Uµ. In particular:

TUS
2 (m) = J−1

(
T

Uµ
2 (µ)

)
∩ US .
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Relative dynamical elements and their stability T2-energy-momentum method

In this case the symplectic leaf space of M/G at G ·m is Hausdorff iff
g∗/G is Hausdorff at G · µ. If this holds then the stability condition
reduces to

h−1(h(m)) ∩ J−1(µ) ∩ US = {m},

which in general only ensures leafwise stability.

In the case of the existence of Gµ-invariant inner products in g∗ the
G -invariance can be improved to Gµ-invariance.
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Relative dynamical elements and their stability Examples

The heavy top

Figure : Taken from Introduction to Mechanics and Symmetry
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Relative dynamical elements and their stability Examples
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Relative dynamical elements and their stability Examples

Sleeping and hanging tops

Elements of TSO(3) in spatial representation (that is, right

trivialization) will be expressed as (Λ, δ̂θΛ) where Λ ∈ SO(3) and δ̂θ
is the skew–symmetric matrix associated to δθ ∈ R3 via the relation
δ̂θ x = δθ × x.
Analogously, the elements of T ∗SO(3) have the form (Λ, π̂Λ) with
π ∈ R3.
g = ge3 denotes the gravity vector, where {e1, e2, e3} is a spatial
orthonormal basis of R3.
The mass vector by M :=

∫
B ρref (X )Xd3X , where B is a reference

configuration.
If m is the total mass of the body and l is the distance from the fixed
point to the center of mass, then |M |= ml .
The reference inertia tensor Iref is defined as

Iref :=

∫
B
ρref (X )(| X |2 I3 − X ⊗ X )d3X
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Relative dynamical elements and their stability Examples

The current spatial inertia tensor is given by

IΛ := ΛIref ΛT .

If m := ΛM is the spatial representation of the mass vector, in these
variables, the Hamiltonian of the heavy top is given by

h(Λ,π) := m · g +
1

2
π · I−1

Λ π.

Choose, without loss of generality, Iref = diag [I1, I1, I3] for some
constants I1 and I3 and M = mle3.

Symmetries: G = S1 × S1. Using spatial variables, the G –action on
the phase space

G × T ∗SO(3) −→ T ∗SO(3)
((θ1, θ2), (Λ,π)) 7−→ (exp(θ1ê3)Λ exp(−θ2ê3), exp(−θ1ê3)π) .

Infinitesimal generators:

(ξ, ω)Q(Λ) = (Λ, ξe3 − ωΛe3).
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Relative dynamical elements and their stability Examples

Momentum map: J : T ∗SO(3)→ g∗ = R2:

〈J(Λ, π), (ξ, ω)〉 = 〈(Λ,π), (Λ, ξe3 − ωΛe3)〉 = ξπ · e3 − ωπ · Λe3,

hence
J(Λ,π) = (π · e3, −π · Λe3).

We show how any sleeping top is a relative equilibrium, in other
words, for every point in T ∗SO(3) of the form z = (I , λI3e3) there is
an element (α1, α2) ∈ g = R2 for which

d(h − J(α1,α2))(z) = 0.

The derivative of the augmented Hamiltonian equals to

d(h − J(α1,α2))(z)(δΛ, δπ) = ((ξ − ω)− λ)δπ · e3.

where δΛ := δ̂θΛ. Therefore, in order to prove that z is a relative
equilibrium we just need to take λ = (α1 − α2).
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Relative dynamical elements and their stability Examples

z has non–trivial symmetry. Indeed if (θ1, θ2) ∈ G is such that
(θ1, θ2) · z = z , that is,
(exp((θ1, θ2)ê3), (ξ − ω)I3e3) = (I , (ξ − ω)I3e3), then θ1 = θ2 and
thus

H = {(θ1, θ2) ∈ G | θ1 = θ2}.
It is easy to check that

(T ∗SO(3))H = {(exp(ψê3), πe3) | ψ ∈ Lie(S1) = R, π ∈ R}.

Additionally,

ker TzJ = {(δΛ, δπ) ∈ Tz(T ∗SO(3)) | δπ · e3 = 0}.

One computes similarly

Tz(Gµ · z) = Tz(G · z) = span {(ê3, 0)} .

W = ker TzJ ∩ Tz(G · z)⊥

= {(δΛ, δπ) ∈ Tz(T ∗SO(3)) | δΛ · e3 = δπ · e3 = 0}.
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Relative dynamical elements and their stability Examples

We write the second summand of the augmented Hamiltonian using
an orthogonal velocity, that is, the projection of (ξ, ω) on the
orthogonal complement of h = Lie(H) = span {(1, 1)} with respect to
an AdG–invariant metric on g. Since G is Abelian, any metric is
AdG–invariant, hence the most general situation consists of taking
the inner product in g given by the quadratic form

g =

(
a b
b c

)
subject to the condition det g = ac − b2 > 0, which ensures the
positive definiteness of g .
The orthogonal complement pµ of h with respect to g is

pµ = span {(1,−k)}
where k = (a + b)/(b + c). This implies that the orthogonal velocity
vc of z with respect to the splitting determined by g is

vc(k) = λ

(
1

1 + k
,
−k

1 + k

)
.
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Relative dynamical elements and their stability Examples

The matrix of the Hessian d2(h − Jvc (k))(z) restricted to W is

−mgl − λ2I3

(
1

1+k
− I3

I1

)
0 0 λ

(
I3−I1

I1
+ k

1+k

)
0 −mgl − λ2I3

(
1

1+k
− I3

I1

)
−λ

(
I3−I1

I1
+ k

1+k

)
0

0 −λ
(

I3−I1
I1

+ k
1+k

)
1
I1

0

λ
(

I3−I1
I1

+ k
1+k

)
0 0 1

I1

 ,

whose eigenvalues are

σ± = A±
√
−4I1(1 + k)2B + A2,

with

A = (1 + k)2 −mglI1(1 + k)2 + I3λ
2(I3(1 + 2k)− I1(1 + k))

B = λ2(I3k + I3 − I1)−mgl(1 + k)2.

It is clear that d2(h − Jvc (k))(z) is positive definite iff B > 0, that is

λ2 > mgl
(1 + k)2

I3k + I3 − I1
.
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Relative dynamical elements and their stability Examples

For each k (for each orthogonal velocity) we have a lower bound for
the values of λ for which the sleeping top is stable. The optimal
stability condition will be achieved when

(1 + k)2

I3k + I3 − I1

reaches a minimum.

Taking the first and second derivatives of this function, one checks
that this happens when

k =
2I1 − I3

I3

and therefore, the optimal stability condition is

λ2 >
4mglI 2

1

I3
.
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Relative dynamical elements and their stability Examples

The orbitron (Grigoryeva, JPO, Zub (2014))

Consider a small axisymmetric magnetized rigid body (permanent magnet or a
current-carrying loop) with magnetic moment µ, in the permanent magnetic field created
by two fixed magnetic poles/“charges” placed at distance h in the absence of gravity.

O

1
O

z

y

x

N

S

x¢

y¢

z¢

N

S

q+

q-

mm
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Relative dynamical elements and their stability Examples

Phase space

The configuration space of the orbitron is SE (3) = SO(3)× R3

The orbitron is a simple mechanical system

Phase space is the cotangent bundle T ∗SE (3) of its configuration
space SE (3) endowed with the canonical symplectic structure ω
obtained as minus the differential of the corresponding Liouville one
form

Left/right trivializations provide an identification of the bundle
T ∗SE (3) with the product SE (3)× se(3)∗. We work in body
coordinates and denote by (A, x) the elements of SE (3) = SO(3)×R3

and by ((A, x), (Π,p)) those of T ∗SE (3) ' SE (3)× se(3)∗.
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Relative dynamical elements and their stability Examples

The Hamiltonian of the orbitron is

h((A, x) , (Π,p)) = T (Π,p) + V (A, x) (4)

with

T (Π,p) :=
1

2
ΠT I−1

ref Π +
1

2M
‖p‖2, (5)

V (A, x) := −µ〈B(x),Ae3〉, (6)

where M is the mass of the axisymmetric magnetic body, the reference inertia
tensor Iref = diag(I1, I1, I3), x = (x , y , z) ∈ R3, µ is the magnetic moment of the
axisymmetric rigid body/dipole, and B(x) is the strength of the magnetic field
created by two magnetic poles/“charges” ±q placed at the points (0, 0, h) and
(0, 0,−h), h > 0, that is,

B(x) =
µ0q

4π

(
x

D(x)
3/2
+

− x

D(x)
3/2
−

,
y

D(x)
3/2
+

− y

D(x)
3/2
−

,
z − h

D(x)
3/2
+

− z + h

D(x)
3/2
−

)
,

(7)

with D(x)+ = x2 + y 2 + (z − h)2, D(x)− = x2 + y 2 + (z + h)2, and µ0 the

magnetic permeability of vacuum.
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Relative dynamical elements and their stability Examples

The standard and generalized orbitron

Definition

A small axisymmetric magnetized rigid body subjected to a external magnetic field of
the form specified in (7) is called a standard orbitron.

The external magnetic field B in (7) has the following symmetry properties, namely:
(i) Equivariance with respect to rotations RZ

θS
around the OZ axis:

B(RZ
θS x) = RZ

θS B(x) for θS ∈ R.

(ii) Behavior with respect to the mirror transformation (x , y , z) 7−→ (x , y ,−z)
according to the prescription

Bx(x , y , z) = −Bx(x , y ,−z),By (x , y , z) = −By (x , y ,−z),Bz(x , y , z) = Bz(x , y ,−z).

Definition

A small axisymmetric magnetized rigid body subjected to the influence of an arbitrary
magnetic field in the magnetostatic approximation in a domain free of other magnetic
sources that satisfies these symmetry properties is called a generalized orbitron.
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Relative dynamical elements and their stability Examples

Equations of motion

The equations of motion of the orbitron are determined by Hamilton’s equations:

Ȧ = AÎ−1
ref Π, (8)

ẋ =
1

M
Ap, (9)

Π̇ = Π× I−1
ref Π + A−1B(x)× e3, (10)

ṗ = p× I−1
ref Π + µA−1DB(x)TAe3. (11)

The symbol Î−1
ref Π stands for the antisymmetric matrix associated to the vector

I−1
ref Π ∈ R3 via the Lie algebra isomorphism ̂:

(
R3,×

)
−→ (so(3), [·, ·]) and D

for the differential.
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Relative dynamical elements and their stability Examples

Toral symmetry and associated momentum map

The axial symmetry of the magnetic rigid body + the rotational spatial
symmetry of the external magnetic field w.r.t. rotations around OZ =
toral symmetry. The action on SE (3):

Φ : (T2 = S1 × S1)× SE (3) −→ SE (3)((
e iθS , e iθB

)
, (A, x)

)
7−→ (RZ

θS
ARZ
−θB ,R

Z
θS

x).
(12)

The cotangent lift Φ is a canonical symmetry given by

Φ : (T2 = S1 × S1)× T ∗SE (3) −→ T ∗SE (3)((
e iθS , e iθB

)
, ((A, x), (Π,p))

)
7−→ ((RθS AR−θB ,RθS x), (RθB Π,RθB p)) ,

that has an invariant momentum map associated J : T ∗SE (3) −→ t∗ :

J ((A, x) , (Π,p)) = (〈AΠ + x× Ap, e3〉,−〈Π, e3〉) . (13)
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Relative dynamical elements and their stability Examples

Relative equilibria equations of the orbitron

Proposition

Consider the orbitron system whose Hamiltonian function is given by (4) and let
z = ((A, x) , (Π, p)) ∈ T ∗SE(3). Then:

(i) The point z is a relative equilibrium of the orbitron with velocity (ξ1, ξ2) ∈ R2 with
respect to the introduced toral symmetry if and only if the following identities are
satisfied:

µ [B(x)× Ae3] + ξ1 [Ap× (x× e3)− AΠ× e3] = 0, (14)

− µDB(x)T (Ae3)− ξ1 (Ap× e3) = 0, (15)

I−1
ref Π + ξ2e3 − ξ1A−1e3 = 0, (16)

1

M
p− ξ1A−1 (e3 × x) = 0. (17)
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Proposition (Continued)

(ii) Consider now A0 = RZ
θ0

, x0 = (x , y , 0), Π0 = I3 (ξ1 − ξ2) e3 and
p0 = Mξ1A−1

0 (−y , x , 0). The point z0 = ((A0, x0) , (Π0, p0)) is a relative
equilibrium of the standard orbitron with velocity (ξ1, ξ2), where ξ2 is an arbitrary
real number and ξ1 is either arbitrary when x0 = 0 or

ξ1 = ±
(
− 3hµqµ0

2πMD(x0)5/2

)1/2

, (18)

when x0 6= 0 (the existence is only guaranteed when µq < 0).

(iii) In the case of the generalized orbitron: Bz(x , y , z) = f (x2 + y 2, z) for some
f ∈ C∞(R2), and the spatial velocity ξ1 of the relative equilibria with x0 6= 0 is

ξ1 = ±
(
− 2

M
µf ′1

)1/2

, (19)

where f ′1 =
∂f (v , z)

∂v

∣∣∣∣
v=x2+y2,z=0

(exists only when µf ′1 < 0).

The relative equilibria for which x0 6= 0 (resp. x0 = 0) have trivial (resp. nontrivial H)
isotropy and hence belong to the orbit type (T ∗SE(3)){e} (resp. (T ∗SE(3))H); we refer
to them as regular relative equilibria (resp. singular relative equilibria).
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Figure : Regular and singular relative equilibria of the standard orbitron. rmin and rmax

represent the stability region in config. space determined by the conditions below.
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Nonlinear stability of the orbitron relative equilibria

Theorem

Consider the relative equilibria introduced in Proposition 7. Then:

(i) The regular relative equilibria of the standard orbitron in part (ii) of Proposition 7,
that is, those for which x0 6= 0, are T2–stable whenever the following three
inequalities are satisfied:

2

3
<

r 2

h2
< 4, (20)

sign(ξ0
1)I3ξ2 < − | ξ0

1 |
(

I1 − I3 +
2

3
M

(r 2 + h2)h2

3r 2 − 2h2

)
, (21)

where r 2 = ‖x0‖2, ξ0
1 = ±

(
− 3hµqµ0

2πMD(x0)5/2

)1/2

, and µq < 0. The singular

relative equilibria (x0 = 0) are always formally unstable, in the sense that the
stability form exhibits a nontrivial signature.
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Theorem (Continued)

(ii) The regular relative equilibria of the generalized orbitron in part (iii) of
Proposition 7 are T2–stable whenever the following conditions hold:

µf ′1 < 0, (22)

µ
(

2f ′1 + r 2f ′′1

)
< 0, (23)

µf ′′2 < 0, (24)

sign(ξ0
1)I3ξ2 < −|ξ0

1 |
(

(I1 − I3) +
1

2
M

(
f0

f ′1
+ 4r 2 f ′1

f ′′2

))
, (25)

where r 2 = ‖x0‖2, f ∈ C∞(R2) is the function such that Bz(x , y , z) = f (r 2, z),

f0 = f (r 2, 0), f ′1 =
∂f (v , z)

∂v

∣∣∣∣
v=r2,z=0

, f ′′1 =
∂2f (v , z)

∂v 2

∣∣∣∣
v=r2,z=0

,

f ′′2 =
∂2f (v , z)

∂z2

∣∣∣∣
v=r2,z=0

, and ξ0
1 = ±

(
− 2

M
µf ′1

)1/2

.
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Theorem (Continued)

The singular branch (x0 = 0) is T2–stable if the following conditions are satisfied:

µf ′1 < 0, (26)

µf ′′2 < 0, (27)

ξ2
1 < −

2

M
µf ′1 , (28)

sign(ξ1)Π0 >
I1ξ

2
1 − µf0

|ξ1|
, (29)

where Π0 = I3 (ξ1 − ξ2) and we use the same notation as above for f0, f ′1 , and f ′′2 ,

replacing v = r 2 by v = 0. When µf0 < 0 and
f0

f ′1
<

2

M
I1, the conditions (28) and (29)

can be replaced by the following single ξ1–independent optimal condition:

|Π0| > 2
√
−µf0I1. (30)

This optimal condition is achieved by using the spatial velocities ξ1 = ± (−µf0/I1)1/2;
the positive (resp. negative) sign for the velocity corresponds to positive (resp.
negative) values of Π0.
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Conditions (26)–(29) can be used in the design of magnetic fields
capable of confining magnetic rigid bodies that do not exhibit spatial
rotation.

This is the working principle of devices such as magnetic contactless
flywheels or levitrons. In the case of flywheels, up until now only
actively controlled versions have been developed.

As to the levitron, the potentials that have been considered so far
[Dullin 1999, 2004, Marsden, Krechetnikov 2006] do not allow to
conclude nonlinear stability using the methods put at work in
Theorem 9 and only the spectral stability of the corresponding
linearized systems has been considered.
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The use of the energy-momentum method provides sufficient but not
necessary nonlinear stability conditions. The complementary spectral
stability analysis of the linearized system is required.
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Linear stability/instability analysis of relative equilibria

Standard equilibria: examine the spectral stability of the linearization
at the equilibrium of the vector field in question.

Regular relative equilibria: examine the spectral stability of the
linearization of the reduced Hamiltonian vector field at the
equilibrium corresponding to the relative equilibrium in the symplectic
Marsden–Weinstein reduced space.

Singular case: there exist reduced spaces that generalize the
Marsden–Weinstein reduced space, the equivalence between
Gµ-stability of a relative equilibrium and standard nonlinear stability
of the corresponding reduced equilibrium does not hold anymore,
which makes necessary the formulation of a criterion that provides a
linear stability analysis tool for relative equilibria whose formulation
does not need reduction.
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Proposition

Let G be a Lie group acting canonically and properly on the symplectic manifold
(M, ω) and suppose that there exists a coadjoint equivariant m. m. J : M → g∗

that can be associated to it. Let h ∈ C∞(M)G be a G –invariant Hamiltonian and
let m ∈ M be a relative equilibrium of the corresponding G –equivariant
Hamiltonian vector field Xh with velocity ξ ∈ g. Consider a Gm–invariant stability
space W such that

ker TmJ = W ⊕ Tm (Gµ ·m) ,

with µ := J(m) and Gµ ⊂ G the coadjoint isotropy of µ ∈ g∗. Then:

(i) (W , ωW ) with ωW := ω(m)|W is a symplectic vector subspace of
(TmM, ω(m)).

(ii) There exists a symplectic slice (S , ωS) at m ∈ M such that
(TmS , ωS(m)) = (W , ωW ).

(iii) The Hamiltonian vector field XhξS
∈ X(S) in S associated to the Hamiltonian

function hξS :=
(
h − Jξ

)∣∣
S

exhibits an equilibrium at the point m ∈ S ⊂ M.
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Proposition (Continued)

(iv) The linearization X ′
hξS
∈ X(TmS) = X(W ) of XhξS

at m ∈ S coincides with

the linear Hamiltonian vector field XQ on (W , ωW ) that has as Hamiltonian
vector field the stability form

Q(w) := d2
(
h − Jξ

)
(m)(w ,w), w ∈W .

(v) Suppose that the two tangent spaces Tm (Gµ ·m) and Tm (G ·m) coincide.
Then TmM = W ⊕W ω. (31)

Additionally, let hξ := h − Jξ ∈ C∞(M) be the augmented Hamiltonian and
let X ′hξ ∈ X(TmM) be the linearization of the Hamiltonian vector field Xhξ

at m. Then
XQ = PW X ′hξ iW , (32)

where iW : W ↪→ TmM is the inclusion, PW : TmM −→W is the projection
according to (31), and X ′hξ is the linearization of Xhξ at m.

(vi) If the linear vector field XQ is spectrally unstable in the sense that it exhibits
eigenvalues with a nontrivial real part, then the relative equilibrium m ∈ M
of Xh is nonlinearly K –unstable, for any subgroup K ⊂ G .
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Proposition

Let G be a Lie group with Lie algebra g and let T ∗G be its cotangent bundle endowed
with the canonical symplectic form. Consider now the body coordinates expression
G × g∗ of T ∗G and let h ∈ C∞(G × g∗) be a Hamiltonian function whose associated
Hamiltonian vector field Xh exhibits an equilibrium at point (g , µ) ∈ G × g∗. Then the
linearization XQg : g× g∗ → g× g∗ for any (ξ, τ) ∈ g× g∗ is given by:

XQg (ξ, τ) =
(
πg∗ (Hess(ξ, τ)) ,−πg (Hess(ξ, τ)) + ad∗πg∗Hess(ξ,τ)µ

)
, (33)

where πg : g× g∗ → g, πg∗ : g× g∗ → g∗ are the canonical projections and
Hess : g× g∗ → g× g∗ is the linear map associated to the Hessian of hg at (e, µ) by the
relation

〈Hess(ξ, τ), (η, ρ)〉 = d2hg (e, µ)((ξ, τ), (η, ρ)), (ξ, τ), (η, ρ) ∈ g× g∗.
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Let h ∈ C∞(T ∗(SE(3))) be a Hamiltonian function and let Xh be the corresponding
Hamiltonian vector field that we assume has an equilibrium at the point
z0 = ((A0, x0), (Π0, p0)), that is, dh(z0) = 0. Let g = (A0, x0) ∈ SE(3) and let
z = ((I , 0), (Π0, p0)); clear that z0 = ϕg (z). Let
Hess(z) : se(3)× se(3)∗ → se(3)× se(3)∗ be the linear map associated to the Hessian of
h ◦ ϕg at z, that is, for any v,w ∈ Tz (T ∗SE(3)) ' se(3)× se(3)∗,
〈v,Hess(z)w〉 = d2(h ◦ ϕg )(z)(v,w). Now, given v = (δA, δx, δΠ, δp) ∈ se(3)× se(3)∗,
define the projections:

πδA : se(3)× se(3)∗ −→ R3

(δA, δx, δΠ, δp) 7−→ δA

By Proposition 14 the linearization X ′h of Xh at z0 is given by

X ′h = Φg ◦ X ′hg ◦ Φg−1 , (34)

where X ′hg : se(3)× se(3)∗ ' R12 → se(3)× se(3)∗ ' R12 is the linear map

X ′hg =


πδΠHess(z0)
πδpHess(z0)

−πδAHess(z0) + Π̂0πδΠHess(z0) + p̂0πδpHess(z0)
−πδxHess(z0) + p̂0πδΠHess(z0)

 . (35)
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Theorem

Consider the relative equilibria introduced in Proposition 7. Then:

(i) In the case of the standard orbitron in part (ii):

(a) The regular relative equilibria that do not satisfy the Kozorez relation
(r 2/h2 < 4) are unstable; the stability condition is sharp. The conditions
in (20) and (21) are not sharp, i.e. there are regions in parameter space that
do not satisfy them and where the linearized system is spectrally stable.

(b) The singular relative equilibria are nonlinearly unstable.

(ii) In the case of the generalized orbitron in part (iii):

(a) The regular relative equilibria that do not satisfy the generalized Kozorez
relation (23) (µ

(
2f ′1 + r 2f ′′2

)
< 0), are unstable; the stability condition is

sharp. The conditions (22), (24), and (25) are not sharp.
(b) The spectral stability of the singular relative equilibria is equivalent to:

µf ′1 < 0, µf ′′2 < 0, Π2
0 > −4µf0I1, (36)

where Π0 = I3(ξ1 − ξ2). The conditions (26) and (27) are sharp, the

remaining conditions are not.
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Figure : Standard orbitron with h = 0.05 m, M = 0.0068 kg, µ0 = 4π · 10−7 N·A−2,

µ = −0.18375 A·m2, q = 17.58 A·m, I1 = 0.17 · 10−6 kg·m2, I3 = 0.1 · 10−6 kg·m2. The

red bullets indicate the critical values of r (m) and ξ2 (rad·s−1) determined by the

stability conditions. The grey bands correspond to the stability gaps (the system is

spectrally stable while the stability form exhibits a nontrivial signature).
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Figure : Evolution of the eigenvalues with r .
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Figure : Evolution of the eigenvalues with ξ2.

Juan-Pablo Ortega (CNRS) Stability in Symmetric Hamiltonian Systems 53 / 57



Relative dynamical elements and their stability RPOs: symmetric energy-integrals method

RPOs: symmetric energy-integrals method

Theorem (The symmetric energy–integrals method)

(M, {·, ·}, G , J : M → g∗, h : M → R) Hamiltonian system with a
symmetry given by the Lie group G acting properly on M. h ∈ C∞(M) is
G –invariant and J is equivariant. Let m ∈ M be a RPO such that
J(m) = µ ∈ g∗ and Gµ is compact. Then, if there is a set of Gµ–invariant
conserved quantities C1, . . . , Cn ∈ C∞(M), for which

d(C1 + . . .+ Cn)(m) = 0, and d2(C1 + . . .+ Cn)(m)|W×W

is definite for some (and hence for any) W such that

ker dC1(m)∩. . .∩ker dCn(m)∩ker TmJ = W⊕(span{Xh(m)}+Tm(Gm·m)),
(37)

then m is a Gµ–stable RPo. If dim W = 0, then m is always a Gm–stable
RPP.
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G -invariant Poincaré sections

Definition

Let X ∈ X(M)G . A G–invariant local transversal section of X at
m ∈ M is a G –invariant submanifold S of codimension one with m ∈ S
such that for all z ∈ S , X (z) is not contained in TzS .
If m ∈ M is a RPO with relative period τ > 0, phase shift g ∈ G , and S is
a G –invariant local transversal section at m then, a G–equivariant
Poincaré map of the RPP m is a mapping Θ : W0 →W1 satisfying:

(RPM1) W0, W1 ⊂ S are open G –invariant neighborhoods of m in S
and Θ is a G –equivariant diffeomorphism;

(RPM2) there is a continuous G –invariant function, called the period
function, such that for all z ∈W0, (z , τ − δ(z)) ∈ DX , and
Θ(z) = F (z , τ − δ(z)). The open set DX ⊂ M × R is the
domain of the flow F : DX ⊂ M × R→ M of X ;

(RPM3) if t ∈ (0, τ − δ(z)), then F (z , t) /∈W0.
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Theorem (Existence and uniqueness of G –equivariant Poincaré maps)

Due to Field [1980, 1991]. Let m, M, and X be as in Definition.

(i) There exists a G –invariant local transversal section S and a
G –equivariant Poincaré map Θ : W0 →W1 for m ∈ M.

(ii) If Θ : W0 →W1 is a G–equivariant Poincaré map for m in
the G –invariant local transversal section S and similarly
Θ′ : W ′

0 →W ′
1 for m′ := Ft0(m) in S ′, then Θ and Θ′ are

locally G –equivariantly conjugate, that is, the diagram

Θ−1(W2) ∩W2
Θ−−−−→ W2 ∩Θ(W2)

H
y yH

W ′
2

Θ′−−−−→ S ′

commutes.
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RPO example: the Manev potential

Potential of the form V (r) = k
r + B

r2 .
Manev [1924, 25, 30]. Diacu, Mioc, Stoica [1999], Delgado et al
[1996].
Proxy for relativistic correction.
SO(3) invariant. It reduces to Kepler with a momentum shift.
Reduced space is 2 dimensional. Obvious orbital stability.

Figure : Projection over the configuration space of a bounded Manev orbit.
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